
conference reports

4 Vol. 26, No. 4 ;login:

This issue’s reports are on the 6th

USENIX Conference on Object-Oriented

Technologies and Systems (COOTS ’01)

OUR THANKS TO THE SUMMARIZER:

Nanbor Wang

(OO) technologies and middleware will

be required to integrate pieces of soft-

ware.

Feldman went on to point out that qual-

ity of service and immediacy will be

important for next-generation mobile

applications providing networked serv-

ices, such as market monitoring, financial

transactions, and real-time information

broadcasting. The heterogeneity of the

environment these applications must run

on presents many challenges to develop-

ing these applications. The diversities in

user demographics, device-specific user

interfaces and business models processes

of service providers further complicate

the issue.

In conclusion, Feldman envisions a world

of pervasive devices that are helpful,

always on, always available, personal,

friendly to use, easily authored, managed,

secure, and reliable. It’s up to the applica-

tion and middleware developers to meet

these challenges.

SESSION: DISTRIBUTED OBJECTS

TORBA: TRADING CONTRACTS FOR CORBA

Raphaël Marvie, Philippe Merle, Jean-
Marc Geib, and Sylvain Leblanc, Labora-
toire d’Informatique Fondamentale de
Lille, France

Raphaël Marvie presented their work on

the Trader-Oriented Request Broker

Architecture (TORBA), which is a frame-

work and a collection of tools to auto-

mate the use of the CORBA Trading

Service. Marvie pointed out that locating

a service is the essential part of distrib-

uted applications. Although the Object

Management Group (OMG) already

defined the CosTrading Service, it is

complicated to use and does not support

type safety. The proposed solution is to

make the Trading Service an integral part

of objects and provide tools to integrate

the Trading Service into applications

automatically.

TORBA defines the concept of trading

contracts in TORBA Definition Language

6th USENIX Conference on
Object-Oriented Technologies
and Systems (COOTS ’01)
SAN ANTONIO, TEXAS

JANUARY 29-FEBRUARY 2, 2001
Summarized by Nanbor Wang

BEST STUDENT PAPER AWARDS

Yi-Min Wang of Microsoft Research, Co-

Chair of the Conference, announced the

best student award. Many of the accepted

papers were written by students this year.

Of them, two received identical scores,

and both of them were awarded the best

student paper award. They are:

“Content-Based Publish/Subscribe

with Structural Reflection” by Patrick

Th. Eugster and Rachid Guerraoui of

the Swiss Federal Institute of Technol-

ogy, Switzerland and

“Multi-Dispatch in the Java Virtual

Machine: Design and Implementa-

tion” by Christopher Dutchyn, Paul

Lu, Duane Szafron, and Steve Brom-

ling of University of Alberta, Canada;

and Wade Holst of the University of

Western Ontario, Canada

KEYNOTE ADDRESS

THE BRAVE NEW WORLD OF PERVASIVE,

INVISIBLE COMPUTING

Stu Feldman, Institute for Advanced
Commerce, IBM T.J. Watson Research
Center

In this talk, Feldman pointed out that,

with their increasing popularity, portable

computing devices have become perva-

sive in our daily lives. Nevertheless,

unlike desktop computers, there is still

no single computing model that domi-

nates the mobile world nor should there

be one since mobile devices have very

different hardware interface designs.

With the current trend, the number of

mobile devices accessing the Web will

shortly exceed that of desktops. There are

plenty of opportunities to develop

mobile devices, and Object-oriented

●

C

O
N

FE
R

EN
C

E
R

EP
O

RT
S(TDL). With the help of a TDL compiler,

TORBA generates the code for trading

proxies, which hide the complexity of

using the OMG Trading Service and pro-

vide the necessary type-checking mecha-

nisms. TDL allows application developers

to specify the properties of an object and

how the object will be offered to and

queried for by its clients. Although

TORBA introduces some extra opera-

tions when connecting and using the

trading server, a local library is used to

optimize its performance, and other

ORB-specific optimizations can be used

to improve the performance further.

For more information, contact

marvie@lifl.fr.

DYNAMIC RESOURCE MANAGEMENT AND

AUTOMATIC CONFIGURATION OF DISTRIBUTED

COMPONENT SYSTEMS

Fabio Kon, University of São Paulo,
Brazil; Tomonori Yamane, Mitsubishi
Electric Corp.; Christopher K. Hess, Roy
H. Campbell, and M. Dennis Mickunas,
University of Illinois at Urbana-
Champaign

Component technology is gaining popu-

larity in today’s computation environ-

ments. Software components increasingly

collaborate with each other, and how

they are configured often depends on the

hardware that they run on. Managing

software components is becoming com-

plicated as dependencies among compo-

nents and the number of hardware

platforms they can run on grows.

Christopher Hess presented their work

on a component configuration frame-

work that provides mechanisms to help:

■ Automatic configuration of compo-

nent-based applications
■ Intelligent, dynamic placement of

applications in distributed systems
■ Dynamic resource management for

distributed heterogeneous environ-

ments
■ Component-code distribution using

either push or pull models

5July 2001 ;login: COOTS ’01 ●

■ Safe dynamic reconfiguration of dis-

tributed component systems

Hess also provided a performance analy-

sis of their component configurator

implementation.

For more information, contact

ckhess@cs.uiuc.edu.

AN ADAPTIVE DATA OBJECT SERVICE FOR PER-

VASIVE COMPUTING ENVIRONMENTS

Christopher K. Hess, Roy H. Campbell,
and M. Dennis Mickunas, University of
Illinois at Urbana-Champaign; Francisco
Ballesteros, Rey Juan Carlos, University
of Madrid

Christopher Hess continued to describe

their work on the adaptive data object

service (DOS). He first pointed out that

remote data access is the most essential

part in modern computing environ-

ments. The traditional file sharing mech-

anisms, however, are not suitable for

many mobile devices and their comput-

ing model because they lack the neces-

sary resources, such as bandwidth,

memory, software, and CPU power to

decipher the raw data stored in files. To

address the problem, Hess’s team pro-

poses the adaptive DOS, which is

inspired by the model-view-controller

(MVC) model.

With DOS, data are represented and

accessed through containers and iterators.

Containers shield the actual file represen-

tations from the application. Data can

either be remote or local. Containers can

also be instantiated with filters, e.g., a

GrepContainer, to change the user’s view

of a data stream. Iterators provide differ-

ent ways to traverse the data in contain-

ers.

DOS is currently implemented as

CORBA service and can be linked-in

dynamically. XML descriptions are used

to describe the capability of DOS objects,

so a device knows what a DOS object is

and how to use it. DOS is part of the

Gaia system, which is an infrastructure

that exports and coordinates the

resources contained in a physical space

and defines generic computational envi-

ronments for ubiquitous computing

devices.

For more information, contact

ckhess@cs.uiuc.edu.

SESSION: INFRASTRUCTURE

HBENCH:JGC – AN APPLICATION-SPECIFIC

BENCHMARK SUITE FOR EVALUATING JVM

GARBAGE COLLECTOR PERFORMANCE

Xiaolan Zhang and Margo Seltzer,
Harvard University

In this paper, Xiaolan Zhang pointed out

that as Java gains popularity several Java

Virtual Machine (JVM) aspects, such as

dynamic memory management and

garbage collection (GC), can become

problematic for performance sensitive

applications. Understanding GC perfor-

mance characteristics in order to select

the right GC implementation can signifi-

cantly affect overall application perfor-

mance. Traditional GC benchmarking

approaches may not measure the behav-

ior of targeted applications accurately

because they usually measure and com-

pare the total execution times of a fixed

set of applications using different GCs.

These applications, however, may not

have the same behavior of the application

we are interested in.

Zhang presented their work on

HBench:JGC, which is a vector-based

benchmarking suite that characterizes

application memory-usage patterns and

the GC implementation independently. It

then combines both metrics to evaluate

the performance of a GC in the bench-

marked application. The experiments

show that HBench:JGC can predict the

actual GC time within 10% for most

applications.

DISTRIBUTED GARBAGE COLLECTION FOR

WIDE AREA REPLICATED MEMORY

Alfonso Sánchez, Luis Veiga, and Paulo
Ferreira, INESC/IST, Portugal

Alfonso Sánchez presented their work on

distributed garbage collection (DGC) for

wide area replicated memory (WARM).

He first identified the deficiencies of two

traditional DGC schemes. DGC that uses

the message-passing model fails to con-

sider the existence of replicated objects.

Conversely, DGC that uses the shared-

memory model does not scale well, since

it depends on sending causal information

using the underlying communication

channels.

The authors propose a DGC algorithm

that adapts the classical reference count-

ing and improves it to take into consider-

ation replications.

For more information, contact

alfonso.sanchez@inesc.pt.

MULTI-DISPATCH IN THE JAVA VIRTUAL

MACHINE: DESIGN AND IMPLEMENTATION

Christopher Dutchyn, Paul Lu, Duane
Szafron, and Steve Bromling, University
of Alberta, Canada; Wade Holst, Uni-
versity of Western Ontario, Canada

Christopher Dutchyn presented this

paper on extending the JVM to support

multi-dispatch. Mainstream OO lan-

guages like C++ and Java only support

uni-dispatch, such as function overload-

ing and virtual functions. Under these

programming environments, program-

mers often must implement double-dis-

patch—which inspects the type or

arguments of the event object—to decide

how an event should be dispatched to the

proper event handler. Supporting multi-

dispatch greatly simplifies the structure

of OO application programs.

Dutchyn’s work extends the JVM support

for multi-dispatch without changing the

language definition. His approach also

(1) maintains backward compatibility to

source code and library and (2) isolates

the semantic changes and performance

penalty incurred by the extension within

the places where it is used. Several other

multi-dispatch designs are compared and

contrasted with their design. Empirical

results show that supporting multi-dis-

patch through JVM extension has lower

6 Vol. 26, No. 4 ;login:

latency compared to functionally equiva-

lent handcrafted code.

For more information, contact

dutchyn@cs.ualberta.ca.

USING ACCESSORY FUNCTIONS TO GENERALIZE

DYNAMIC DISPATCH IN SINGLE-DISPATCH

OBJECT-ORIENTED LANGUAGES

David Wonnacott, Haverford College

David Wonnacott presented another

paper discussing the applicability of

dynamic dispatching using C++ as the

programming language. He explained

that the single-dispatching strategy used

by most OO languages unnecessarily

restricts the extensibility of programs.

Specifically, the dynamic-dispatch mech-

anism (virtual functions) that C++ sup-

ports inhibits code reuse through

inheritance. The Accessory Functions

proposed in the paper allow dynamic-

dispatching a message to a group of func-

tions with similar signature but one

virtual argument. This virtual argument

is used to determine which function in

the group to dynamically dispatch the

invocation to, whereas current OO lan-

guages use the receiver of the message to

determine how the message should be

dispatched.

Accessory Functions work with a group

of classes without requiring the imple-

mentation details of those classes or vio-

lating their encapsulation. The cost of

dispatching to accessory functions

should be no more expensive than exist-

ing language constructs for dynamic-dis-

patch. Like C++, the system must be able

to produce errors related to dispatching

prior to program execution. The dis-

patcher extension should dispatch the

message based on the dynamic-dispatch

semantics existing in the language.

The alternative dynamic-dispatch mech-

anism decouples the dispatch method

from the class membership. This decou-

pling lets programmers achieve reuse

both by inheritance and reuse in a func-

tion.

For more information, contact

davew@cs.haverford.edu.

GUEST LECTURE

EXTREME PROGRAMMING: A LIGHTWEIGHT

PROCESS

Robert Martin, Object Mentor, Inc.

Robert Martin gave a speech on a popu-

lar topic – extreme programming (XP) –

and on applying XP in software projects.

Ken Arnold defines XP as “a lightweight

methodology for small- to medium-sized

teams developing software in the face of

vague or rapidly changing requirements.’’

XP promotes writing test before code,

pair programming, collective code own-

ership, frequent integration of code base,

clean and simple coding style, and fre-

quent communication with customers.

Adapting XP practice into your environ-

ment improves adaptability, predictabil-

ity, number of options, and humanity in

the development process.

Martin explained that the basic princi-

ples of XP are:

■ Rapid feedback – This facilitates a

fast learning environment. You

should get immediate feedback for

schedule, quality, process, and

morale.
■ Assume simplicity – Solve the prob-

lem at hand. Treat every problem as

if it can be solved with ridiculous

simplicity.
■ Incremental change – Big changes

make things break all at once. Thus,

problems should be solved via a

series of small changes.
■ Embracing change – The best strategy

for dealing with changes is the one

that preserves the most options

while solving the most pressing

problem. See volatility of require-

ments as an opportunity, not as a

problem.
■ Quality work: – Everybody likes

doing a good job. The only accept-

able quality levels are excellent and

insanely excellent.

●

C

O
N

FE
R

EN
C

E
R

EP
O

RT
SFinally, Martin presented some vivid

examples through the perspectives of

managers, software developers, and cus-

tomers to demonstrate how software

teams can adapt XP practice.

For more information, see

http://www.objectmentor.com.

INVITED TALK

RUNNING THROUGH THE WOODS — A STORY

ABOUT SOFTWARE ENGINEERING

Bjorn Freeman-Benson, QuickSilver
Technology

Dr. Bjorn Freeman-Benson talked about

software engineering lessons he had

learned from his involvement in several

successful large software systems. He

made an interesting analogy between

software engineering and orienteering.

Orienteering is a sport of navigation in

which, using map and compass to select

routes to run through a series of points

shown on the map, one tries to reach the

destination in the shortest time. Both

software engineering and orienteering

have four basic variables:

■ Time – both want to reach the goal

in the shortest amount of time.
■ Cost – both want to deploy compe-

tent tools with minimal cost, e.g.,

quality of map vs. quality of software

engineering tools.
■ Features – both should avoid using

tools with over-complicated features

that may adversely affect the

progress.
■ Quality – both care much about the

quality of the progress in reaching

their goals.

After a brief introduction to orienteering,

Dr. Freeman-Benson went on to review

four projects in which he had been

involved. These projects included Visual

Age of OTI, Rose+ of Rational, Amazon’s

front-end software, and Q compiler of

QuickSilver Technology. All rather suc-

cessfully met their goals as originally set,

but in retrospect, he could see things that

could have been done differently to make

the projects optimally successful.

In conclusion, Dr. Freeman-Benson

pointed out that, as with orienteering, in

software engineering, you can’t build the

right thing if you don’t know the end

goal, if you don’t have a plan for how to

get there, and if you’re sloppy about

building it. As the business climate has

changed, it has become even more

important to build something right

instead of just building it quickly.

SESSION: REFLECTION IN
DISTRIBUTION

THE DESIGN AND PERFORMANCE OF META-

PROGRAMMING MECHANISMS FOR OBJECT

REQUEST BROKER MIDDLEWARE

Nanbor Wang and Kirthika Para-
meswaran, Washington University, St.
Louis; Douglas Schmidt and Ossama
Othman, University of California, Irvine

Distributed Object Computing (DOC)

middleware frameworks, such as

CORBA, have gained much popularity in

recent years because they shield develop-

ers from many complex issues in network

programming. There are many meta-

programming mechanisms available in

CORBA that can further shield the devel-

opers from other accidental complexities

and improve the adaptability of DOC

systems and applications. Kirthika Para-

meswaran presented a comparison

between several of these mechanisms.

Meta-programming mechanisms

improve application adaptability by

abstracting out certain behaviors into

replaceable meta-objects. By using meta-

objects implementing different strategies

and/or behavior, developers can modify

different aspects of a system in a non-

intrusive way without losing the main-

tainability of the application. In this

paper, the authors show how the meta-

programming mechanisms can be

applied at different levels in the ORB

invocation path and the challenges of

implementing them. They also contrast

and compare the scope and implications

of applying these mechanisms into appli-

cations and provide some guidelines on

how to select the proper meta-program-

ming mechanisms.

For more information, contact

kirthika@cs.wustl.edu.

KAVA – USING BYTECODE REWRITING TO ADD

BEHAVIORAL REFLECTION TO JAVA

Ian Welch and Robert J. Stroud, Univer-
sity of Newcastle upon Tyne, United
Kingdom

When reusing code from outside sources,

it is often necessary to modify the origi-

nal implementations to adapt them to

new needs. In this paper, Ian Welch pre-

sented another approach to use behav-

ioral reflection to modify the existing

programs by rewriting the Java bytecode

at code loading time. The behavioral

reflection added by the code rewriting

associates each object with a meta-object

that provides operations like beforeExe-

cution, afterExecution, beforeInvoke,

afterInvoke, beforeException, and afterEx-

ception that developers can use to reflect

into the associated operations and object.

These operations in meta-objects are

invoked automatically through the

rewritten bytecode. Developers can use

these operations to modify the targeted

operation in the original code transpar-

ently.

Work on Kava revealed insights on the

following topics:

■ Strong encapsulation – It is difficult

to bypass the meta-object bound to

the base-object.
■ Inherited methods – Operations rede-

fined in derived classes will not work

with the parent class’ meta-object.
■ Exception handling – Exceptions can

be intercepted by the associated

meta-object. A context object is used

by the meta-object to simplify the

meta-object protocol and to allow

lazy reification.

For more information, see

http://www.cs.ncl.ac.uk/research/dependability/reflection/.

7July 2001 ;login: COOTS ’01 ●

http://www.objectmentor.com
http://www.cs.ncl.ac.uk/research/dependability/reflection/

CONTENT-BASED PUBLISH/SUBSCRIBE WITH

STRUCTURAL REFLECTION

Patrick Th. Eugster and Rachid Guer-
raoui, Swiss Federal Institute of Technol-
ogy, Switzerland

Patrick Th. Eugster presented their work

on content-based publish/subscribe

implementation. The classic topic-based

event service groups messages into topics

that are relatively static. Several other

publish/subscribe services allow group-

ing the messages based on the contents

they carry. The content-based

publish/subscribe service described in

this paper utilizes Java’s reflection mech-

anism to acquire the type information of

a message. Condition objects are used as

filters to define the subscription patterns.

The paper also discusses several perfor-

mance optimizations, such as avoiding

redundant invocations and enforcing

static filters. Benchmark results show sev-

eral metrics, e.g., the number of methods

supported by messages, which affect the

performance of this approach. These

overheads are incurred by the use of Java

reflection. They are working on a new

optimization that will generate code for

static filters based on the execution

results from dynamic filters.

For more information, contact

Patrick.Eugster@epfl.ch.

GUEST LECTURE

LANGUAGE INTEGRATION IN THE COMMON

LANGUAGE RUNTIME

Jennifer Hamilton, Microsoft Corp.

.NET is Microsoft’s next-generation

development platform that provides easy

integration within and across languages

and platforms. The Common Language

Runtime (CLR) is the fundamental

building block of the .NET framework.

Jennifer Hamilton gave an overview on

the design of CLR and how CLR helps

support inter-language object sharing.

The major features in CLR include:

■ Common Type System (CTS) –The

single-type system CLR supports.

CTS is designed to support multiple

languages that .NET implements.
■ Metadata – Used to used to describe

and reference the types defined by

CTS. The format of metadata is lan-

guage independent. Using metadata

allows applications written in differ-

ent languages, programming tools,

e.g., compilers and debuggers, and

virtual runtime to inter-operate. All

objects are strongly typed through

the metadata.
■ The Common Language Specification

(CLS) – An agreement between lan-

guage designers and framework

designers. As CTS is too broad for

most languages to implement, CLS

defines a subset of CTS to guarantee

language integration. Exception han-

dling is part of the CLS.

Microsoft Intermediate Language (MSIL)

specification defines a type-neutral lan-

guage that other supporting languages

can be translated into, similar to Java

bytecode. A unit of object deployment is

called an assembly and contains self-

describing metadata that record the

modules and files it contains and the

dependencies of containing modules

with external modules. The execution

model uses a “Class Loader’’ to link in an

assembly.

For more information, see

http://www.microsoft.com/net/.

SESSION: PROGRAMMING
TECHNIQUES

PSTL – A C++ PERSISTENT STANDARD TEM-

PLATE LIBRARY

Thomas Gschwind, Technische
Universität Wien, Austria

Thomas Gschwind showed that it is

impossible to use a Standard Template

Library (STL) container to access persist-

ent data simply by implementing an allo-

cator class because of certain inherent

constraints, such as the inability to name

permanent data storage through a con-

tainer interface or query an existing

object with the allocator interface. Persis-

tent containers are useful for managing

and accessing databases. It is necessary to

couple the container interface more

tightly with the allocator interface to sup-

port persistent containers.

Gschwind described a design that added

serialization, deserialization, referencing,

and locking capabilities into his Persis-

tent STL (PSTL) containers. He also

examined the PSTL compatibility with

the existing STL containers and com-

pared the performance of PSTL contain-

ers with Berkeley DB and gmdb. He

found that with PSTL, it is possible to

replace regular STL with PSTL with min-

imal modification.

For more information, contact

tom@infosys.tuwien.ac.at.

MAKING JAVA APPLICATIONS MOBILE OR

PERSISTENT

Sara Bouchenak, SIRAC Laboratory,
France

Sara Bouchenak pointed out that while

Java provides code and object mobility

and persistence, Java does not provide

any support for mobility and persistence

for control flows and execution states.

Her work in thread migration provides a

framework to stop the execution states of

a thread so the thread can be migrated to

another machine, or checkpointed on

disk for later recovery.

She described the challenges in designing

a thread-state capture/restoration service

and its implementation. The perfor-

mance of the service was also docu-

mented and showed it to be rather

competitive. The paper also discusses

several application examples on thread

migration.

For more information, contact

Sara.Bouchenak@inria.fr.

8 Vol. 26, No. 4 ;login:

http://www.microsoft.com/net/

●

C

O
N

FE
R

EN
C

E
R

EP
O

RT
SBEAN MARKUP LANGUAGE: A COMPOSITION

LANGUAGE FOR JAVABEANS COMPONENTS

Sanjiva Weerawarana, Francisco
Curbera, Matthew J. Duftler, David A.
Epstein, and Joseph Kesselman, IBM T.J.
Watson Research Center

Being able to compose components

together dynamically is a vital part of

applying component technology. Most

programming languages, however, do not

treat components as first-class citizens

and, therefore, do not provide enough

support for component development.

Francisco Curbera presented the Bean

Markup Language (BML), which sup-

ports component composition in a first-

class manner for JavaBean components.

BML is an XML-based descriptive lan-

guage used to describe inter-component

binding, construct aggregates of compo-

nents, and allow macro expansion for

constructing certain types of recursive

compositions. Curbera’s BML implemen-

tation includes support for scripting

event adapters to bridge components

together. They have implemented a

framework to compose component

aggregates based on a given BML

description. A GUI front end is also

available to support visual composition

of components.

For more information, contact

curbera@us.ibm.com.

DESIGN PATTERNS FOR GENERIC PROGRAM-

MING IN C++

Alexandre Duret-Lutz, Thierry Géraud,
and Akim Demaille, EPITA Research and
Development Laboratory, France

Thierry Géraud presented their work on

applying some Gand of Four patterns in

generic programming. In generic pro-

gramming, higher efficiency is achieved

by the use of parameterized classes. This

paper presents the following patterns:

Generic Bridge, Generic Iterator, Generic

Abstract Factory, Generic Template

Method, Generic Decorator, and Generic

Visitor.

For more information, contact

Thierry.Geraud@lrde.epita.fr.

9July 2001 ;login: COOTS ’01 ●

