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ABSTRACT: We show that the Kerberos Authentica-
tion System can relax its requirement for synchronized
clocks, with only a minor change which is consistent
with the current protocol. Synchronization has been an
important limitation of Kerberos; it imposes political
costs and technical ones. Further, Kerberos' reliance
on synchronization obstructs the secure initialization
of clocks at bootstrap. Perhaps most important, this
synchronization requirement limits Kerberos' utility in
contexts where connectivity is often intermittent. Such
environments are becoming more important as mobile
computing becomes more common. Mobile hosts are
particularly refractory to security measures, but our
proposal gracefully extends Kerberos even to mobile
users, making it easier to secure the rest of a network
that includes mobile hosts. An advantage of our pro-
posal is that we do not change the Kerberos protocol
per se; by reinterpreting an unused challenge-response
handshake in the standard Kerberos protocol, we con-
vey just enough replay protection to authenticate the
initial ticket and its timestamp to an unsynchronized
client, without adding process-state to the system's
servers. We have implemented this protocol in the MIT
Kerberos V5 source-distribution.
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I used to be Snow White, but I drifted.

-Mae 
West

l. Introduction

The Kerberos Authentication System [Steiner et al. 1988; Neuman & Ts'o 1994]

provides password security for large networks. Unlike its principal competitors,

KryptoKnight [Molva et al. L992] and SESAME, [Parker 1991] Kerberos requires

that all of a network's system clocks must be synchronized. At first glance, this

does not seem to be a great burden, at least for UNIX networks, but as Kerberos'

influence has grown, synchronization has become a substantial impediment to

Kerberos' adoption as a uniform networking standard.

Why has clock-synchronization become more difflcult? We find that for three

areas of explosive growth in the networking industry there are good reasons for

rejecting clock-synchrontzation. First, in-house wide-area networks have only

recently become common. Corporate wide-area networks usually arise by agglom-

eration, so interdepartmental rivalries often obstruct centtalized host management,

including time-synchronization. Such practical political strains were less important

in the more monolithic academic and engineering networks that adopted Kerberos

early. It's clear, though, that monolithic networks are now passé, so Kerberos will

have to accommodate such ordinary social tensions if its success is to continue.

Second, online-access providers are bringing a massive surge of decentralized

participants into the network industry. Obviously, it's commercially and techni-

cally infeasible to force synchronization on in-home network customers. Similarly,

electronic coÍtmerce is bringing together buyers and sellers who share neither ad-

ministrative nor organizational links; this openness guarantees that asynchronous

clocks will remain the norm.

Third, the rise of mobile computing is bringing the problem of intermittent

connectivity into renewed importance. Here, the problem is mainly technical: on

slow connections, a time-synchronization protocol would burden both the lap-

top processor and its connection-initiation bandwidth.l Also, a social obstacle to

synchronization is that the intermittent user may alternate among several organi-

zations' networks; synchronization would force such users' clocks to flutter. Even

l. Eventually, faster network infrastructure will make extra exchanges transparent to the uset removing this

obstacle to mobile synchronization-
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as mobile users are more vulnerable to security breaches than sequestered net-
works are, their intermittency and mobility obstruct the most effective approaches
to open systems security:

. Intermittency obstructs time-synchronized cryptographic protocols.

' At the same time, challenge-response protocols entail extra messages (see
below), and these would impose unacceptable long-haul network delays on
mobile users.

. Absent cryptography, the only alternative is flrewalls and other protocol
filters, but to a firewall, mobile users look like intruders.

This dilemma makes a synchronization waiver for Kerberos even more valuable.
once mobile users can authenticate themselves cryptographically, it becomes pos-
sible for a firewall or fllter to recognize them, so that the home network can enjoy
both styles of protection, instead of being denied both.

2. Wlry Synchronize?

In this section, we explain synchronization's purpose and alternatives that serve
the same purpose, so as to review the history of synchronization's role in Ker-
beros' development.

v/hy does Kerberos need time synchronization in the first place? synchro-
nized clocks enable Kerberized applications to reject replay attacks. In a replay
attack, an attacker eavesdrops on users as they present their credentials to servers;
later, he resends the credentials to impersonate the users. A Kerberos client blocks
replay by embedding an encrypted timestamp in each credential; the application
server rejects credentials bearing out-of-date timestamps. Timestamps from users
with slow clocks are indistinguishable from replays, so tolerating slow clocks
gives attackers more time in which to work. Synchronization sharply limits this
"replay window."

The alternatives to timestamping are alr variations on "challenge and re-
sponse." [Gong 19931rn a challenge-response protocol, the credential recipient
prevents replay by challenging each sender to encrypt and return a fresh random
numbe¡ so as to demonstrate timeliness. The sender proves his identity by us-
ing his private key, or his session key, to encrypt the random number. challenge-
response protocols avoid the complication of synchronizing, but they always use
at least one more message than a timestamp protocol, to accomplish the same
security goal. Thus, it might seem that Kerberos' designers chose to optimize
performance with timestamps and synchronization. As it happens, though, this
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speed/complexity tradeoff was not the feason Kerberos' designers chose a syn-

chronizing protocol.

The 1978 Needham-Schroeder protocol, lNeedham & Schroeder 1978] from

which Kerberos descends, used challenge and response to protect authentica-

tion credentials from replay. Three years later, Denning and Sacco [Denning &

Sacco 1981; Burrows et al. 19891 pointed out that the N-S protocol was particu-

larly vulnerable to compromised session-keys, because its key-distribution tickets

made no provision for expiration of keys. They recommended that the tickets be

timestamped, so that the session-keys would expire and be renewed regularly.

They also recommended replacing challenge-response with timestamps in N-S'

session-authentication handshake, and they pointed out that minute-resolution

clock-synchronization would sufflce to enforce key expirations. Here, synchroniza-

tion helps to ensure that every connection gets a new session-key. This precaution

makes it less profrtable to steal session-keys or to attempt their cryptanalysis. Un-

fortunately, Denning and Sacco did not discuss the importance and difficulty of

securing the time-synchronization process itself.

In the mid-8O's, MIT's Project Athena incorporated Denning and Sacco's rec-

ommendations into their implementation of the Needham-Schroeder protocol, and

added other protocols and security features, too. lsteiner et al. 1988]. With time-

stamping in place, N-S became Kerberos' flagship protocol, which we at Athena

christened the "Authentication Service." This protocol handles all of Kerberos'

password-mediated authentication, principally initial logins and password changes'

Kerberos' other protocols enable a logged-in user to authenticate to additional ser-

vices without entering a password anew, and without retaining the password on the

local machine.

These newer protocols uniformly use encrypted timestamps to block replay,

following Denning and Sacco's recommendation. However, Kerberos was de-

signed to accommodate clock-skews of up to five minutes between clients and

servers (though modern time services can synchronize much better than this).

Thus, a replayed authentication-message will not be rejected as out-of-date, if
it's less than frve minutes old (a generous allowance, though not an unreason-

able one). To close this security hole, Kerberos introduced a "replay cache," in

which an application server stores each encrypted timestamp it receives for five

minutes, the duration of the replay window. Each server should check every

new timestamp it receives against its cache, so as to block replays of oofresh"

timestamps.
In 1990, 12 yens after Needham and Schroeder's papel, and flve years after

Kerberos' introduction, Bellovin and Merritt of AT&T Bell Labs wrote an im-

portant and insightful critique of Kerberos' version 4, which was influential in

the design of the current version 5 [Bellovin & Menitt 1990]. Along with other

Donald T. Davis, Daniel E. Geer, and Theodore Ts'o32



problems, Bellovin and Merritt pointed out that Kerberos security depends on
secure clock-synchronization, and that V4 Kerberos was not itself sufficient to
secure a clock-synchronization service. The clearest demonstration of this insuf-
ficiency is to consider a computer that is restarting automatically from a power
failure, so that its system clock is probably unreliable. In this situation, the com-
puter cannot be sure of any message's freshness; indeed, if an attacker replays all
of a previous day's network traffic, he can mislead the computer into using an old,
compromised session-key as if it were fresh, and Kerberos' guarantees evaporate.
As Bellovin and Merritt noted, the only way to defeat such an attack is with a
challenge-response protocol, which Kerberos currently lacks, and which no current
time-service supported.

It turns out that this situation is not merely illustrative, but is actually the
crux of the problem. only when a Kerberos principal first comes onto the net,
does he need to use a challenge-response handshake to prevent credentials-
replay. However, application clients and servers enter the network differ-
ently, so they must handle synchronization differently, too. Application servers
need to use a challenge-response handshake only at bootstrap, to get time-
service tickets. Thereafter, a server can trust its system clock, whenever it
needs to renew its time-service tickets or other tickets it uses. For appli-
cation clients, challenge-response is necessary whenever the user logs on
to a physically-insecure workstation. Once the challenge-response hand-
shake has assured the client of his initial tickets' freshness, the client does
not need to synchronize his clock with the rest of the network. To be able
to detect replay, the client only needs to know the difference, or skew, be-
tween his clock and the standard clocklZanarotti 19951. Thus, by adding
a challenge-response handshake to only the Authentication Service proto-
col, we can break the circularity of Kerberos' dependence on a secure time-
service.

3. Current Time Services

NTP is a cryptographically-hardened time service protocol [Mills r9ï9.r2;
Mills 1989.131. It enables a wide-area network to synchronize its software clocks
with a few highly-accurate physical clocks. NTP's security has been extensively
analyzed þy Matt Bishop [Bishop 1990]. Each secure clock update depends on an
uninterrupted chain of authentications, server-to-server, between the client and a
remote physical clock. To mediate these authentications, NTP requires each host
to maintain a shared key in a disk flle, but makes no provision to distribute or
refresh these keys. Kerberos can manage NTP's keys, but only under the assump-
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tion that the clocks are already synchronized. NTP makes no claim to solve this

bootstrap problem; it assumes that secure key-management is available as reliable

infrastructure, just as Kerberos assumes that secure time-synchronization is avail-

able. Despite its reliance on out-of-band key-distribution, secure NTP is a suitable

mechanism for Kerberos Servers to synchronize theit own clocks, because every

Kerberos server has to share a key with each of its peer servers, anyway. We do

not recommend using secure NTP for synchronizing application services, however.

The Open Software Foundation's Distributed Computing Environment (OSF

DCE) includes a secure Distributed Time Service [Open Software Founda-

tronl992l, whose security is mediated by DCE's Kerberos-based Security Service.

For bootstrap, the DCE time service relies on the host's hardware clock chip to be

physically secure, battery-powered, and accurate enough to fulfrll Kerberos' se-

cure synchronization needs. DCE explicitly accepts, just as Kerberos always has,

that the clocks must be initialized "out-of-band," i.e., by wristwatch lPato 1.9951.

DCE's DTS is designed to interoperate with NTP, but this interoperation does not

address our bootstrap problem. Finally, neither NTP nor DCE's DTS makes any

provision for physically-insecure hosts, which cannot hold long-lived keys on disk,

and which therefore cannot participate in either protocol. Our proposal will work

well with both of these services, without substantial change to their protocols or

software.

4. Secure Synchronization

In this section, we describe a challenge/response protocol for Kerberos, that en-

ables users to get tickets without having synchronized thefu clocks. This C/R

protocol is already present in the Kerberos V5 speciflcation. It was intended

to implement part of Bellovin and Merritt's suggestion that Kerberos abandon

timestamping altogether, which was their solution for Kerberos' circular reliance

on secure time service. Our use of C/R differs from Bellovin's recommendation in

four ways:

1. The Kerberos client uses the C/R protocol only once, upon connecting to

the network at login or bootstraP.

2. After connecting, the client uses and checks timestamps to prevent replay.

3. Our Kerberized application servers never use C/R to prevent replay at all.

4. Our proposal adds no process-state to the Kerberos server or to the applica-

tion servers.
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Thus, our contribution is to observe tha/' a single, standard C/R exchange suffices
to break the circular dependence between Kerberos and secure synchronization.2

For clarity's sake, let's consider first how to initialize a clock securely, on a
machine that does intend to synchronize. suppose Bob is a system server who
shares akey K6 with the Kerberos Authentication server AS, and suppose he is
willing to synchronize his clock. Then to do this, every time he reboots, one of his
tasks will be to get tickets from the Kerberos Server, or KDC.3 For now, it doesn't
matter what service's tickets Bob requests, but call the service S¿. Bob will send a
nonce À16 in a challenge-response handshake:

B ---, AS: B, S¿, N6

AS '-. B : T6¿, {,S¿, 
^¡ä, 

L, Kut}Ku

(1)

(2)

Bob's nonce À16 is a random number, which he can generate from disk-drive
randomness [Davis et al. 1994] or from some other noise source [Eastlake et
aI. t9941. The A,S returns to Bob a new session-key K6¿, the key's times of cre-
ation and expiration L : (L"r"or", Lrrpirr),a ticket Tbt : {St, L, K6¿}Kr, and,
the nonce Ä16, newly encrypted. Except for the nonce contents, Bob's exchange is
identical to a usual Kerberos initial ticket request. By changing the contents and
their interpretation, we've strengthened the ineffective challenge-response hand-
shake that's already in the standard login protocol.

This handshake proves to Bob that the key K6¿ and ticket T6¡ are fresh. On
receiving his tickets from A,S, Bob decrypts them with his password K6. V/hen
Bob flnds that his password-key K6 was indeed used to encrypt his nonce Àb and
his new session-key K6¡, he concludes that AS prepared the tickets after receiving
Àb. As long as he has never used 1y'6 to request tickets before, this means that the
tickets are fresh. At this point, Bob can use Lrrror, to reset his clock. It is impor-
tant that Bob's choice for l[6 must be immune to external influence; if an attacker
can cause Bob to re-issue an old challenge À[o¿¿, then she can replay correspond-
ingly old credentials Tom, {Sr NoM,, Lotd,, Kom}Ku, whose session key Ko¡¿ she
knows by prior theft.

In an earlier version ofthis article [Davis & Geer 1995], a similar C/R protocol was presented which exploited
Kerberos V5's flexible preauthentication feature lPa;to 1992; Neuman & Kohl 19931 for secure synchro-
nization. While we were designing the implementation of this earlier, preauthentication-based scheme, Cliff
Neuman pointed out that Kerberos Version 5 KDC-AS-REQ and KDCAP-REQ messages already contain
nonce fields, and that these fields are already being used to provide C/R authentication of the KDC to the
client. However, the Kerberos protocol specification [Neuman & Kohl 1993] warns against usingthe authtime
field in the KDCAP-R.EP message for time synchronization. This warning indicates that this nonce was orig-
inally intended not to support synchronization, but merely to provide mutual authentication of the KDC to the
client.

"Key Distribution Center" is a generic term for the Kerberos Server's role.
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As in the usual Kerberos protocol, AS learns nothing from this exchange about

whether it really was Bob who requested tickets, unless he uses preauthentication

data to authenticate his request lPato 1992; Neuman & Kohl 19931 Note though

that when preauthentication is available, it may make our challenge-response un-

necess¿ry. Many preauthentication mechanisms, such as smart-card protocols,

were originally designed as mutual-authentication schemes in their own right, and

do authenticate the server to the client. As long as the preauthentication protocol

also protects the initial Kerberos credentials from replay, the client can trust the

creation-time to represent Kerberos' current clock-time, without having to use our

challenge/response handshake.

With the above protocol, the server Bob only synchronizes once, but even-

tually his clock will drift away from the KDC's clock again. To maintain his

synchronization accurately, Bob can use the C/R protocol to request Kerberos

tickets for a secure time-service. As above, his ticket's creation-time will get his

session-clock into close agreement with the KDC's version of Universal Time4, so

that he can then use his time-service credentials to keep his clock exactly synchro-

nized with the time-service. When Bob uses his new time-service ticket, he sends

the usual authenticator, or encrypted timestamp.

B - St T6¿, {8, time}Ktt

Note that since Bob has recently set his system clock from the ticket's creation

time, his time wlll be fairly accurate. Because Bob requested mutual authenti-

cation, the time server returns the timestamp time from Bob's authenticator. In

addition, the time server returns the correct time t.o.d.:

St- B:{time,"I-JT: t.o.d.."}Ktt (4)

The first part of the setver's response assures Bob that the time-report is fresh,

because it echoes the timestamp he sent. Recall that Bob knows that his timestamp

was fresh, because he got it from the KDC's C/R-authenticated tickets'

For a user Alice, unlike the application server Bob, secure synchronization is

much easier, because she doesn't need to synchronize for long periods. All Alice

has to do is run an insecure time-service, and check it against Kerberos' authen-

ticated time, whenever she logs in. As long as the two servers' times are nearly

equal, Alice can safely trust the time-server's management of her system-clock. If
a Kerberos site chooses not to run secure NTR GPS, or some other secure time-

service for its KDC, the Kerberos server itself can use Alice's trick to validate

4. By Universal Time, we mean the time as measured by reference clocks which are maintained by national and

intemational organizations.
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NTP updates from outside its realm. Each KDC can get AS tickets from another
realm's KDC; this secure time-source is not exact, but is close enough for sanity-
checking the exact but insecure time-service.

5. Nonce Preparation

The most difficult part of this proposal is the client's task of preparing a unique
nonce. Traditionally, nonces are thought of as cryptographically-random numbers,

and the lack of true randomness has long been an obstacle to the implementation
of challenge-response protocols in software security systems. Strictly speaking,

though, our nonce does not even have to be unpredictable, much less random. In
fact, it sufûces for the client to use an incremented counter for his challenge, as

long as the user can be sure not to use the same value twice from the same work-
station. In this section, we will describe both ways to create nonces, and we'Il
discuss their merits and limitations.

A predictable nonce is much the easier solution. The client workstation just
keeps a counter in a file that users cannot alter, and uses this counter for nonces.

For good security, it would be unwise therefore to use this technique on a public-
access workstation, on any remote-login server, or on any machine that isn't phys-
ically secure. A user does not have to worry about re-using the same nonce value
on different machines, though, because the Kerberos protocol will recognize the
difference in encrypted IP addresses.

A random nonce is more versatile, but is more expensive in two ways. True

natural randomness is available on almost every computer, because the computer's
disk-speed varies slightly but constantly. This speed variation originates in turbu-
lent air-drag on the disk platters, and is big enough to subtly perturb the timing
of disk-accesses [Davis et al. 1994]. The cost of disk-randoÍlness is its low band-

width and its dependence on the operating system, CPU, disk-drive, and controller
board. It is possible to avoid these dependencies while gathering the timing-data,
but the dependencies still strongly influence the rate at which measurable entropy
can be extracted. Depending on the platform, anywhere from 1 bit per minute to
20 or more bits per second may be available from disk-noise.

Another readily-available source of natural randomness is keyboard-timing

[Eastlake et al. 1994], but this is problematic, too. First, when the Kerberos client
software is preparing its first ticket-request, the only keyboard-input it sees is the

user's entry of his username; the password doesn't get read until after the KDC
reply is received. So, very little noise is available from this source. Second, the
Kerberos routines currently use device-independent string VO routines to read
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these strings; equipping Kerberos to time the keystrokes would, again, require a

lot of device-dependent code.

The only other sources of variability for nonce-generation are the username,

machine name, process-ID, and time of day. By themselves, these are not random,

but if they are hashed together with whatever natural randomness can cheaply be

gathered, they'Il help make a unique nonce for the session. Because VO timing

can influence the shuffling of the Kernel's data-structures, Kemel-memory con-

tains a limited record of some past VO noise, so a hash of /dev/knem might be

useful, too.

It's important to note that the practical utility of our synchronization proposal

relies entirely on a satisfactory source of cryptographic randomness for Kerbe,r.S'

use. Ideally, all computers would be equipped with hardware random number gen-

eration devices. This would provide high-quality random numbers from a quantum

source (e.g., a noise diode). In addition, operating systems should provide a stan-

dardtzed interface for obtaining high-quality random numbers. 5 Unfortunately,

such hardware and operating-system support is not common today, though we

hope it will become a standard part of every computer. Until this support a:rives,

the practical utility of our synchronization proposal will have to rely on a special-

purpose implementation of disk-randomness for Kerberos' use.

6. Session Clocks

In this section, we describe a mechanism that enables users to present accurate

timestamps to Kerberos and to secure applications, without keeping their system

clocks synchronized. Suppose now a user Alice wishes to communicate securely

with Bob, but suppose that like most users, she prefers not to synchronize her

clock.
In this case, Alice won't request time-service tickets, but she still needs to

keep ffack ofthe Kerberos server's clock-value, so that she can prepare accapt-

able credentials, detect replays herself, and anticipate her tickets' expiration.

Her ticket's lifetime data L tell her the current value of Kerberos' clock, be-

cause -L includes the ticket's creation-time Lrr"or". Alice can record the skew

Ao : Lcreate - t'imeo between her clock and KerberOs', So aS tO keep track of

5. For example, Theodore Ts'o has developed a /dev/random I/O driver for Linux. This driver provides high
quality random numbers by sampling environmental noise from events such as keyboard intenupts and

disk+iming. In practice, operating system kemels tend to be able to collect environmental noise much more

efficiently than user-mode programs.
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Kerberos' clock's value. This fixed skew will enable her to prepare acceptable
credentials, etc. as usual. 6

Alice begins her login-session by asking A,S for a ticket-granting ticket
(TGT), which she'll then use to request tickets for Bob's service:

A --. AS : A, TGS, No

AS --. A: {TGS, No, L, Ko,tgr}K", To,ts"

(s)

(6)

This is the same challenge-response handshake that Bob used above, except for
the names. On receipt, Alice concludes that her ticket and session-key are fresh,
just as Bob did, and she uses the key's creation-time Lcreate to construct a normal
TGS tickefrequest:

A--TGS: B, To,¡n", {A, Lrr"or"¡K",tn"

TGS --+ A: To6, {8, L', Ko6}K",ro"

Now, to detect replayed TGS-replies, Alice can compare her new ticket's creation-
time Lt withtimeo * Ao, which will be a good approximationto ti,me¿s.

Note that after her initial login with challenge and response, Alice's other
security interactions are perfectly standard, and the rest of the Kerberos proto-
col is unchanged. However, to support drifting-clock clients (those who avoid
synchronizing), the Kerberos application library would have to be changed to
maintain transparently an implicit "session clock" at each end of a Kerberized
connection. Each side's skew A,¡o"o¡ : timeAs - time6"ul would be initialized at
login or at bootstrap; thereafter, whenever the Kerberos library needs synchronized
time, it would add the skew to the local clock. This would allow an application's
client and seryer to use Kerberos for security, even though neither party has syn-
chronized his clock with Kerberos. Similarly, when a client interacts with several
Kerberos servers, he'll have to maintain a separate clock-skew for each one (un-
less all KDCs synchronize with Universal Time, as we recommend).

Because clocks drift, Alice's calculated value for Ao will grow stale even-
tually, perhaps after several days. This drift is too slow to affect human users,
who must daily refresh their tickets (and thus their clock-skews) anyway. But if a
server Bob wishes to maintain a clock-skew 46, he must interact daily with Ker-
beros to refresh A6 from his tickets' Lcreate.

Because the Kerberos protocol is unchanged, the session-clock clients and
synchronized clients would be indistinguishable in their network behavior.

6. Stan Zanarotti, of Dimensional Insight, Inc., devised an unsecured version of this clock-skew trick at MIT,
when he implemented MIT's Kerberos clients for the Apple Macintosh. The trick is particularly necessary for
the Mac, whose clock is hard to keep synchronized for a variety of reasons Vanarcttj 19951.

(7)

(8)
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Session-clock Kerberos clients and servers would fully interoperate with a normal
Kerberos installation, because the Kerberos server already handles the nonce-fields

correctly, and does not have to be changed. Only the client-side code changes.

The only change in its behavior is that at login, the client sends and checks a real
nonce, instead of a timestamp, and he constructs his subsequent timestamps in
a novel way. These differences are invisible to the protocol, and can't cause a

version-skew.

7. Closing the Replay Window

Some applications use Kerberos only to authenticate the client and server at the
beginning of their sessions. When such a server crashes, and until it restarts,

it is unable to maintain its replay-cache. Thus, if a client sends a timestamped
service-request during the downtime, an attacker can replay the request after the
service restarts, without fear of detection. Clearly, the application can minimize
this threat by integrity-checking the request, so that the attacker can't alter it. Even
integrity-checking, though, leaves the attacker with the ability to change the re-
quest's timing, within the constraint of the timestamp-lifetime. For example, in a
securities-trading application, an attacker might profit simply by replaying some-

one else's bounced trading request, just after a server restarts.

This restart replay-window is only a minor security hole, but it's worth clos-
ing, especially for applications that don't enforce integrity-checking. We know of
only two ways to protect absolutely against replays of downtime requests:

1. V/ait for the downtime requests to expire: the server should reject any
timestamps that predate its restart, on the assumption that they may be re-
plays. 

,

2. Enforce integrity-checking in a single-server two-phase commit protocol, so

that the attacker can't forge the o'commit" verification.T

Unhappily, neither of these alternatives can apply universally. On the one hand,

some applications, such as UNIX's inetd-mediated services, start afresh for each

request, so they cannot know when they were started. On the other hand, some

services can't or won't support the complexities of integrity-checking and two-
phase commit protocols.

It seems that the only prudent alternative is to shorten the timestamp lifetime,
so as to n¿urow the replay-window. This doesn't completely block the "downtime

7. This also prevents "suppress and replay" attacks.
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replay" attack, but it makes the attack harder to perform. Thus, one advantage

of building time-synchronization directly into the Kerberos protocol and its li-
braries is that once we can take synchronization for granted, we can narrow the
tve-minute replay window.

MIT's Kerberos developers chose five minutes as Kerberos' timestamp life-
time somewhat arbitrarily. At that time, in the mid 1980's, time daemons weren't
yet widely available, and network latencies were bigger than they are now. So,

frve minutes seemed a good trade-off: a shorter lifetime would be hard to man-
age with manual synchronizations, but a longer lifetime seemed to ask for trouble,
given that we hadn't built the replay-caching code yet.

How much can we reduce the replay-window? We still have to allow for
network latency. In fact, the ages of our session-clock timestamps always ap-
pear at their receipt to be roughly twice the network-latency. This means that
the timestamp-lifetime must exceed twice the usual maximum for the network's
latency. At this writing, a Boston-to-Auckland round trip runs about 250 millisec-
onds, so a lifetime of 5 to 15 seconds seems adequately conservative.

More precisely, if A¿," is the latency between the client and the KDC, and

if 4"," is the latency between the client and the application server ,9, then when
the client sends a timestamp to the application server, the timestamp will lag Uni-
versal Time by L*,. 1_4",r. If the server is using a session-clock, too, then the
server's session-clock will lag UT by A¿,", and the timestamp's age will seem to
the server to be

An," l4"," - A/.,".

On average, we can expect this apparent age to be non-negative, because the direct
path between the KDC and,S should be shorter than the relayed path via C. (Of
course, if ,S synchronizes with l-IT, then the apparent age will always be strictly
positive.) Thus, in either case, an honest client's session-clock will not prepare
a postdated timestamp. This blocks a 'þostdated-timestamp" attack noted by Li
Gong [Gong 1992). Gong points out that if a client's synchronization fails so that
his clock runs fast, his accidentally-postdated message can be suppressed and re-
played later, when the postdated message becomes current. In this way, an attacker
can gain an advantage from a time-sensitive service, even after the client corrects
his clock.

8. Implementation

Our implementation of this clock synchronization scheme was quite straight-
forward. The Kerberos V5 protocol already contained a nonce field in the
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KRBAS-REQ message, which the Kerberos server is required to copy into the

encrypted poftion of the KRB-AS-REP message. Hence, no server-side changes

were required. This provided us with the happy result that all of the existing,

installed Kerberos servers required no modiflcations in order to support clients

wishing to use this new time synchronization technique.

The changes to client code were relatively simple. The krb5-get-in-tkt o
routine already passed a nonce to the Kerberos server, and verified that Kerberos

server's reply contained the same nonce. All that we needed to add was a few

lines of code to sample the client's system clock, and then compute an offset be-

tween the system time and the value of the authtime freld from the KDC-AS-R.EP

message.

We then changed the krb5-gettineof dayO function to reconstruct the Ker-

beros server's time from this offset and the local system's time. This routine is

called by all Kerberos client routines when they need the current time for Ker-

beros protocol messages.

For security reasons - the same reasons why unprivileged users must not be

allowed to change the system time - this time offset must be stored separately

for each user. We store the user's session-clock offset in the header of his cre-

dentials cache (i.e., the ticket file, in Kerberos V4 parlance). Although storing the

clock offset in the credentials cache is somewhat impure from an architectural

point of view, from a practical point of view it works very r,vell. The credentials

cache is generally reinitialized when the user obtains a fresh TGT using the Ker-

beros Authentication Server protocol, and the cache is referenced each time the

client authenticates itself to an application service. We create and use the offset at

these same times, so it's natural and convenient to store the offset in the credential

cache.

The only place where some care is required in the client implementation is

in generating a nonce. If Alice reuses a nonce to gain tickets, and if the ses-

sion key from the nonce's first use has since been compromised, an attacker can

successfully impersonate the KDC by sending the old, compromised tickets to

Alice. Alice will also receive the reused nonce, correctly encrypted, and so she

will accept the old, compromised ticket and session-key as fresh. This ticket is

outdated, and so would not be accepted by any legitimate application server. How-

eveq the stolen session-key enables the attacker to impersonate the application

server, too. Thus, when the attacker knows an old session-key and Alice re-issues

the corresponding nonce, she can be tricked into thinking that she had mutually

authenticated with an application server, when in fact she was sending confrdential

data to the attacker instead.

MIT's current V5 beta 5 implementation used the system clock to generate

a nonce, as recorlìmended by the Kerberos protocol specification. However, this
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assumes that the system clock is accurate, so that the value of the system clock is

always increasing. Since we are trying to use the Kerberos protocol to synchronize

the system clock, we cannot make this assumption'

Since the nonce does not need to be unpredictable, but only non-repeatable,

one possible solution is to store the previous nonce, and then increment it to ob-

tain the next value to be used. This solution requires that the machine be able to

store the nonce reliably and securely. Unfortunately, while storing process-state

can be workable for application servers, it's often infeasible for clients to store

process-state securely.

Lacking a system clock which is always increasing and the ability to store

state, the remaining solution is to use a randomly picked nonce value. However,

generating truly random and unpredictable values can be very difûcult, since by

and large, computers are carefully engineered to generate repeatable results. East-

lake, Crocker, and Schiller have pointed out the practical difficulties in generating

truly random values for cryptographic purposes [Eastlake ef al' L994].

In our "proof of concept" implementation, we adopted the strategy of storing

the previously used nonce in a flle, primarily for ease of implementation. Our

implementation can be extended to allow this time synchronization technique to

be used on clients which cannot reliably store state. However, this would require

that that the implementation generate and use truly random nonces. We invite the

interested reader to look to [Eastlake et al. 1994] for suggested implementation

hints. Unfortunately, many of these techniques either require user input, which

is not always available to the Kerberos library, or are extfemely dependent on

hardware and operating system configurations.
'We make the assumption that the Kerberos servers are running with their sys-

tem clocks set to the correct time. This is important, since under this scheme,

clients and servers synchronize their clocks only with their local Kerberos server.

In order for clients and seryers in different realms to be synchronized (which is

required for inter-realm authentication), the system clocks of all of the Kerberos

servers must be in sync. We therefore strongly advise that all Kerberos servers

run some sort of network time-synchronization protocol, such as secure NTP, or

failing this, use an external device, like a WW"WV receiver or a GPS receiver,

in order to maintain the Kerberos server's clock. These alternatives assure that

Kerberos servers and their clients will securely be synchronized with Universal

Time.8

8. Where secure and exact synchronization isn't possible, a Kerberos server can use the C/R protocol with an-

other KDC to validate an insecure NTP service, just as a client can do (see Section 4).
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9. Conclusion

We have presented a solution to Kerberos' "cold-start" problem in clock synchro-

nization, which provides for secure clock initialization where needed, and for
"drifting clock" security where desired. We expect the proposal to gain accep-

tance rapidly in the broad community of Kerberos' vendors, implementors, and

designers, because it requires only minor changes to the Kerberos client library
and to the securq time protocols, and because it adds no extra network delays to\
users' login sequence. Indeed, for Kerberos implementations that already employ
preauthentication to protect against dictionary attacks, our proposal requires little
more than a shift in interpretation, to exploit the fact that with some preauthentica-

tion schemes, V5 beta 5 Kerberos tickets already can be trusted to deliver a secure

clock-initial ization.
We also expect our protocol and its implementation to greatly improve Ker-

beros' attractiveness to a variety of commercial network customers and users. Our
notion of relaxed, yet secure, synchronization will further lighten administrative
burdens and enhance security in large networks. It actually reduces Kerberos' ad-

ministrative overhead, since most client machines will be able to dispense with
time daemons, and it adds neither overhead nor network-latency to secure applica-
tions.

Intermittency, more than anything else, is the core technical challenge of mo-
bile computing, yet mobile, intermittently connected counterparties have a bigger
stake in authenticity than do continuously connected, sequestered network envi-
ronments. As such, we claim that easing Kerberos' synchronized clocks constraint
is uniquely valuable, because it enables the efficiency and prompt, assured revo-
cation of authority (that is the hallmark of Kerberos authentication) to be broadly
applicable to environments that do not and will not have time-synchronization
services. More broadly, we suggest that as the demands of electronic commerce

become better understood, the ability to bridge the boundaries of internally syn-

chronized yet mutually unsynchronized orgarizations will be shown to have com-
pelling value.
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