
64

conference reports
areas covered 10 years ago, like gram-
mars and finite-state automata, are mys-
teries to younger programmers. A lot of
senior developer productivity is lost
explaining debuggers to the fresh crews
coming into the market, which hurts
both the “bottom line” and our progress
in general.

While it is technically true that comput-
ers are getting faster, software bloat and
inefficiency is completely obscuring the
hardware advances offered by manufac-
turers and their research. Do your
favorite Web pages really load any faster?
There’s less of an emphasis on efficiency;
we no longer really care about bench-
marks and actual performance compar-
isons.

How do we deal with all of this and get
back on track? Henning says we should
start acting in the interests of the people
we really work for, i.e., consumers, and
not people obsessed with the “bottom
line.” It needs to be okay for developers
to do long-term work, with long-term
funding, rather than fussing about how
to achieve the current quarter’s projec-
tions. There also needs to be a code of
ethics to quash the high levels of self-
interest currently dominating the indus-
try. Changing a single API can cost
enormous amounts of time and money.
Progress can only come from a lot more
cooperation and respect from everyone
involved — the market, the developers,
their managers, and our sales forces.

STICKY PROBLEMS

REASONING ABOUT SMP IN FREEBSD

Jeffrey Hsu, FreeBSD Project

Hsu discussed the logic behind lock
placement in the highly anticipated SMP
code for FreeBSD. SMP itself is exciting
not because it’s new, but because it’s
becoming affordable, making a compari-
son of the innards of various implemen-
tations particularly interesting.

Our thanks to Murray Kucherawy for his

summaries
BSDCon ’03
SEPTEMBER 8–12, 2003
SAN MATEO, CALIFORNIA
Summaries by Murray Kucherawy

KEYNOTE

COMPUTING FALLACIES (OR, WHAT IS THE

WORLD COMING TO?)

Michi Henning, ZeroC, Inc.

Henning presented fourteen common
misperceptions of the technology indus-
try, and explored the fallacies of each.
Those of us who have weathered the
storm of the dot-com collapse may be
nestled in the comfort of stable jobs, but
according to Henning, the reality is that
we’re far from where we need to be and,
in some cases, possibly even going in the
wrong direction.

Many of these misperceptions involve
the idea that computers in the workplace
are easy to use and increase productivity.
This overlooks some key considerations:
Adding computers to the workplace also
establishes some infrastructure that has
to be maintained. GUIs were expected to
close the gap between using or manag-
ing complex software and systems, but
without truly good GUI designs – and
there are very few of those – the gap is
only changed, not truly reduced.

Henning asserted that a great deal of
computing-related talent is wasted on
doing things just because they’re cool.
This also applies to the latest and great-
est word processors and spreadsheet
packages. There has been little true
advancement in the last decade, but new
versions keep coming out, mainly to
please shareholders.

Time-to-market pressures have also
reduced the average education of a soft-
ware developer to far below what any
seasoned administrator or developer
would demand, with obvious detrimen-
tal effects. Remember how good you
were after just two years? Major subject

FreeBSD’s SMP locking is based on the
work done by the BSD/OS team. Only
two of the low-level locking primitives
are needed in this implementation —
namely, mutexes and spin locks. This
approach comes from the observation
that most locks in the SMP kernel actu-
ally go uncontested, so complex locking
methods are generally not needed. In
fact, it’s been observed that bus con-
tention will become an issue before any-
thing complex really becomes necessary.
It’s a better use of developer time to con-
centrate on subsystem lock code.

The approach used in SMP locking
chiefly depends on what goes into the
subsystems involved. There are really
only a few places where locks are truly
necessary, and other operations should
be skipped when considering a locking
scheme. User-level race conditions, for
example, should really be dealt with out
in user space. Locking single atomic
reads, e.g., a read of four bytes, would
also be a waste of a lock.

Reference counts are also used through-
out the FreeBSD SMP kernel. There is
rarely a need for an atomic reference
count increment/decrement primitive if
the basic mutex primitive is fast enough,
especially given that most mutexes are
uncontested anyway.

Hsu closed by going over some of the
basic synchronization concepts that
should revive memories of threaded
programming courses from years past.
Obviously, such practices are especially
important in SMP as well, as it is proba-
bly a prime example of why those con-
cepts are key.

DEVD – A DEVICE CONFIGURATION DAEMON

M. Warner Losh, Timing Solutions, Inc.

Losh presented his work on devd, an
event-driven device configuration dae-
mon package. The goal here is to over-
come UNIX’s traditionally monolithic
approach to devices. Drivers are typi-
cally compiled into the kernel or loaded
at boot time, but the device subsystems
never change while the system is run-

65BSDCON ‘03 �

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
Sning. The kernel was never designed to

have “hot-plug” hardware. With the
advent of PCMCIA, USB, Firewire, hot-
plug PCI and other upcoming technolo-
gies, you can have devices suddenly
appear and want to do something.

We don’t want to keep writing new dae-
mons for new technologies as they arrive
(pccardd, usbd, apmd, etc.). Taking
advantage of dynamic kernel loading
concepts would be ideal, since it keeps
the kernel size down.

The configuration for devd involves
defining event-action mappings that can
be triggered by, for example, device
attach, device detach, and unknown
device vents. It is possible to control a
device’s label even if the probe order
changes. Attach events can invoke con-
figuration actions such as triggering
dhclient executions, and it is also possi-
ble to guide configuration of devices
based on location. Device drivers can be
loaded when the device arrives, rather
than having them built into the installed
kernel. The configuration is similar to
the format of modern named.conf files
to define the event-actions.

Future work will include handling
power events, e.g., suspend and resume,
dock and undock. Link up/down events
will also be able to trigger actions. Also
planned is a control socket so that a
user-land application can monitor for
certain device events.

ULE: A MODERN SCHEDULER FOR FREEBSD

Jeff Roberson, FreeBSD Project

Jeff Roberson took on the task of writing
a new scheduler for SMP environments
after observing a lack of CPU affinity in
the existing scheduler. “CPU affinity”
refers to a thread preferring the same
CPU for later time slices to take advan-
tage of large CPU caches. Supporting
this leads to enhanced support for
hyperthreading/SMT (symmetric multi-
threading) processors. Roberson also
observed that the common priority
decay algorithms aren’t very fair in SMP
environments, and current schedulers

have no concept of CPUs of non-uni-
form capacity.

Roberson presented a comparison of
various existing scheduler algorithms,
including the existing BSD, SVr4, and
Linux implementations, before going
into the ULE implementation in detail.

The major components of the ULE
implementation include several queues,
two CPU load-balancing algorithms,
scoring of interactive activity, a CPU
usage estimator, and slice size and prior-
ity calculators. The load-balancing algo-
rithms work together to keep the CPUs
evenly loaded under a variety of load
conditions, even if the CPUs are of vary-
ing power. Since moving cached data
regarding a specific thread from one
CPU to another carries a cost, migration
of threads between CPUs is taken into
consideration by these algorithms. Also,
threads scheduled for a non-idle CPU
can be “stolen” by an idle CPU, and a
periodic task evaluates the current load
situation and evens it out.

Graphs comparing the performance of
the four schedulers under various loads
were presented and are available in the
white paper.

ULE’s gains come mainly from the
decoupling of interactivity, priority, and
slice size into individual parameters.
Other schedulers leave these tightly cou-
pled, with varying side effects. The result
of this is a system that appears to be
much more interactive even when con-
fronted with a lot of re-niced load:
“Livelock under nice load has been a
constant problem for UNIX schedulers
which ULE now avoids entirely.”

RELEASE ENGINEERING

AN AUTOMATED BINARY SECURITY UPDATE

SYSTEM FOR FREEBSD

Colin Percival, Computing Lab, Oxford
University

Percival’s package is intended to address
the ever-present problem of lazy system
administrators. Though Microsoft is

best known for system managers who
don’t bother to apply security updates in
a timely fashion (or, indeed, at all), the
open source community is not immune.
He asserts that at least 25% of FreeBSD
administrators are also behind the
curve. Among other things, impedi-
ments to improvement involve cvsup
being non-intuitive, and the confusing
and time-consuming nature of the
make-world approach. Some systems
lack the resources to make existing
approaches palatable.

The trick here is to determine what
binaries are affected by a change to a
particular piece of source code. The
answer is not always obvious. There are
some simple approaches one can take,
like comparing a make-world result
before and after the change, but many
files change every time they are built by
virtue of such things as build time-
stamps. It’s possible to work around this
since build stamps, for example, are
always in the same place, so if that’s all
that differs, it can be skipped. There are
always a few other complications
though, such as fortune files, kernel ver-
sion numbers, and quirks in gcc. Some-
times a particular file will have both
crypto and non-crypto versions distrib-
uted.

Once a list of files to be distributed has
been established, an update index is gen-
erated with lines indicating the file to be
replaced, the “old” MD5 hash of the file
to be replaced, and the MD5 hash of the
file replacing it. Updating an old file
could have one of several “old” hashes,
so each of these is included in the
update index, along with a 2048-bit
public RSA key, an MD5 hash of the
update index signed with the private
part of that key, the new binaries, and
binary diffs. The distribution of the
public key is secured by including its
MD5 hash with the updating software.

An obvious limitation to this approach
is that the binaries to be replaced must
match one of the “old” MD5 hashes

66

published in the update index. Percival
says this is a limitation he can accept
because such a case would only occur for
an administrator who has compiled his
or her own source, and such people
likely don’t have a real need for an auto-
mated binary update system.

Of course, this all relies upon trust of
the source of the binary updates. This
problem can be addressed by Byzantine
methods, whereby updates would only
be trusted (and therefore installed) if
some minimum number of systems
independently built and signed the same
set of updates.

BUILDING A HIGH-PERFORMANCE COMPUT-

ING CLUSTER USING FREEBSD

Brooks Davis, Michael AuYeung, Gary
Green and Craig Lee, Aerospace Cor-
poration

The goal of this project is to be able to
build a high-performance cluster of
machines using commodity PCs, usually
running one of the free operating sys-
tems. The cluster (named Fellowship,
after the Fellowship of the Ring) has
four core machines: frodo, the manage-
ment server; fellowship, the shell server;
gamgee, for backups, databases, and
monitoring; and legolas, a scratch server
with 2.8 terabytes of storage. The cluster
as a whole runs FreeBSD 4.8-STABLE,
and provides over 183 gigaflops of float-
ing-point compute power (LINPACK
benchmark). It consists of 160 nodes,
each dual CPU, using a mix of Pentium
III and Xeon chips. The network used is
GigE, with terminal servers for serial
console access, and serial power con-
trollers.

Almost any OS works to build such an
environment. Things to consider when
selecting an OS are locally available sys-
tem administrator experience, the appli-
cations you plan to run, the mainte-
nance model you want to support, the
availability of diskless machine support,
and your relationship to the OS vendor
for help with all that extra tinkering
you’re going to want to do. Selection of

CPU should take into consideration
price, performance and software sup-
port, but don’t forget to think about dis-
persing all the heat you will generate!

Network options are again based on
operating system support, price, and the
needs of your application. You’ll also
need to tackle the question of public vs.
private IPs, for obvious security and
provisioning reasons. The node naming
and IP assignment convention selected
for the Fellowship reflects location in the
racks of the machines. Don’t name your
machines after the services they provide,
because this can come back to haunt you
later.

Node configuration management can be
a headache for clusters of this size. Con-
sider such things as individual vs. auto-
mated OS and software installations and
network booting. Automation of tasks in
a large cluster is critical to efficient use
of your time. Also think about your job-
scheduling model: manual or batch? Of
note here is the Sun Grid Engine (SGE),
which has been ported to FreeBSD.
Don’t forget your monitoring tools (e.g.,
Nagios (Net Saint), Big Sister, Ganglia,
and, again, SGE).

The team learned that in a commodity
cluster environment, hardware attrition
can be significant, so plan accordingly;
investing in neat cabling practices and
equipment are well worth the invest-
ment; and automation is extremely
important.

Future work may include Beowulf-style
process management, a checkpoint and
restart service, use of a distributed file
system (e.g., GFS), on-demand cluster-
ing, and a database-driven DHCP ser-
vice.

BUILD.SH — CROSS-BUILDING NETBSD

Luke Mewburn and Matthew Green,
NetBSD Foundation

The NetBSD build infrastructure
includes the capability to cross-build an
entire release, including bootable media.
Luke Mewburn presented a discussion of

this capability and the changes involved
in making NetBSD capable of support-
ing this system.

Native builds of NetBSD releases don’t
scale. The number of machines required
would be staggering, and the time
needed to compile on the slower ones is
oppressive. In a cross-compile, one host
builds for another architecture, so with a
small number of very fast machines, a
complete release can be accomplished
with greatly reduced cost and time.
There is no need for superuser access to
do so, even to build the distribution
media. A goal in this design was to avoid
nonportable OS things like chrooted
environments, shared libraries and loop-
back or virtual file systems. It is impor-
tant also to separate the build tools from
the installed build tools, and to have
minimal impact on the NetBSD source
tree.

The three main tools used are build.sh,
which does the cross-compiles; makefs,
which builds file-system images (cur-
rently only ffs, but there is planned sup-
port for iso9660, ext2fs, and FAT); and
installboot, a cross-platform-friendly
boot sector writer.

An important feature for the “unprivi-
leged build” process is the change to log-
privileged file-system operations, such as
permission changes to a “meta log file”
instead of actually applying them, and
using that information when building
installation media and tar files.

The result of this work is a set of regular
automated builds for all platforms from
a few sources. The system is very simple
to use, but it has some teething prob-
lems. Not all software is cross-compile
friendly.

Upcoming work involves solving the
hassles with X11 cross-builds, and some
improvement in cross-compiling pack-
ages where autoconf is involved, as they
seem to have a pattern of not being very
cross-compile friendly.

67

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
SINVITED TALK

LONG-RANGE 802.11 WANS

Tim Pozar and Matt Peterson,
cofounders of BARWN

BARWN (Bay Area Research Wireless
Network) is a community wireless net-
work based in San Francisco, with access
points in the city and one on Mount San
Bruno serving South San Francisco,
Colma, and Daly City. It is similar in
concept to other metropolitan wireless
networks such as SFLan, SFWireless,
NYCwireless, and SeattleWireless, espe-
cially with its common technical and
political problems. All of these are built
on the concept of member-owned infra-
structure, but differ on the for-pay vs.
free issue.

BARWN’s objectives are to develop and
document long-range (over two miles)
very low-cost wireless networking, and
to provide a test bed for new protocols.
Practical applications, such as public
safety and incident response, can also
serve as a backbone tying together vari-
ous communities. Other positive side
effects involve counteracting the loss of
bi-directional expression on the Inter-
net, since BARWN offers limited AUP
restrictions, symmetrical bandwidth, no
port filtering, and real static address
space. BARWN also hopes to bridge the
gap between clients on different major
providers, so that traffic within San
Francisco doesn’t need to transit a major
network exchange down in San Jose
first.

The deployment prefers triangles of cov-
erage, and it has been found that there’s
good general coverage from the top of
Mount San Bruno in the area between
Daly City, South San Francisco and
Colma, and San Francisco. The sticky
legalities of using higher-powered radio
frequency repeaters and transmitters,
though, can impede deployment. RF
radiation dictates how these antennas
are deployed, and limits public access to
do so. Local governments may even reg-
ulate the aesthetics of such deployments.

Further, license-exempt devices have no
priority rights over any other user.

Naturally there are political obstacles as
well. Governments generally own all of
the good potential transmitter locations,
but work at glacial speeds. Finding the
right person and getting full sign-off is
no less than a challenge. There are ever-
present permit and zoning issues, and
finding someone willing to take a risk on
a private experimental project is never
easy. However, governments do like
demonstrations, so BARWN put
together a demonstration for a San
Francisco Police Department mobile
command center using streaming video,
and that managed to grease some wheels
to get the project where it is today.

Technical challenges also abound. 802.11
doesn’t scale well, especially over large
distances. Interference with other nearby
equipment is also a consideration.
802.11h will go some way to help clear
these hurdles using a technique called
“frequency co-ordination,” selecting the
quietest part of the spectrum to use.
Build-out over short distance can be
done visually, but longer-range installa-
tions need to be done with expensive
surveys.

FreeBSD has a lot of good, stable sup-
port for wireless, with more under
development, but Linux is leading the
game by a small margin and their efforts
tend to work around a lot of firmware
idiosyncrasies in various cards more
effectively. There is a general lack of
drivers for Broadcom and TI devices,
although there are unofficial drivers
rumored to be out there.

STORAGE/CRYPTO

GBDE–GEOM-BASED DISK ENCRYPTION

Poul-Henning Kamp, The FreeBSD
Project

Kamp’s work involves the principle of
“making sure data gets lost.” User ID and
password protection aren’t enough for
really important data. A hard drive can
be easily removed from one machine

BSDCON ‘03 �

and inserted in another, mounted as a
secondary disk, and read without diffi-
culty. As an extreme example, the battle
plan for Operation Desert Storm was
stolen from a car on an unsecured lap-
top!

GBDE is a GEOM-based solution for
protection of hard drives with strong
crypto. Developed under a DARPA con-
tract, it is file system and application
independent, and architecture and byte-
endian invariant. GBDE works at the
disk level, so an encrypted partition
looks like any other partition. This
makes it trickier for implementing good
crypto, but in the end this approach
makes the service easier to use. The
invariance is important for media porta-
bility, and extends lifetime of the algo-
rithm for future systems.

If an encryption system is too cumber-
some, people just won’t use it. GBDE,
however, is practical and deployable. It
uses multiple parallel passphrases, with
master key schemes, backup key meth-
ods, and destructive keys, which render
the data permanently useless when
applied. The passphrases are all change-
able. The crypto principles applied are
all the standard algorithms: AES, SHA2,
and MD5. The primary strength of the
system is via the crypto, and the second-
ary strength comes from frustrating
attackers via such things as unpre-
dictable on-disk locations and one-time-
use sector keys.

The keys used are symmetric, unlike
PGP, for example; a 128-bit symmetric
key is about as strong as a 2304-byte
asymmetric key. Breaking 128 bits of
data will open a single sector. Breaking
256 bits will open the entire thing, but
you’d also have to try all sectors to find
the randomly placed lock sector, and if
you try a lot of variant encodings, you’d
have to be able to recognize that you
have an actual hit in the first place.

The passphrase is the weak point, as
usual. To be useful, it has to be long and
subtle, using control characters, digits,

68

etc. Of course, people can’t or don’t
want to remember those. GBDE can take
a passphrase from anywhere, such as
keyboard, USB-key, or chip cards. Kamp
recommends making a passphrase out of
two parts: your private keyboard stuff
and 1–8K of random bits on a USB key,
the “something you know” plus “some-
thing you have” principle.

Support for destructive keys enables a
data owner to get rid of data fast.
Kamp’s examples included such things
as students taking over an embassy, raids
on human rights offices by police or col-
lege dorms by the RIAA, or perhaps the
wife asking, “What takes up those 40GB
on our hard disk?” The user can quickly
destroy all the lock sectors by erasing the
2048 + 128-bit master key. Attacking the
disk now requires O(2^384) work,
which is much bigger than the
O(2^256) work needed when the keys
are intact (though that’s a huge amount
of work anyway). You get positive feed-
back that the lock is destroyed. A recover
is still possible if the encrypted lock sec-
tor can be restored from a backup.

The hit in performance and disk space is
minor. The biggest risk is bad sectors,
which will unfortunately lock down
chunks of the disk.

GBDE is available in FreeBSD 5.0 and
later.

CRYPTOGRAPHIC DEVICE SUPPORT FOR

FREEBSD

Samuel J. Leffler, Errno Consulting

Leffler discussed his work porting the
OpenBSD cryptographic framework to
FreeBSD and improvements he made in
doing so. The goals here were hardware-
accelerated cryptographic transforma-
tions for kernel and user applications,
compatibility with the OpenBSD API,
and a pass at tuning for performance.
Leffler earned the Best Paper award for
this paper.

Core support was converted from SPL-
style synchronization to a fine-grained
locking method, and the software crypto
algorithms were merged with existing

ones used by KAME IPSec, the estab-
lished best-of-breed. OpenBSD API
compatibility was always the top prior-
ity. Performance of the initial work was
slower than desired. There was a lot of
extra context switching and CPU use.
Leffler was sure things could be faster.

Peak performance of the package was
limited by the context switch rate on
many systems. The initial framework
required two context switches for each
operation. Leffler replaced the kernel
thread with a software interrupt thread
for a vast improvement in performance,
by a factor of 3.6.

Making a distinction between normal
and “batchable” operations enabled fur-
ther optimizations. Operations that were
not batchable used a direct dispatch
method. Replacing the software inter-
rupt dispatch with direct dispatch to the
crypto driver was four times faster, so
there was already an improvement factor
of about 15.

Since many callback methods can take a
long time, it was inadvisable to execute a
callback method in the context of the
device driver. However, the callback used
by the /dev/crypto driver does execute
quickly and also avoids a context switch.
Use of this optimization, with due care
in the area of synchronization, yielded
another factor of 33 improvement.

All of these improvements reduce over-
head on the system, so everyone wins.
Comparing the FreeBSD implementa-
tion to the one in OpenBSD 3.3 shows
that this work yielded more than a 70%
improvement for certain hardware up to
operand sizes of 1KB. This is now avail-
able in the CURRENT and STABLE
FreeBSD branches, and NetBSD added it
in August 2003. Future work will sup-
port asymmetric operations, support for
more and better hardware, and load bal-
ancing.

ENHANCEMENTS TO THE FAST FILE SYSTEM TO

SUPPORT MULTI-TERABYTE STORAGE SYS-

TEMS

Marshall Kirk McKusick, author and
consultant

McKusick presented recent work on
extending the capacity of the Berkeley
FFS under FreeBSD. The current imple-
mentation uses 32-bit block pointers,
which means file systems are limited to
only a few terabytes. I-nodes lack space
to add new functionality, and some
newer file-system technology is difficult
to apply without changing the existing
on-disk format.

UFS2, the new version of FFS, addresses
these issues. There is a single code base
for both the older and newer implemen-
tations. The new on-disk format
increases the size of an i-node from 128
to 256 bytes, but directory format is
retained. The existing linear scan
remains, but there are hooks for an
indexing system. The two implementa-
tions share directory manipulation code.
The idea of cylinder groups is retained,
but all geometry information is elimi-
nated. A superblock is added as a super-
set of the original superblock. The size
reserved for the boot block area can be
selected rather than being fixed, and a
zero-size boot block may be selected for
file systems that don’t need one.

Extended attributes are now supported.
There’s optional auxiliary data stored
with each i-node, much like Apple data
forks. The current implementation
allows an expandable 32K that is used to
support such things as ACLs and MACs.
Timestamp fields are now 64-bits long,
and a fourth timestamp has been added
called “birth time,” which is the actual
creation time of the file. The i-node flags
are separated into user-settable and ker-
nel-settable flag sets.

I-nodes are now dynamic. Only two
blocks of i-nodes per cylinder group are
now allocated during newfs, and blocks
dedicated to i-nodes are expanded
whenever the current i-nodes are nearly

69

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
Sexhausted. Some performance enhance-

ments were made to soft updates as well.

Enhancements for live dumps have been
added to support snapshots. A setuid
root utility has been added to make a
snapshot of a file system to allow non-
root users to make snapshots. Large file
system snapshots are supported.

The amount of memory fsck needs for
large file systems is proportional to the
size of the file system being checked.
Four bytes are needed per i-node, 50
bytes per directory, and one bit per
block. This means 1.2MB of memory is
needed per terabyte on a file system like
/usr, but only 66K is needed per terabyte
on an MP3 file system because all the
files are very large.

This work has been present in FreeBSD
5.0 for over a year, and has now been
ported to NetBSD. Future work will
allow extent-based storage allocation by
having each i-node store its block size
directly.

INVITED TALK

SOCIAL AND TECHNICAL IMPLICATIONS OF

NONPROPRIETARY SOFTWARE

Peter G. Neumann, Computer Science
Laboratory, SRI International

Neumann presented his views about the
open source community and the work it
produces in contrast to the industry’s
commercial output. The BSD commu-
nity has made significant advances
toward high-assurance, trustworthy sys-
tems. They are generally secure, reliable,
and interoperable.

Where disciplined development is pres-
ent, open source has many advantages
over closed-source proprietary systems,
and has the possibility of being very
robust. The “best practices” advocated
by commercial proprietors are substan-
dard and often inadequate. They suffer
from lax requirements, flawed lan-
guages, and sloppy development, caus-
ing bounds and buffer size violations

and vulnerability to viruses. There are
some obvious examples of this.

Mass-market software is full of security
holes, is bloated and inflexible, and, as
Henning pointed out in his keynote
speech, is intentionally incompatible
even with its own versions. This makes it
annoying and expensive to administer.
Even worse are closed-box solutions,
which can’t verifiably satisfy security,
reliability, or autonomic operation
requirements. This hinders analysis of
the system and its implications, impedes
improvement of quality, and limits
urgent on-site fixes. However, the
closed-box approach benefits develop-
ers. Hiding intellectual property makes
money and encourages consumer reten-
tion and loyalty. Reluctant continuance
is incentivized. Regrettably, security by
obscurity does get some mileage. One
would think that closed-box systems
have implied liability, except the shrink-
wrap user agreement disclaims every-
thing.

Open source has its own problems. The
source is available to intruders, and vul-
nerabilities can be exploited. However,
as we all know, open source is also
important in promoting the evolution of
high reliability and critical systems.
Given a really secure system, open
source isn’t harmful since it’s of little
help to attackers. Open box solutions, on
the other hand, need more work to
make them trustworthy, robust, and
dependable.

In general, failures are likely due to poor
security. Viruses, worms, and trojans are
rampant, and there are denial-of-service
attacks for which there is, unfortunately,
almost no defense. There is a general
belief that using cryptography secures
you, even if your use of it is sloppy.
There is extensive outsourcing of system
administration duties, which in itself
can be a compromise to security. The
Homeland Security Agency wants to
deploy Microsoft software globally

BSDCON ‘03 �

within its organization to facilitate inter-
operability. The list goes on.

There can be major social implications
for computing failures. The USS York-
town’s engines shut down for nearly
three hours because of a Microsoft
machine suffering a division-by-zero
error. Design issues caused patriot mis-
sile inaccuracies. Bad UI design and
faulty assumptions caused the Iran Air
airbus shoot down. The 1980 ARPANET
collapse and the 1990 AT&T nationwide
slowdown are also prime examples.
Developers of closed-box solutions often
make “could never happen” assump-
tions, eventually with disastrous results.

Again echoing Henning’s keynote
speech, Neumann also mentioned com-
mon development fiascoes, such as ram-
pant feature creep, bloat,
incompatibilities, bad requirements, and
bad architectures. The update of the
nation’s air traffic control system left
controllers with basically the same
equipment and squandered over four
billion dollars. The update of the IRS
told a similar story.

UI design is also responsible for some
major disasters. The design of helicop-
ters that would eventually be dispatched
to the Middle East had no requirement
for engine shielding against EM interfer-
ence, or even sand. Pacemakers and anti-
theft devices do not mix, a requirement
that was never considered. John Denver’s
final flight involved a fuel-starved engine
because the user interface for the fuel
system in his aircraft was basically
“down for right tank, right for left tank,
up for ‘off ’.”

Neumann advocates future emphasis on
discipline in development and good
engineering of products at all levels. We
need improvements in evolution, evalu-
ation, education, and training. There
needs to be more effort given to respon-
sible operational support. We need open
standards for code, interfaces and inter-
operability, and distribution. There
should be progress toward more reason-

70

able contracts, liabilities, and incentives.
Sound business models for open-box
software need to be designed. Architec-
tures need to be more robust, with mini-
mal dependence on weak components.
We must work toward more trustworthy
servers, firewalls, and distribution paths.
User authentication has to become far
less trivial, with bilateral peer authenti-
cation. The computing infrastructure
has to become a lot more resistant to
denial-of-service attacks. We need better
protocols and analysis tools.

The discussion that followed acknowl-
edged that many of us involved in the
open source movement know and heed
these points, but it’s an uphill battle.
That very day, CSPAN was broadcasting
a congressional subcommittee hearing
about a recent virus outbreak that was
very expensive in terms of both time and
money. Microsoft, NAI, and others were
invited to testify. The ultimate advice
coming out of this meeting was “don’t
click on PIF attachments” rather than a
concession that this is the fault of bad
software design. Recent worms have got-
ten very deep penetration but fortu-
nately haven’t been malicious... yet.
We’ve reached a point where large-scale
infections are very easy to create. Unfor-
tunately, deaths from such egregious
flaws in software design do not get
enough attention, and new laws tend to
remove liability rather than enforce it.

Neumann says BSD platforms are par-
ticularly promising in developing trust-
worthy systems. An alternative to the
commonplace homogeneous Microsoft
installations is desperately needed.
Open-box software is not the final
answer, but it has enormous potential,
especially with continued diligence and
discipline.

SYSTEM BUILDING

RUNNING BSD KERNELS AS USER PROCESSES

BY PARTIAL EMULATION AND REWRITING OF

MACHINE INSTRUCTIONS

Hideki Eiraku and Yasushi Shinjo, Uni-
versity of Tsukuba

Eiraku and Shinjo won the Best Student
Paper award for their work on this
paper.

Running multiple OSes on a single
machine enables the simultaneous exe-
cution of applications written for differ-
ent operating systems. There are two
typical approaches to this: virtual OSes
and user-level OSes. The latter have
porting problems, involving tremendous
effort and/or detailed knowledge of the
host and target kernel and architectures.

Partial emulation of hardware and the
rewriting of machine instructions at
compile time is done to detect some
nonprivileged instructions that are
tightly related to privileged ones. Imple-
mented this way, user-level NetBSD is
faster than NetBSD on Bochs, a virtual
machine implementation, by a factor of
10. Thus, we can generate a user-level
OS based on a native system. The success
is somewhat limited, though; the source
is needed, and it’s still slower than
NetBSD on VMware or than user-mode
Linux, mainly because of the volume of
page faults taking place.

There are four key issues to tackle: detect
and emulate privileged and some non-
privileged instructions; redirect system
calls and page faults to the user-level OS;
emulate essential peripherals; and emu-
late the MMU. The changes to NetBSD
to work in this environment were minor
but necessary, as unmodified NetBSD
1.6 does not provide the needed facili-
ties. The PTRACE_SYSCALL facility of
Linux was introduced, and six constants,
including the base address, were
changed. After doing this, detailed ker-
nel knowledge was not needed.

To demonstrate their results, NetBSD
1.5 was booted under NetBSD 1.6, and a
build of patch was done. User-level

NetBSD and FreeBSD have been gener-
ated based on native systems. More than
one virtual machine can be run at once.

Source code for this work will be avail-
able on SourceForge.

A DIGITAL PRESERVATION NETWORK APPLI-

CATION BASED ON OPENBSD

David S. H. Rosenthal, Stanford Univer-
sity Libraries

Rosenthal presented a “network appli-
ance,” a digital preservation system for
keeping academic journals published on
the Web and accessible over the long
term. The goal here is to establish what
appears to be a single-function box that
can be connected to the Internet with
minimal monitoring or administration,
and that is cheap to install, maintain,
and upgrade.

Rosenthal’s solution is a peer-to-peer
system of persistent Web caches. The
package crawls journal Web sites, dis-
tributes to local users by acting as a
proxy (keeping available documents that
may now be gone), and preserves mate-
rial by cooperating with other libraries’
caches to detect and repair damage. The
requirements are low material and per-
sonnel costs. As a result of its success
since 1999, the system is now in use at
over 60 libraries. The original paper cov-
ering this work was published at Freenix
2000.

The system uses generic PC hardware,
with inherent replication to make it reli-
able, and open source is used to reduce
software costs. Staff costs are reduced by
minimizing the need for administration,
with a goal of 10 minutes per month.

The first version was based on the Linux
router project. Every station ran from a
write-locked boot floppy. The kernel and
RAM disk file system root was on floppy,
and remaining binaries were copied via
FTP to a temporary file system. A reboot
always returned the system to a known
good state. This has gone through about
150 machine-years of testing. Rosenthal
has observed that a floppy used only for

71

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
Sboot is very reliable. However, a great

deal of effort was expended to condense
the software down to a single 1.68MB
format floppy, and using that format can
be annoying.

The second version’s design has a few
new requirements. It must run from
read-only media, but somehow allow
fast updates. Signatures against write-
locked media must be checked. All disk
file systems must be marked noexec. A
major OS distribution must be used,
with minimized changes to the build
process. The OS footprint must be mini-
mal, and everything should be built
from CVS nightly. The system trusts
only the BIOS and the contents of the
boot CD and the write-locked floppy,
which contains the entire configuration,
passwords, and package verification
keys. Everything else can be verified
based on this or on data in the key-
servers. This design has passed several
security audits, takes just over five min-
utes to boot a single unit, and in a fire-
drill test, 96% of all machines in the
cluster were upgraded in 48 hours.

Future work involves enhancing the host
to add support for DHCP, NAT, native
Java, USB storage, and open source
BIOS, and for more diverse environ-
ments such as governments and devel-
oping countries. The source is available
on SourceForge.

USING FREEBSD TO RENDER REALTIME

LOCALIZED AUDIO AND VIDEO

John H. Baldwin, Weather Channel

Baldwin demonstrated a FreeBSD box
built for the Weather Channel that pro-
vides local information overlays onto
live feeds. A “Weather STAR,” a
FreeBSD-based satellite-addressable data
device, receives a full feed of weather
data, extracts data useful to its location,
and overlays it on top of the live broad-
cast from the studio for rebroadcast
locally. What you see on the Weather
Channel is a live broadcast showing a
weather presenter with national maps,

but local forecast information in text
over the bottom of the screen.

These boxes can be reconfigured or
rebooted via satellite instructions. They
support simultaneous NTSC (analog)
and ASI (MPEG digital) output. They
provide this service for the normal
Weather Channel broadcast and also for
a new product called WeatherScan,
which has no presenters and only relays
a local forecast.

One of the changes needed for FreeBSD
includes ACPI back-porting to support
“soft off,” which allows the “power” but-
ton to cause a software interrupt, per-
mitting a cleaner shutdown. Several
driver updates and fixes were made, and
improvements were made to the instal-
lation system.

Some problems that need to be over-
come: nice is too mean to processes that
need large CPU slices; user-land threads
have difficulties blocking the whole
process with very large read() calls; and
there were issues with thread priorities,
scheduling, and signals. A lot of this is
already addressed in FreeBSD 5.x.

NETWORKING

TAGGING DATA IN THE NETWORK STACK:

mbuf_tags
Angelos D. Keromytis, Columbia Uni-
versity

An mbuf is a fixed-size buffering scheme
used in the BSD network stack. The
problem here is that packets require
additional attributes for processing, and
the available 16-bit flags and the inter-
face information are not sufficient.
There are many such potential attrib-
utes; IPSec requires four or five, and
more appear periodically in other
implementations.

Keromytis’ work involves mbuf_tags, a
dynamically allocated variable-sized
attribute buffer, and is similar to
NetBSD’s aux mbufs. There is a minimal
fixed header referred to by an mbuf
packet header, and a general memory

BSDCON ‘03 �

allocator. A list is added to the mbuf
packet header using a most-recent-first
method. Kernel modules are free to use
their own method, but an API is pre-
sented for creating, deleting, append-
ing/prepending, copying, and finding
tags. One or two lines needed to be
changed for a few existing routines to
handle propagation and freeing of tags.

This implementation currently uses mal-
loc() to allocate the tag and its data.
Some work had to be done in various
network drivers to correct their handling
of mbufs.

mbuf_tags can be used to propagate
IPSec-related implementation through-
out the stack, loop detection for virtual
interfaces (with some optimizations
produced for multi-threaded kernels), or
an improved packet filter engine.

Future work will use the pool(9) alloca-
tor to avoid the need for synchroniza-
tion when allocating memory, tag
triggers for use with encapsulation, and
application-defined tags.

FAST IPSEC: A HIGH-PERFORMANCE IPSEC

IMPLEMENTATION

SAMUEL J. LEFFLER, ERRNO CONSULTING

IPSec is composed of three protocols:
AH (authentication), ESP (encryption
and authentication), and IPCOM (com-
pression). ESP is the most frequently
used. There are also a variety of crypto
and authentication algorithms used
within these. There are plenty of IPSec
implementations, most notably KAME,
the OpenBSD IPSec code, FreeS/WAN
for Linux, and Linux’s IPSec.

So why another implementation?
Samuel Leffler sought to implement
IPSec with hardware acceleration for
FreeBSD and to develop a wireless mesh
network. The requirements were sup-
port of hardware acceleration, a space-
efficient implementation, and
compatibility with FreeBSD. The
approach chosen was an amalgam of
KAME and OpenBSD’s work.

72

Leffler began porting the OpenBSD
crypto framework, and cloned the
KAME IPSec code onto FreeBSD-STA-
BLE. The KAME code was changed to a
callback (continuation) model, and
heavy tuning was done. The basic KAME
framework was retained for compatibil-
ity, but ideas like packet tags, continua-
tions, and code path merging were
integrated from the OpenBSD code. The
result was familiar to both developer
groups.

The performance is dominated by
crypto calculations, so several of the
bottlenecks that needed to be optimized
showed up only with fast crypto hard-
ware. Improvements were made in the
areas of the crypto support, reducing
processing overhead; data handling,
aligning packet data and aggressive coa-
lescing of mbuf chains; network drivers,
tackling the usual hardware issues of
latency, bus bandwidth, and interrupt
coalescing; and system I/O, such as IRQ
multiplexing, bus bandwidth handling,
interrupt latency, and system effects
such as IRQ entropy.

The results: Leffler’s Fast IPSec imple-
mentation is 60% faster than the
OpenBSD code for the software crypto
case, and about the same speed as
KAME. The peak hardware accelerated
operation is more than twice that of any
other open source implementation.
End-to-end throughput measurements
were about 230MBps for a uniprocessor
machine and over 400MBps when acting
as an IPSec gateway. The CPU and 32-
bit PCI are the limiting factors. Future
work will include IPv6 support, an over-
haul of the PF_KEY code, and an SADB
redesign to improve locking.

THE WHBA PROJECT: EXPERIENCES “DEEPLY

EMBEDDING” NETBSD

JASON R. THORPE AND ALLEN K. BRIGGS,

WASABI SYSTEMS, INC.

Thorpe and Briggs worked with the idea
of embedding NetBSD on a host bus
adapter (HBA). Typical HBA applica-
tions include RAID, SCSI, iSCSI, Fibre

Channel and TCP/IP offload. The proj-
ect of embedding NetBSD onto such a
card would allow the offloading of a
variety of processing chores from the
host server.

The Wasabi Embedded Programming
Environment (WEPE) is a merging of
user space into kernel space. The entire
application lives in the kernel to pro-
mote effective interaction with the mes-
saging and DMA hardware. This also
permits more direct access to large
chunks of contiguous SDRAM. In addi-
tion, WEPE is an API for applications
that provides portability for user space
and the kernel environment, a configu-
ration management framework, and a
set of NetBSD kernel modifications.

The API offers file and socket I/O opera-
tions and thread and some networking
functions. There is also a kshell, which
acts as the WEPE debug console, and
several kernel environment debugging
tools. The operating environment is
interesting in its contrasts: The host has
plenty of local disk, but the embedded
system has no local disk, only a small
RAM disk; host reset is under software
control, but the HBA reset is not; and
applications on the host are largely
independent, but on the HBA they are
tightly coupled.

Thorpe and Briggs successfully demon-
strated an iSCSI target HBA running
NetBSD+WEPE in conjunction with
Intel and DataCore at Storage Network-
ing World in April 2003. The perfor-
mance was not as good as they had
hoped, but they understand now that
their debugging and analysis tools are
too limited. Although more work will be
needed to move this work from the
realm of “doable” to that of “viable,”
something very useful was produced
with many intelligent potential applica-
tions.

INVITED TALK

POST-DIGITAL POSSIBILITIES

MICHAEL HAWLEY, MIT

You’re never more creative than when
you play. Michael Hawley leads a team of
graduate student researchers interested
in finding out what the next high-tech
revolution will be. Photography was the
last medium to be subsumed by the digi-
tal wave, but Hawley says the digital rev-
olution has hardly started. The biggest
theme out of the Media Lab lately is
embedded intelligence.

Technology and toys tell us a lot about
our advances. Video games are now
doing what supercomputers used to do.
Even a Furby contains a lot of technol-
ogy (by old standards) packed into a
small toy! There’s a lot of infrastructure
still to be invented. Lots of it is based on
what we already know, but a lot isn’t.

Technology in LEDs has improved in
recent years. They are brighter, cheaper,
efficient, and even networked, with no
gels to switch around. But we also like
technologies that break new ground, do
things we didn’t imagine before. They
have added chips to coffee mugs,
watches, and various other devices.
Imagine a coffee machine that knows
what you want and how you like it! This
can bring about a radical change in
interface designs so that a lot of the sim-
ple things become automatic.

In the kitchen, such intelligence has been
added to various devices to improve
automation. They call this “counter
intelligence,” which produced offers of
sponsorship from the NSA and inquiries
from the CIA (no, the Culinary Institute
of America). They also invented a digital
nose, based on some biochemical tech-
nology that already exists, which can
sound an alarm when it smells that your
cake is ready.

Another project involved having a
marathon runner swallow a thermome-
ter in a pill (don’t worry, it’s FAA-
approved) and wear a fanny pack full of

73

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
Ssensors like a heart monitor, GPS, and a

cellular modem to upload it all. They’ve
also added sensors to jewelry to monitor
your health over time.

Mount Everest was a testing ground for
some biometrics useful when people go
to very cold climates and high altitudes.
Weather monitoring stations were also
deployed and were useful even at
extremely low bandwidths. GPS survey-
ing points were set up to monitor tec-
tonic movement of the mountain over
time. In Iceland, skiing kinematics were
measured, but these need to be as non-
invasive as possible while still being able
to withstand harsh conditions.

In Hawaii, monitoring stations were
built, disguised as tree branches or
rocks, for tracking the pollination pat-
terns of some very rare plants that are
not fully understood. These need to be
completely self-contained as there is no
power in the areas they wish to monitor.
They also need small monitors to broad-
cast their observations to bases.

Cambodia is an example of a very poor
country that has managed to build good
wireless coverage. Orphans with access
to a computer become teachers, even
celebrities. By local standards, a donated
old Macintosh can turn a school into a
supercomputing center. The country has
a very high percentage of youth, so
growing up with access to this technol-
ogy is obviously very important for their
future.

The team also traveled to Bhutan, a
country in Asia about the size of
Switzerland. It was the last country in
the world to get cable TV. While taking
photos there, a GPS attached to the
team’s digital camera would sample their
position periodically and add its details
to the JPEG metadata, along with lens
and camera setting information. This
was later extracted when the photos
were uploaded, making indexing and
describing each photo much easier.

All of the applications presented were
remarkable, spanning enhancements
both in established technical areas such
as photographic journals and in new
areas of innovation such as advances in
kitchen technology. It will indeed be
interesting to see where Hawley’s
research will take us next.

BSDCON ‘03 �

