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ABSTRACT: UNIX system security today often relies
on correct operation of numerous privileged subsys-
tems and careful attention by expert system adminis-
trators. In the context of global and possibly hostile
networks, these traditional UNIX weaknesses raise a
legitimate question about whether UNIX systems are
appropriate platforms for processing and safeguarding
important information tesources. Domain and Type En-
forcement (DTE) is an access control technology for
partitioning host operáting systems such as UNIX into
access control domains. Such partitioning has promise
both to enforce organizationalìecurity póücies that
protect special classes of information and to generi-
cally strengthen operating systems against penetration
attacks. This paper presents the primary DTE concepts,
discusses their application to single hosts, IP networks,
and NFS, and then describes the design and implemen-
tation of a DTE IINIX prototype system.
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l. Introduction

As UNIX systems become a major part of the global information infrastructure,

UNIX security mechanisms are coming under increasing pressufe to resist at-

tacks by highly motivated individuals, companies, and governments. Currently,

UNIX security rests on protection bits, the root user, and the setuid/setgid mecha-

nism. These mechanisms place a great deal of security responsibility on privileged

application programs and expert system administration. This has two important

consequences. The first is that UNIX systems often exhibit a "weakest link"
phenomemon in which compromise of any privileged subsystem (e.g., fingerd,

sendmail, rdist) makes an entire host vulnerable. The second is that reliance on

numerous privileged applications increases the difficulty of implementing coor-

dinated security policies that provide uniform protection to data and processing

resources. These two problems motivate a legitimate concern over whether UNIX

systems are appropriate platforms for processing and safeguarding important infor-

mation resources in global and possibly hostile networks.

UNIX (and other operating systems) can in theory be hardened against threats

inherent in such environments by adding an access control layer that restricts priv-

ileged processes so that damage resulting from compromise or error is limited. In

addition, such access controls could enforce security policies that appropriately

protect information and processing resources based on sensitivity, integrity re-

quirements, etc. These benefits, howeveq have not been realized by mainstream

UNIX systems even though a number of access control mechanisms lBell 1976;

Blba 1977; Boebert 1985; Clark 1987; Lipner 19821have been available for years.

One reason may be that security enhancements often impose significant costs re-

sulting from more complex system administration, application incompatibility

(or unavailability), and additional user training. This raises a central question for

practical tiNIX security: can signifrcant enhancements be added in a way that is

understandable, effective, and unobtrusive?

This paper presents our experiences with a new form of access control, Do-

main and Type Enforcement (DTE) [Badger 19951, and a prototype DTE UNIX

system. In recognition of the fact that access control techniques have not been

easily accepted by operating system vendors (or users), DTE has been formu-
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lated specifically to address requirements of greatest concern for both vendors
and users, namely: flexibility, simplicity, operating system interoperabilit¡ binary
application compatibility, and performance.

In the following sections we present the fundamental DTE concepts, discuss
DTE application to single hosts, IP networks and NFS, and then discuss design
and implementation issues of the DTE UNIX kernel. Sections 2 and 3 present DTE.
Sections 4-6 cover design and implementation issues for adding DTE to UNIX
systems. In section 7 we discuss related work. We conclude with a discussion of
the current status of DTE, unresolved issues, and plans for further development.

2. Type Enforcement

DTE is an enhanced form of type enforcement, a table-oriented access control
mechanism originally proposed by Boebert and Kain [Boebert 1985] and later re-
fined in the LocK system [o'Brien l99ll. As with many access control schemes,
type enforcement views a system as a collection of active entities (subjects) and a
collection of passive entities (objects). For type enforcement, an invariant access

control attribute called a domain is associated with each subject, and another in-
variant attribute called a type is associated with each information object. A global
table, the Domain Deflnition Table (DDT), represents allowed interactions between
domains and types. Each row of the DDT represents a domain, and each column
represents a type. Subject-to-object access control decisions are based on table
lookups: when a subject attempts to access an object, the domain of the subject
selects a row of the DDT and the type of the object selects a column of the DDT.
If the requested access mode (e.g., read, write) is not present in the selected cell,
the access attempt is denied.

Subject-to-subject access control is based on a second table, the Domain Inter-
action Table (DIT), which relates domains to domains. when a subject A attempts
to access another subject B', the domain of A selects a row of the DIT and the do-
main of B selects a column of the DIT. If the selected cell does not contain the
requested access mode (e.g., signal, create, desffoy), the access attempt is denied.

In its original formulations fBoebert 1985; O'Brien l99I], type enforce-
ment was applied to the Secure Ada Target (later renamed LOCK) trusted com-
puting base (TCB). IVhile LOCK supports a UNIX emulation layer, LOCKix
[O'Brien l99I], the subjects and objects in the original formulation are LOCK
abstractions, not UNIX abstractions. As a consequence, LocK type enforcement
directly controls UNIX emulations but does not distinguish between individual
I-INIX processes running on an emulation. The benefit of this approach is the po-
tential for high assurance since UNIX kernel mechanisms need not be trusted to
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provide security. Our goals here are slightly different in that we wish to control

individual UNIX processes at the level of assurance achievable with UNIX kernel

mechanisms.

While various approaches are possible, a natural application of type enforce-

ment to IINIX would remain consistent with the informal UNIX model for dis-

cretionary access control (DAC) based on uids, gids, and protection bits. In this

approach, UNIX processes are the subjects and UNIX data containers (e.g., files,

shared memory segments) are the objects. In general, system events (e.g., open,

exec) that involve comparisons between a process's uid and an object's pro-

tection bits also involve a DDT lookup and access control check. Creations of
processes with different domain attributes also follow the UNIX model; since a

nonprivileged UNIX process may only change its process uid through the setuid

mechanism, domain transitions are also bound to specified exec events. Finally,

since UNIX processes may also access each other via signals, type enforcement

for UNIX adds mediation of signal dispatch based on the DIT.
Unless rights to modify a running type enforcement access control conflgura-

tion are distributed within a system, type enforcement is a mandatory mechanism

in that the access control rules are centrally determined, processes cannot change

object type attributes, and process domain attributes change only according to sys-

temwide rules. Under this interpretation, type enforcement can express and enforce

many fine-grained access restrictions and consequently can partition a UNIX sys-

tem according to the principle of least privilege [Schroeder 1972), thus limiting
damage resulting from compromise or effor in privileged programs. This addresses

a major weakness of traditional UNIX access controls, which are vulnerable to

trojan horse programs that, when executed in the context of privileged users, can

give away (or save for later use) access to sensitive resources. In cornbination with
a facility for authenticating users for different domains, a type-enforcing UNIX
can also support user roles [Landwehr 1984; Mayer 1989; Baldwin 1990; Thom-

sen 19901 and implement systemwide mandatory access control policies support-

ing organizational goals (e.g., proposal information is kept separated from public

information). Although type enforcement was originally proposed [Boebert 1985]

as an integrity mechanism, it is also capable of enforcing other policies, such as

the DoD conûdentiality policy lBell 1976], that control the propagation of sensi-

tive information.
Type enforcement is both flexible and strong, but our experience with a type-

enforcing system [Sterne 1992]indicates that its practical application requires

solutions to three significant problems:

I. Type enforcement access control configurations may become too complex.

Type enforcement is most effective when used to express many different
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access restrictions for many controlled programs. This introduces signifi-
cant complexity into the type enforcement tables, which must express all
allowed information flows and subject transitions. Additionally, assignments
of domains to specific processes and assignments of types to individual files
are relevant because these bindings contribute to determining the accesses
permitted by the configuration. Such assignments are not expressed in the
original type enforcement formulation. These assignments can be numerous;
for example, our corporate file server typically runs over 300 processes and
locally stores over 600,000 files. Such magnitudes significantly increase
complexity.

2.Type enforcement tabular structures do not naturally map to standard sys-
tem structures. Figure 1 shows the mismatch between type enforcement
tables and system structures. A typical system is composed of two primary
hierarchies, the object (i.e., file) hierarchy and the subject (i.e., process) hi-
erarchy. There is no obvious correspondence between the type enforcement
tables and typical system hierarchies even though the structures of process
and file hierarchies are security-relevant; for example, directory hierarchies
determine visibility and grouping of files, and process hierarchies reflect
relationships between potentially security-relevant programs and influence
propagation of process capabilities (e.g., file descriptors). This mismatch
hinders application of type enforcement to actual systems.

3. Most type enforcement policies need to be invented from scratch. The DoD
Mandatory Access Control (MAC) policy for protecting sensitive informa-
tion and, to an extent, DAC reflect existing organizational security policies
(e.g., the DoD Information Security Program Regulation [DoD 1986]). For
MAC, flles typically have the security labels that correspond roughly to
document classification markings, and processes are labeled with the clear-
ances of their users. For DAC, files are owned by users, and processes have
user identities and access files on behalf of users. For type enforcement,
however, no such tradition exists, and domain and type attributes in the
type enforcement tables must (currently) be custom-engineered for each
security-relevant application.

3. Domain and Type Enforcement (DTE)

Domain and Type Enforcement (DTE) is an enhanced version of type enforcement
designed to provide the benefits of type enforcement at reduced cost and complex-
ity. Three primary techniques distinguish DTE from simple type enforcement:
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Figure 1. Mismatch Between Policy Concepts and System

Structures.

1. DTE policies are specified in a high-level language suitable for expressing

reusable access control configurations. A DTE specification includes se-

curity attribute associations such as type/flle associations as well as other

access control information. Inclusion of type associations allows a DTE
policy to be comprehensive: all the access control information is gathered

in one place. The language provides a high-level view of information tra-

ditionally enumerated in type enforcement tables and includes facilities for
superimposing security attribute bindings and domain transitions on applica-

tions that are not aware of DTE.

2. During system execution, DTE flle security attributes are maintained "im-
plicitly" in a form that capitalizes on intrinsic object hierarchies (e.g., di-
rectories of files) to concisely represent security attributes. When significant

portions of system file name spaces are homogeneously typed, this strategy

simplifies security conflguration and removes the need to physically store a

type label with every file. This permits DTE policies to be easily applied to

existing media with full backward compatibility with existing disk and f,le

system formats.

3. DTE provides direct support for interoperating with hosts that are not aware

of DTE. The primary technique for this is a language-driven mechanism

that associates a DTE domain with each non-DTE host. DTE systems view
processes running on a non-DTE system as running in the domain associ-

ated with the host. This allows DTE systems to mediate communications

with non-DTE hosts according to local DTE policies.
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3.1. DTE Language Support

DTE Language (DTEL) is a simple high-level symbolic language for expressing
reusable DTE conflgurations in a human-rather than machine-friendly form.
The general scheme of DTEL is to express information traditionally held in DDT
and DIT tables with as much simplifying structure as possible. We anticipate that

some systems will require attributes that are closely related; DTEL therefore sup-

ports such inherent (and simplifying) structure by providing macro facilities that

allow security attributes to be defined using shared components. To document and

clarify specifications, DTEL supports standard C commenting conventions. Cur-
rently, DTEL provides four primary statements for expressing a DTE configuration
for a single host: the type statement, the domain statement, the initial-donain
statement, and the assign statement.l The purpose of this section is not to fully
document DTEL but to demonstrate through a small example that a meaningful
DTEL policy can be expressed completely in a form simple and concise enough

to be administered at reasonable cost. Our metric for "reasonable cost" is that pol-
icy administration should be no more difficult than routine UNIX administration
tasks such as configuring remote file systems or adding user accounts. To validate

that our example policy is not trivial, we have run it on our prototype DTE system

and found it to provide useful protection. We now introduce the primary DTEL
statements in the context of a commercial policy designed to provide protection
and separation for enterprise data types and user authorizations in an engineering
organization.

A DTEL type státement declares one or more types to be part of a DTE con-
figuration; other DTEL statements may refer only to types declared with the type
statement. Each object is associated with exactly one of the types provided by the

type statements. For example, the following type statement declares one type for
ordinary UNIX ûles, programs, etc., and three types describing enterprise data:

type unix-t,
specs-t,
budget-t,
rates-t;

/* normal- UNIX files */
/* engineering specs */
/*, budget projections */
/* labor rates *,/

l We have also formulated but not completely implemented DTEL facilities to control mount operations, but we
restrict our attention here to implemented features with which we have actual experience. The nount statement
would add several lines to the example presented in this section.
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A DTEL domain statement consists of four components:

entry points Programs, identified by path name, that are bound to the domain

and must be invoked in order to enter the domain. This mechanism al-

lows access rights of a domain to be explicitly bound to programs that are

believed to employ them appropriately.

object access rights Permissible modes of access, when executing in the do-

main, to objects of specified types, e.g., the normal I-INIX modes r¡¡x.

UNIX overloads the x mode for directory traversal; DTEL distinguishes

between execute and traverse access using a new mode, d, that applies

only to directories.

default output type Optionally, a domain may designate that new objects

are created with a specified type, to which the domain has write access,

when the creating events (e.g., file opens) do not provide explicit type

parameters. This mechanism allows existing programs running in domains

that have multiple types writeable to create new objects without ambiguity

concerning the types of the objects.

subject access rights Permissible modes of access, when executing in the

domain, to subjects in other specified domains. In addition to providing

individual subject access rights for UNIX signals (sigkill, sigpause, etc.),

DTEL provides two access rights for creating new subjects. If a domain A
has exec access rights to another domain B, a subject in ,4 may cteate a

subject in B by executing one of B's entry-point programs and requesting

that the program run in B. To assign custom-tailored domains to existing

programs that are not aware of DTE, it is important to be able to cause

domain transitions at points where one program starts another, for exam-

ple, where a system process starts a network daemon. In UNIX, all such

program loads are performed by the exec O family of system calls' If a
domain A has auto access rights to another domain B, a subject in A
automatically creates a subject in B when it does a normal exec O sys-

tem call of an entry point program of B. This mechanism allows domain

transitions to be superimposed on many existing system daemons and sub-

systems without modifying their executables. 
.

For example, the following defines three domains for regulating access to

engineering specifications, budget projections, and labor rates, which are labeled

using the types declared above:

#define DEFAULT (/bin/sh) , (/b¡n/csh), (rxd->unix-t)
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domain engineer-d

domain project_d

= DEFAULT, (rwd->specs-t) ;

= DEFAULT, (rwd->budget-t), (rd->rates_t) ;

donain accounting-d = DEFAULT, (rd->budget_t), (rwd->rates_t) ;

Each domain is a list of tuples where each tuple contains either a UNIX path
or a collection of access modes to (designated by ->) a collection of type or do-
main names. The domain statement collapses the DDT and DIT into one repre-
sentation. These sample domains regulate observation and modification of typed
data to support three kinds ofuser authorizations for an engineering organization:
(1) engineers manipulate engineering specifications only, (2) project leaders ob-
serve labor rates and create budget projections, and (3) accountants observe budget
projections and set labor rates. Although these user-oriented domains have com-
mand shells for entry point programs, it is also possible to further refine these
domains by installing other programs as the entry points, for example, spreadsheet
or database programs, that are specific to user responsibilities.

In addition to user-oriented domains, a complete DTEL specification must
associate domains with all operating system processes and must also provide a
mechanism for user-oriented domains to be initiated. To accomplish this, it is nec-
essary for a DTEL policy to reflect the structure of the UNIX process hierarchy
because domains are process attributes inherited by default from process to pro-
cess. Typically, after kernel initialization, a UNIX system starts an initial process
that runs the /etc/init program. This process is then responsible for creating
all other UNIX processes, including, indirectly, the login process that starts user
sessions. DTEL specifles the domains of all processes by setting the domain of the
first process and then controlling domain-changing operations using the exec and
auto domun access modes. The DTEL initiar-domain statement specifles the
domain of the first process. Child processes inherit the domains of their parents
and optionally transition to other domains during exec O operations constrained
by their exec and auto access rights.

For example, the following deflnes two system-oriented domains supporting
the user-oriented domains given above by providing a mechanism to initiate them
and by running the rest of the system in domains that have no access to the user-
oriented data types:2

2. Except indirectly through device special files. In a less simple example, programs, such as fsck, that need
such access, would run in special domains that grant access, and the rest of the system programs would be
controlled.
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donain systen-d = (/¿¡ç/ínit), (rwxd->unix-t), (auto->1ogin-d) ;

donain login-d = (/bin/Login), (rwxd-)unix-t),
(exec->engineer-d,proj ect-d, accounting-d) ;

initial-domain = sYstem-d ;

The initial-domain statement causes the initial process to run in the

system-d domain, which has access only to unix-t data. This domain is inherited

by all system processes except for the login process. When a process in system-d

runs the login program, the auto access mode from system-d to login-d causes

the login program to run in the login-d domain, which has the ability to create

processes in the three user-oriented domains. To minimize privilege, only the login

program can initiate the user-oriented domains. In this scenario, the login program

is DTE-aware and properly authenticates and checks the authorization of each user

before starting a process in the user's domain.

The fourth DTEL statement is the assign statement, which is used to as-

sociate exactly one type with each flle on a system. Assign statements support

"implicit typing," a technique for associating types with files based on direc-

tory hierarchies by stating general rules and then listing exceptions. Figure 2

displays the concept. In that figure, all files below the root directory, by default,

have the type unix-t. In three subdirectories, however, unix-t is "overridden" by

the specs_t, budget-t, and rates-t types. In each subdirectory, all files by de-

fault have the type of the subdirectory. Using this technique, it is easy to associate

a small number of types with a large number of frles as long as type associations

tend to group according to existing directory hierarchies. In our experience, direc-

tory hierarchies tend to organize files by pulpose, origin, sensitivity, etc., in short,

the same cnteiaby which type labels would often be assigned. Although types

may naturally reflect directory hierarchies, there are clearly exceptions to this rule,

and assign statements can also express exceptions for individual files as overrides

to the default type associations.

An assign statement associates a type with a path P and is optionally recur-

sive; recursive statements (indicated by -r) apply to all paths having P as a pre-

fix. For statements having paths such that one is a preflx of another, the statement

having the longest path P overrides statements having shorter paths for all frles

reached through P. DTEL type associations are tranquil in that the type of an ob-

ject does not change over the object's lifetime. As a consequence, maintenance of
attribute associations at runtime may force (automatic) rebindings of attributes to
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hierarchical structures. For example, when a f,le is renamed, its assign statement,
if any, is changed to reflect the file's new location. Constraints can be placed on
type assignments. DTEL provides a feature to force type assignments to be static
(indicated by -") at runtime, which locks specification-time type assignments for
hierarchical portions of the object name space and denies any attempt at runtime
to create objects of other types in those areas.

One consequence of binding attributes by location is that files that can be
reached through multiple (hard link) paths may appear to have mulriple types.
Symbolic links are not an issue because they merely name hard link paths repre-
sented by DTEL assign statements. To prevent multiple hardlinks from introducing
ambiguity, DTEL will employ a tool at specification time that discovers whether
multiple assign statements name the same file. For each such file, the tool will
prompt the security administrator to decide which among the possible types the
file should have and will then add additional assign statements to ensure that all
assign statements for the file give the same type. Once initialized, a DTE system
maintains type bindings unambiguously even in the presence of multiple links.

For example, the following assign statements provide areas for the domains
and types displayed in figure 2:

specs_t

Figure 2. Implicit Types.

budget_t

/; /* defautt type */
/projects/ specs;
/projects/budget ;

/pro jectsh ates;

assign -r -s unix_t
assign -r -s specs_t
assign -r -s budget_t
assign -r -s rates_t

In order to allow UNIX system processes to continue to function, all system
processes except login run in a domain that gives access to the standard UNIX
objects accessible from the root directory (/) that has type unix_t; this assures
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compatibility for basic system functions. The DTEL processor requires that / is

given a type using an assign statement. User processes run in one of the three

user-oriented domains having appropriate access to the three subdirectories for

specs-t, budget-t, and rates-t.
The four basic DTEL statements are sufficient to express complete access

control policies for processes, tles, and most volatile system abstractions such as

shared memory semaphores, and message queues. Figure 3 shows the completed

sample policy, which provides three user-oriented domains and all mechanisms

required to support them on a typical DTE UNIX system. This sample policy can

be incrementally reflned to add additional user domains, distinguish between con-

sole and network user sessions, simultaneously support additional organizational

policies, and harden UNIX itself by running UNIX system components in more

tightly constrained domains using the auto access mode. Through such extensions,

DTE policies can be confrgured to fit individual site requirements. Because TINIX

system process interactions are relatively standard, however, we believe that such

policies can also be standardized and portable (or configurable via macros) be-

tween UNIX systems.

3.2. Runtime Implicit Attribute Management

Although DTEL specifies type associations implicitly, DTEL does not man-

date how the attributes are actually maintained at runtime. Traditional trusted

systems (such as Multics[organick 1975, National Computer Security cen-

ter 19861, Trusted XENIX lNational computer Security center l99ll, TMach

lBranstad 19891, etc.) store one MAC label or DAC ACL for each file, usually

with the flle's on-disk representation. This is an option for DTE systems also, but

we rejected it for two reasons:

. The type labels would be distributed across all object media and therefore

could not be easily reviewed or analyzed without physically scanning all

objects.

. More importantly, keeping type labels explicitly with ûles would require

changes to low-level file and file system formats, causing DTE systems to

be incompatible with existing systems from which they import network file

systems.
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type

DTEL Connercial Policy.

unix-t,
specs-t,
budget-t,
rates-t;

#define DEFAULT

donain engineer-d
donain project_d
donain accounting-d
donain systen_d
donain login_d

initial-donain system-d;

assign -r -s
assign -r -s
assign -r -s
assign -r -s

unix-t
specs-t
budget-t
rates-t

/* norrnal UNIX files, programs, etc. */
/* engineering specifications */
,/* budget projections */
/x labor rates x/

(/bin/sh), (/bin,/csn), (rxd->unix-t) /* øacro */

DEFAULT, (rud->specs-t) ;

DEFAI'LT, (rwd->budget_t), (rd->rates_t) ;
DEFAULT, (rd->budget-t), (rud->rates-t) ;
( / et-c / írit), (rwxd-)unix-t), (auto->1ogi.n-d) ;
(,/Uin,/fogin), (rwxd-)unix-t), (exec-) engineer_d,

lllSüi,i;.,,
/* systen starts in this donain */

/; /r. default for a1I files */
/proj ects/specs ;

/projects/budget;
/proj ects/rates ;

Figur 3. Example DTEL Policy.

Instead, our approach maintains type associations in a UNIX kernel-resident
runtime policy database that is established at system boot time.

Each UNIX file object access starts with a resolution mechanism that converts
a pathname or an NFS file handle to an internal object handle that is then used for
subsequent object manipulations (read, write, etc.). During this resolution mecha-
nism, a DTE IJNIX kernel consults the runtime policy database to determine file
type attributes that are then used for DTE mediation. The runtime policy database
is tightly integrated into the name resolution mechanism and ensures that all file
objects have type attributes. Because the attributes are maintained implicitly in-
stead of being enumerated exhaustively, most configurations can be easily held in
kernel buffers; storage for the runtime policy database therefore typically requires
no additional VO and imposes a negligible performance overhead for security at-
tribute maintenance.

Two primary classes of system calls may cause changes to the runtime policy
database: file creations and file rename events. A file creation updates the runtime
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policy database if the type of the new file (constrained by the creating process's

domain) is different from the type inherited from the new file's location. Such a

file creation updates the runtime policy database by adding a new assign state-

ment to represent the exception. The frequency with which flle creations force

policy database updates is dependent on the security configuration; for some poli-

cies (like the example in section 3.1), there are no runtime policy database updates

because the file hierarchy is locked down using the -s assign directive. If many

exceptions designate the same type, they may be coalesced into a single recur-

sive assign statement, thus preserving the compactness of the runtime policy

database.

A rename event can be modeled as a link operation establishing the new path

name to an object followed by an unlink operation removing the original path

name. To maintain tranquility of type bindings, the runtime policy database inter-

cepts rename events and adds an assign Statement if necessary for the new path

name to preserve the flle's existing type. As with flle creations, rename events

only need to update the runtime policy if the type associated with the new path

name is different from the type associated with the old path name.

4. DTE Networking

Since UNIX systems are usually networked, DTE systems must work naturally

while communicating both with other DTE systems and with non-DTE systems.

In particular, multiple DTE systems must provide mechanisms allowing coor-

dinated protection of information among themselves, and DTE systems must

protect themselves from non-DTE systems. In addition to requiring homoge-

neous or compatible DTE policies, coordinated protection requires that policy

information regarding types of communicated objects and domains of commu-

nicating processes be transmitted reliably through the network subsystem. To

accomplish this, DTE adds two attributes to network communications carrying

user data: 1) the type of the data written by the sending process and 2) the do-

main of the process that sent the data, the source domain. A receiving process

can view the data's type, which the receiver must know to adequately plotect

the data, or possibly to protect itself from the data. Additionally, a receiver can

view the sender's domain; a DTE server that receives a request can therefore use

the client's domain to decide whether to perform the requested function [Sher-

man 19951.

To maintain compatibility with existing network protocols and applications,
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DTE attributes are carried as IP options,3 with no change to packet contents. DTE
mediates communications over standard datagram and stream-oriented services. In
each case, DTE imposes access control mediation both at send time and receive
time: to successfully send data of type t, a process's domain must permit write
access to t, and to successfully receive data of type t, a process's domain must
permit read access to t. For datagram protocols such as uDP, a single type labels
the contents of an entire packet. For stream protocols such as TCP, different por-
tions of a stream may have different types of data:, a sequence of contiguous bytes
having the same type is a substream.

These design choices give a high priority to compatibility and interoperabil-
ity. Our datagram approach is not unusual, and homogeneously typed datagrams
work well for existing applications since they are unaware of DTE and therefore
only generate one type of data. Our stream approach, however, is less typical. A
simpler approach would bind a security attribute to a stream socket and therefore
to all data communicated on it. Typical UNIX service interactions, however, make
this approach problematic. An important example is inetd, which receives socket
connections for services it spawns: inetd must be able to connect to a socket and
then hand the descriptor to a child process that may run in a different domain. The
use of substreams removes the need for inetd to run in an all-powerful domain.
Programs like telnet and rlogin provide other examples: if a user runs a program
that produces output of multiple types, a single connection can carq/ the output
back to the client in multiple substreams, but statically typed connections would
force dynamic creation of new TCP connections to send the data. While multiple
connections could be used to transmit multiple types of data, this would change
application-layer protocols (like rcmd) and prevent DTE network applications
from interoperating with their non-DTE peers.

In order for a DTE system to properly control network applications, all com-
munications must carry type and source domain attributes. At the same time, how-
ever, DTE applications must interoperate with applications running on non-DTE
systems that do not provide DTE attributes. To provide interoperability without
weakening DTE, DTE hosts associate a domain with every foreign non-DTE
host and mediate all network traffic with that host so that the effect of the medi-
ation is as though the host were actually running DTE and the process sending
(or receiving) from that host were running in the associated domain. The DTEL
inet-assign statement can associate a single domain with the "universe" of

3. For experimental purposes, we currently assume that network packets are not stolen or modified. We plan to
take advantage of known and emerging cryptographic techniques and protocols for communications authen-
tication [Kohl 1993], integrity, and confidentiality lloannidis 1994, National Bureau ofStandards 1977] as
appropriate.
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foreign non-DTE hosts, associate a different domain with each class A, B, or c
network, and finally associate specific domains with individual non-DTE hosts

that, for various reasons (such as quality of administration), are more or less trust-

worthy than other hosts on their LAN.
For example, the following inet-assign statements associate the f oreign-d

domain with all hosts not on a specific class C network. The domain tis-d is

associated with all hosts on a specific network, and the domain dte-dev-d is

associated with an individual host used for DTE development. Similar to the

approach taken with assign statements, inet-assign statements for individual

hosts override inet-assign statements for networks, which override the required

inet-assign statement for the 'ouniverse."

inet-assignforeign-d 0.0.0.0;
inet-assign tís-d 10.11 .L2.0;
inet-assign dte-dev-d 10.11 .I2.t3;

/* unknown hosts */
/* class C LAN */
/x individual host x/

This technique has performed well in our corporate LAN, allowing us to ap-

propriately "trust" specified non-DTE hosts. Although we are using source-address

"authentication" for compatibility at present, our plans include moving to strongef

authentication, such as is envisioned for IP6, as the overall network infrastructure

evolves.
Although our experience with DTE networking is still somewhat limited, we

have been able to run existing UNIX applications such as rsh, rlogin, telnet, ping'

sup, and mount in suitable DTE domains and we have encountered no "show stop-

pers." we have discovered, however, that although TCP/IP hosts should drop IP

options they don't recognize, that doesn't always happen and in particular, SunOS

4.1.1 on Sun 3 systems crashes when presented with an unrecognized option. As

a result, we have added features to our systems that prevent the sending of DTE

attributes to hosts that are not known to run DTE. We afe now formulating the

requirements of a DTE protocol that would maintain timely information on the

DTE status of a machine as well as provide DTE policy coordination functions

that ensure that different machines "meal" the same thing by DTE attributes they

exchange.

5. DTENFS

The ubiquitous use of NFS highlights the need for DTE to both support NFS on

DTE systems and also to interoperate with non-DTE systems that use NFS. An
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Figure 4. DTE NFS Clients.

integration of DTE and NFS for DTE-aware clients and servers is relatively sim-
ple and involves sending and receiving DTE attributes between DTE systems that
then use the attributes for mediation in the same way they use locally stored DTE
attributes. To make DTE useful in the short term, however, interoperability with
non-DTE NFS clients and non-DTE NFS servers may be even more important.

A significant benefit of implicit typing in this regard is that DTE client work-
stations locally associate types with all files, even files provided over NFS by file
servers that are not DTE-aware. This ability has allowed us to use DTE worksta-
tions to make selected portions of our corporate flle server available to selected
groups of users with a minimum of administrative effort. As electronic coûtmerce
increases the need for cooperation between organizations, we expect this scenario
to become more common. Figure 4 displays the concept. A guest user has an ac-
count only on a DTE system. This system mounts from an existing file server and
applies the type'þroprietary data" to some files on the imported file system and
the type "nonsensitive data" to the others. All guest user processes running on the
DTE system are restricted according to the local DTE policy to access only the
nonsensitive data.

The DTEL inet-assign statement allows a DTE system to refuse communi-
cation with selected non-DTE hosts and to prevent important types of data from
being exported to non-DTE hosts (regardless of which communication service is
used). If communication with a non-DTE NFS server is allowed, the client-side
DTEAtrFS subsystem associates types with imported files based on their path-
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names. A premise of our work is that access controls must be flexible: it is up to

the system administrator of a DTE system to determine whether a non-DTE host

should be trusted to properly maintain data of various types. Although all the data

received at the IP layer will be typed according to the DTE domain associated

with the non-DTE flle server, the DTE/|{FS subsystem on the client system resides

in the DTE LINIX kernel and is trusted to override the default communications

type with correct file types as specified in the system's DTEL specification.

Initially, we added DTE only to the NFS client side, as described above' We

are currently testing a DTE/I\FS servef that can serve clients on both DTE and

non-DTE systems. 
'When the client is on a DTE system, NFS requests are labeled

by the client system with the source domain of the requesting process o¡ under

some circumstances, a reserved domain that represents the client system's NFS

subsystem. When a reserved NFS subsystem domain is used, femote file access

is restricted to files accessible by the NFS subsystem domain, and the client DTE

system further mediates the requesting process's access to locally cached represen-

tations of files based on the requesting process's domain and the types of the files.

The DTEATFS server uses the source domain as a client credential to consult the

system's DTEL specification and determine whether the request is authorized at

the server. In addition, each IP packet that carries the contents of a file accessed

via DTE/Ì.{FS is labeled with the type associated with that file. A potential beneflt

of this approach is that both source domain and type attributes are readily visible

to routers and network firewalls and could allow future versions of such devices

to consult them when making flltering and routing decisions. An additional ben-

efit is that the NFS protocol need not be modifled. Although NFS client requests

sent by non-DTE systems lack source domain attributes, the DTE/I'{FS server's IP

subsystem attaches them (in accordance with the DTE system's DTEL specifica-

tion) before passing the requests to the DTE/I.{FS subsystem for mediation. From

the non-DTE client's point of view, the DTE/NFS server behaves like a non-DTE

server, except that access may be denied for some requests where, in the absence

of DTE, the request would have been granted.

The NFS protocol is designed so that NFS server systems may crash, reboot,

and resume NFS service without requiring clients to perform new lookup opera-

tions on files that were open at the time of the crash. Each NFS request contains

an NFS file handle that identifres the file by file numbeq which allows a typical

UNIX system to access the flle directly without performing a pathname trans-

lation. Unlike the permission bits and owner identiflers associated with a file,

however, the implicit DTE attributes are not stored within inodes but in a sepa-

rate attribute database organized by pathname instead of flle number. If a newly

rebooted DTE {FS flle server could not locate security attribute information

for an NFS request, it would have to refuse the request, resulting in a stale file

Lee Badger, Daniel F. Sterne, David L. Sherman, and Kenneth M. V/alker64



handle at the client application. To prevent this, the DTE/I\FS prototype recon-
structs pathnames based on inode numbers by maintaining a cache of parent inode
numbers for nondirectory files accessed via NFS, thereby permitting it to find file
attributes in the DTE attribute database.

on our DTE/I{FS prototype, the NFS daemon, like all other processes, runs in
its own domain and is constrained in accordance with the system's DTEL specifl-
cation. on most systems, this domain will likely be configured to give the daemon
the ability to access and export many types of information. Nevertheless, it is not
necessary to make all types accessible to it. If highly sensitive or critical types of
information are stored on a system, it may be desirable to prevent them from be-
ing exported. standard NFS provides features for limiting the exporting of files,
but these features are coarse-grained, dealing only with whole file systems. By
making certain types of files inaccessible to the NFS daemon, DTE provides a
strong additional mechanism that can be employed by administrators to prevent
individual files on arbitrary file systems from being exported.

Our experience with DTE/INFS servers is still very limited; however, our ini-
tial results are encouraging: NFS clients on DTE or non-DTE systems can be
granted fine-grained restricted access to NFS-exported file hierarchies without
change to applications or to non-DTE system configurations. The DTE prototype
system's security attribute management strategy requires implementation of a new
system cache and secondary storage to store the cache across system reboots. The
cache, however, requires little human administration and only a small amount of
additional vo that only occurs in the context of vo already required by NFS.

6. DTE UNIX Protoepe

To gain experience with DTE concepts, we have implemented a prototype DTE
UNIX system based on osF/1 MK4.0. Although our system is based on a Mach
microkernel, the DTE features are located in relatively high layers of the uNIx
server's architecture, require no knowledge of microkernel interfaces, and are
therefore reasonably portable to kernelized UNIX systems. we have also re-
cently ported the DTE prototype to run on TMach version 0.2 [Branstad l9g9],
a high-assurance trusted computing base designed to satisfy DoD security require-
ments as specified in the Trusted Computer System Evaluation Criteria [National
computer security center 19851. Even though rMach employs a TMach-specific
file system format, the integration required almost no change to the DTE imple-
mentation because the integration points between the UNIX server and TMach are
generally at low layers in the UNIX architecture, whereas DTE is mostly imple-
mented in the upper layers of the UNIX "kernel."
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Mach Kernel or TMach Kernel+Servers

Hardware
Figure 5. DTE System Architecture.

Figure 5 shows the prototype's architecture. To enhance portability, the ma-

jority of the DTE implementation is located in an isolated subsystem consisting

of 7,300 lines of commented C code and 3,600 lines of commented lex and

yacc code. Other UNIX kernel subsystems call into the DTE subsystem to re-

quest security services. This part of the integration consists of another 7,200

lines of code, bringing the total DTE integration to approximately 17,000 lines

ofkernel-resident code. The DTE prototype's kernel provides 20 new system calls

for DTE-aware applications to use for retrieving security attributes for display to

the user and for implementing security-relevant functions'

In addition to kernel changes, we have implemented a DTE version of the

login program that authenticates users for specific roles [Landwehr 1984; Bald-

win 1990; Thomsen 19901 and then confrnes user sessions to specific domains

using domain transitions authorized by the DTEL specification. To allow users

to view DTE attributes for processes and files, we have implemented DTE-aware

versions of ls and ps, and we have also added DTE flags and options to a number

of INIX utilities (mkdir, ln, cron, at, cp, rcp, rsh) that allow users to create ob-
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jects of specific types or to request jobs to run in specific domains. Additionally,
we have implemented a DTE-aware version of GNU Emacs 19.22 that displays
type attributes of file buffers and allows users to simultaneously view and manipu-
late labeled information in multiple windows.

As the prototype boots, it reads its DTEL specification and confines all pro-
cesses, regardless of UNIX root privileges, to specified domains. DTE is active
before single-user mode has been reached. According to its DTEL specification,
the prototype labels files, network packets, and processes; determines domain
interactions; and mediates process access requests. We have tested a number of
policies using the prototype, including a policy to partition the components of a
simulated command and control system, a policy to strengthen UNIX by confin-
ing UNIX root processes in 27 separate domains, and an enterprise data protection
policy (similar to that of figure 3). Additionally, we use DTE client workstations
to permit but safely limit access by "guest" users who are authorized to see some

but not all TIS sensitive data.

In addition to providing enhanced security through additional mediation of
UNIX abstractions, the DTE prototype's design and implementation have given
a high priority to maintaining operating system interoperability and binary appli-
cation compatibility. Three aspects of the DTE prototype are central to achieving
these goals: (1) preserving existing data formats by employing implicit security
attributes, (2) ensuring that implicit attributes are recoverable in the presence of
system shutdowns and power failures, and (3) adding DTE networking support
without change to existing protocols.

6.1. Mediation

The subjects of the DTE prototype are processes. The objects are files of any
LINX type (normal, directory, symbolic link, character and block special, FIFO,
TINIX socket), IP datagrams, TCP substreams, and IPC mechanisms such as

shared memory segments, semaphores, and message queues.4 In the case of
TCP substreams, a single substream may be implemented by a sequence of IP
datagrams; in this case, the system ensures that the DTE security attributes of the

substream and its constituent objects are identical.
For each access decision, the prototype looks up the domain of the requesting

subject in kernel memory and searches an implicit attribute database for the re-
quested access mode to the type or domain of the object or subject to be accessed.

4. The DTE prototype does not currently mediate shared memory segments, semaphores, or message queues, but
mediation of these abstractions would be straightforward.
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If a default output type is not specified for a domain using DTEL, the DTE pro-

totype requires operations creating new objects to specify the types ofthe new

objects explicitly using DTE system calls and denies fequests that do not; this

keeps type associations unambiguous. The prototype's mediation falls in seven

primary categories:

fite mediation Most access decisions are driven by open requests; after an

initial open, no further access decisions are required for individual read

or write operations. The DTE prototype supports the traditional rwx

LINIX access modes except that it does not overload the x bit for direc-

tory traversal. Instead, it provides a new mode, d, that grants directory

traversal. This allows rd access to be easily given to hierarchies of files

without granting execute permission. The prototype prevents modifica-

tion or relocation of entry point programs; this maintains validity of entry

point paths described in DTEL domain statements. Additionally, the DTE

prototype implements the -s strict DTEL option and denies any attempt

to create an object of a given type within a hierarchy strictly bound to

another tYPe.

message mediation Each message or substream sent is an object creation; the

default output type of the sending domain, or an explicitly provided type,

determines the type of the message or substream. A process is prohibited

from creating messages of types for which the process does not have w

access. At receive time, the domain of the receiving pfocess must have r
access to the type of the message or substream; access denial at receive

time results in discarded messages or inaccessible substream data that

must be flushed or handed off to another domain that can consume it.

Under some conditions, error messages are returned to the sender.

process mediation The DTE prototype mediates all signals as separate ac-

cess rights. Additionally, the prototype implements the "exec" and "auto"

DTEL access rights, which authorize subjects in specified domains to cre-

ate subjects in other specified domains, and prevents domain changes ex-

cept through execution of entry point programs.

descriptor revalidation During a domain transition, open file descriptors

passed through the exec operation are remediated in the context of the

new domain.

mount mediation The prototype does not currently mediate mount events.

When implemented, the mount mediation will restrict which device special

files can be mounted at which portions of the hierarchical frle space.
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device mediation The prototype currently mediates devices based on the types

of device special files. This strategy will be expanded to cover creation

of new device special files by adding mediation to the mknod system call

that forces all device special files for a device to be of the same type and

that restricts mknod system calls based on domain access rights to the

types of devices.

special system calls A number of I-INIX kernel extensions allow user pro-

cesses to set kernel paging areas or load new modules into running ker-

nels. The DTE prototype does not currently mediate these system calls.

The DTE domain transition mechanism provides a basis, however, for iso-

lation of special access rights for performing these operations in particular

domains that minimize the risk of abuse.

6.2. Implicit Attibutes

For entities that rnust be recreated at each system boot (such as process structures

or IP datagrams), the DTE prototype attaches security attributes explicitly to each

object. Compatibility and performance can be maintained with this strategy be-

cause modifications need not affect secondary memory data formats or require

additional VO.
Files, however, present a more difficult case both because security attributes

must be maintained on disk to survive system reboots and because files are usually

numerous. To address these issues, the prototype associates security attributes with
ûles "implicitly" based on their locations within directory hierarchies. For porta-

bility, most of the prototype's functions for file security attributes are implemented

at the Virtual File System (VFS) layer and build associations between vnodes

[McKusick 1995] and security attributes. Since all currently accessed tles are rep-

resented by vnodes, all files in use have associated security attributes. When the

prototype boots, it creates in kernel memory a tree of map nodes that describe

how security attributes are bound to the hierarchical file name space. Although our

current prototype simply keeps this tree entirely in memory, it can in principle be

paged to disk as necessary.

A sequence of map nodes proceeding from the root map node to a leaf map

node names an existing path in the hierarchical filesystem name space. Each map

node optionally associates one or more security attributes with the path compo-

nent associated with it. The prototype currently maintains two kinds of security

attributes bound to files: type names and domain entry points. To represent at-

tributes implicitly, a map node may also associate security attributes with files
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Figure 6. Map Nodes.

whose pathnames merely include the map node as a prefix. Such map nodes rep-

resent "implicit" associations. For each security attribute, a map node provides the

following options:

implicit at The attribute is bound to this path component. In the absence of
higher-priority map nodes that conflict with this map node, the attribute is

also bound to all pathnames having this path component as a preûx.

implicit under The attribute is not bound to this path component, but, in the

absence of conflicting higher priority map nodes, the attribute is bound to

all pathnames having this path component as a prefix.

explicit The attribute is bound to this pathname only.

Informally, the prototype resolves map node conflicts by giving priority to the

map node that represents a longer path, interpreting implicit under attributes to be

"longer" than implicit at attnbutes for the same path and always giving priority to

explicit attributes.
Each path referenced in a domain or assign statement potentially generates a

map node for every component of the path. For example, a path / a/b/ c given in
a DTEL statement generates three map nodes (the root map node is automatically
present). Map nodes are shared, howeve¡ so if a second DTEL statement specifies

/a/b/c/d, only one new map node is generated. DTEL provides flags to set the

initial options of map nodes: the DTEL assign statement, which associates types

with files, takes an -r option to designate implicit at aîd a -u option to designate

implicit under. DTEL domain statements automatically generate explicit associa-

tions for their entry point attributes. For example, the following DTEL statements

generate the map nodes displayed in flgure 6.
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assign root_t
assign -u unix_t
assign cri-tical-_t

/;
/;
/dt-policy;

domain foo-d = (/usr/bín,/J-ogin) t . . . i

That figure shows five map nodes, one for each unique component in the paths
hsr/hin/ Iogln and /dt-policy. Each map node records the name of its
path component and optionally records attribute associations (in figure 6, e for
explicit, afor implicit at, andu.for implicit under). Figure 6 shows that the root
map node is explicitly of type root-t and that all files under the root "inherit" the
type unix-t. This inherited type is overridden, however, for the file /dt_policy,
which has an explicit type attribute of critical-t. The domain foo_d has an en-
try point program, /usr/bjrr./Iogin, and that file therefore has an explicit domain
attribute and it also inherits the type unix_t.

Attributes represented by map nodes are related to files by association with
standard vnode structures that have been slightly extended to interact with the map
node tree. At system initialization, the root vnode is associated with the root map
node. Subsequently, all name resolution operations establish bindings so that ev-
ery vnode is related to a map node. In the case that a map node exists for a flle
represented by a vnode, a name resolution operation attaches the vnode directly
to the map node. If a map node does not exist, the name resolution mechanism
attaches the vnode to its parent vnode; since every resolution operation oper-
ates from a known absolute or relative path, every new attachment is relative to
a known vnode, and all vnodes are eventually connected to the map node tree
through a chain of parent vnode pointers. To maintain parent vnode pointers, the
DTE prototype references parent vnodes, resulting in a somewhat increased ker-
nel memory requirement for active vnodes. Figure 7 shows the vnode associations
that result from process access to two frles, /ttsr/george/papers,/usenix and
/usr/bín/ login. Because the login program's pathname is fully represented by
map nodes, vnodes for the path attach directly. For the path to George's USENIX
paper, the first two vnodes of the path connect directly to map nodes, and the rest
point to the last map node in the path. Both files have the type unix_t, which is
provided by the root map node.

By binding attribute values to vnode structures, the DTE prototype ensures
that attributes are always available before they are needed even though the at-
tributes may not be stored one-to-one on secondary storage. The DTE prototype
retrieves attribute values of files using a simple algorithm that follows vnode par-
ent pointers up until the first map node is reached and then optionally follows map
nodes until the "governing" map node is reached.
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Figure 7. Attribute Associations.

Efficiency is a primary concern for the DTE prototype. The overhead of as-

sociating new vnodes with appropriate map nodes during name resolution is

negligible, Iequiring a small and constant number of pointer manipulations- The

attribute retrieval operation is a more likely cause of performance degradation,

but we believe it is also small. In the DTE prototype, the UNIX kemel function

iaccess O (and a handful of similar functions) call DTE functions that retrieve

file security attributes. Most UNIX access control functions funnel down to the

iaccess o function, which is called with great frequency since every system call

requesting an operation on a pathname must call iaccess at least once for every

component of the path. In the worst case, each attribute retrieval could require a

search to the root map node. Given the modest depth of typical UNIX pathnames

and the in-memory status of the map node tree, however, this appears small rel-

ative to other overheads of UNIX kernels. At the cost of additional complexity,

however, various optimizations could be taken to short-circuit attribute retrieval

searches as required.

6.3. Recovery Mechanísms

Although useful security confrgurations can be constructed that "lock down" the

mappings between areas of the hierarchical filesystem name space and security
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attributes, resulting in a static tree of map nodes, a more common case in our ex-
perience is to allow the map node tree to evolve as files are moved and created to
reflect the needs of applications that use files. For example, an application might
create a ûle of type f oo-t in an area of the name space that inherits bar_t; such
an event would add a DTEL assign statement, with its map nodes, to the system
configuration. similarly, a renâme O operation may require that the map node
tree be edited so that the rename operation doesn't inadvertently change the type
of a file as a side effect. In general, the DTE prototype emulates the semantics of
one-to-one attribute storage even though the attributes are not in fact maintained in
that manner.

Given the criticality of accurate security attribute associations, dynamism in
the map node tree introduces the need to maintain up-to-date associations even in
the presence of system reboots or crashes. V/riting map nodes to secondary storage
poses an obvious risk to performance; the DTE prototype addresses this using a
combination of alternate snapshot flles and logging. Every thirty seconds, the map
nodes are written to disk.s Additionally, more timely information is kept in two
alternate log flles: at system reboot, the most recent snapshot and log file is read
to reconstruct the most recent valid state. The batched writes of the policy impose
little overhead since no program waits for the writes to complete. In contrast, the
log files require synchronous vo and must be updated as little as possible.

Two basic classes of operations affect the map node tree: create opera-
tions and rename operations. In each case, the DTE prototype incurs no ad-
ditional overhead if the operation does not produce an edit of the map node
tree. If the operation creates a new object (e.g., a new empty file at an un-
used pathname or a rename to an unused pathname), recovery is simple since
the attributes can be written first. Maintenance of DTE recovery information
in this case requires one synchronous write operation in addition to the two
synchronous write opelations performed by UNIX to create or rename a file.
If an operation overwrites an existing object, however, the use of implicit at-
tributes complicates the recovery strategy; because every file is always asso-
ciated with attributes inherited from the root directory neither order of opera-
tions:

1. replace a file first and then record the new attribute, or

2. record the new attribute ûrst and then replace the file,

prevents mislabeling if the system crashes between the two operations. To ad-
dress this, the DTE prototype records this information as a sequence of optimized

5. For large policies, the mechanism could be enhanced to periodically write out only the changed portion.
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transactions that makes sparing use of synchronous VO and, most importantly, that

never converts a memory speed operation to disk speed.

Both the create and rename VFS-layer operations can overwrite an existing

file as a side effect. In the case of create, the UNIX VFS layer knows if there

is an existing frle to overwrite and truncates it for reuse with a new identity. To

pfevent a crash from relabeling existing file contents, the DTE prototype adds an

fsync operation, ensuring that the f,le is empty, and then writes the new attribute

to the log file, resulting in a worst-case scenario of two additional synchronous UO

operations for flle creation.

A rename operation rename(foo, bar) is essentially:

unlink(bar);
link(foo, bar);
unlink(foo) ;

If bar exists, an update to a log file must be made conditional on successful

completion of the rename operation or the log file update may relabel the origi-

nal bar. The log file update cannot be written after the rename operation because

a system crash could prevent writing of the update. For this operation, the DTE

system writes an uncommitted transaction to the log file containing the frle number

of the file to be moved and, on the next write to the log flle, piggy-backs the com-

mit of the previous transaction. During system recovery the last transaction can be

verified through an examination of on-disk file numbers. This strategy holds the

recovery VO burden to at most one synchronous VO for every fename operation.

In general, the prototype design requires no additional disk access on a per-

system call basis. This approach promotes high performance since most DTE-

related overhead is in memory operations where data structures can be optimized.

For recovery however, it is necessary to add disk writes during file creates that

cause changes in the attribute association database. Depending on a system's con-

figuration, it could be that none, some, or all file creates would cause attribute

associations to change.

6.4. Network ImPlementation

In addition to associating attributes with files and processes and performing access

control over those entities, the DTE prototype also inserts DTE attributes into IP

datagrams and provides mediation of network messages. A fundamental goal of

DTE network mediation is to preserve interoperability with non-DTE systems: this

requires using existing IP, UDP, TCP, and NFS services and, as much as possible,

preserving application layer protocols such as rsh and rlogin. Although we expect
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that it will be useful to add DTE awareness to some additional network applica-
tions such as ftp and rdist, we believe that DTE systems must first be useful in
networks of non-DTE systems.

Our general scheme is to add DTE attributes in the IP option space; these at-
tributes are tokenized and currently consume 12 bytes of the 4O-byte IP option
space. DTE networking support at other layers is carried in these attributes at the
IP layer. Due to the use of pipes and sockets in UNIX, a UNIX process may cause
numerous IP datagrams to be generated and may not be aware of the network con-
sequences of its actions. For the DTE prototype, each message is generated in the
context of a process's domain and carries the domain's identity as the message's
"source domain." Additionally, each message carries a type attribute; typically,
each DTE domain has a default output type that labels messages generated from
normal UNIX system calls such as r¿riteO and sendO.

For each standard UNIX system call that can generate a message, the DTE
kernel retrieves the calling process's domain and default output type from the DTE
policy database generated using DTEL. Traditionally, UNIX systems employ a

data structure, called an mbuf, that allows buffers of data to be chained together
in a manner that facilitates the prepending and stripping of protocol headers in
different layers of a UNIX kernel's protocol stacks. The DTE prototype uses a
slightly extended form of the typical mbuf structure that provides header space

for storing source domain and type identifiers. Standard UNIX system calls that
send messages save these attributes in extended mbuf chains; at the bottom of the
protocol stack, these attributes are extracted from the chains and encoded as IP
options on a per-datagrarn basis. For received messages, the mechanism works
in reverse, extracting received IP options and encoding them in mbuf chains for
retrieval by receiving processes.

In addition to support for ordinary UNIX system calls, the DTE prototype
provides a number of analogous DTE-specific system calls that allow processes

to specify the type of data that they wish to send; DTE access control prevents
processes from generating data types unless they have appropriate authorizations
as specified in the DTEL speciflcation.

In general, the DTE prototype treats every IP datagram as homogeneously
typed; this simplifies access control over datagrams since a process using the raw
IP interface, for example, can be allowed or denied access to a datagram based on
its domain's access to the datagram's type. This strategy, although simple, does
allow several ambiguous situations: for example, if a protocol such as TCP piggy-
backs control information in packets that also cany user data, should those packets
have a protocol-specific type or a user type? Currently, our approach is to label
packets with user types when they contain any user data and with protocol-specific
types when they contain only protocol data. In the future, a natural extension to
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the strategy may include a secondary "subsystem" label for use by protocol sub-

systems that are trusted to accurately carry user data. To minimize security mech-

anism, however, we are deferring secondary packet labels until a deflnite need has

been demonstrated. In either case, the use of homogeneously typed datagrams sim-

plifles the implementation of TCP substreams since TCP substreams are always

made up of complete IP Packets.
UNIX system calls that write data onto a TCP connection enqueue onto a

single chain of mbufs associated with a TCP socket; the TCP sliding window pro-

cessing breaks the data stream into separate IP datagrams based on a variety of
criteria to optimize performance and guarantee that receipt of all the data is ac-

knowledged before it is forgotten on the sending side. On the sending side, the

DTE prototype implements TCP substreams by breaking the single mbuf chain

into multiple chains when necessary to ensure that all the data of each chain has

the same type attribute. The TCP sliding window processing has been modified

slightly to generate a new datagram at chain boundaries. On the receiving side,

this mechanism works in reverse to return substream type information that is then

used both to mediate receive operations by processes and to deliver type informa-

tion for use by DTE-aware processes.

A significant extension to the DTE prototype was required to implement

DTEA{FS servers. Essentially, NFS ûle handles specify inode numbers that have

no direct relation to the map nodes that implement implicit attributes for the pro-

totype. A means was therefore required for mapping from inode numbers to map

nodes. For directories accessed via NFS, the solution is simple since every direc-

tory contains a ". . " entry: uSing the '0. . " entries, it is pOSSible tO ¡econStruct the

portion of a pathname required to establish attribute values. The prototype cur-

rently carries out this reconstruction at every NFS file handle reception; however,

temporarily raising the reference counts of heavily used vnodes probably would

increase performance and prevent DTE overhead from being an NFS server bottle-

neck.
For frles, NFS flle handles alone do not provide a means of determining par-

ent directories without an exhaustive search of file system inodes. To avoid this,

the DTE prototype stores (flle-inode-number, parent-directory-inode-number)

pairs during NFS lookup operations in a cache. These entries provide a mecha-

nism to reach the first directory that then allows pathnames to be reconstructed as

necessary. To prevent the introduction of additional stale flle handles at client ap-

plications when NFS servers crash or are rebooted, the cache must be maintained

on secondary storage.6 For intentionat DTE/Ì.{FS server shutdowns, the secondary

6. The cunent DTE prototype does not write the cache to secondary storage'
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memory cache can be written out before shutdown. To reduce the likelihood of
stale file handles after DTE/I'{FS server crashes, the cache contents could be batch
written at timed intervals with a minimal impact on performance. At somewhat
greater cost, the secondary storage cache could be maintained during NFS lookup
operations at the expense of extra Vo operations for memory cache misses.

7. RelatedWork

The work most related to DTE and its LINIX implementation falls into two gen-
eral classes: access control systems and IINIX security mechanisms.

DTE is most closely related to mandatory access control techniques
lBell 1976; Boebert 1985; Biba t977;Lipner 1982; Clark 19871 and type-
enforcing systems [Boebert 1985; O'Brien 1991; Saydjari 1989; Sterne 1992;
'Wiseman 

19861. In general, DTE policies are a proper superset of the DoD lattice
model [Bell 1976] and its integrity variation lBiba 19771: DTE can be configured
to provide a lattice but can also enforce nonhierarchical security policies such as
assured pipelines [Boebert 1985] that drive information through policy-specified
pathways of arbitrary connectivity and complexity. DTE can also be configured to
provide integrity categories as in [Lipner 1982] and to support the transformation
procedures and constrained data items of the clarkÆvilson model [clark r9B7].

Type enforcement was first proposed in [Boebert 1985] for the secure Ada
Target, a system later renamed LocK [Saydjari 1989]. LocK provides a Trusted
Computing Base (TCB) on top of which a IINIX emulation layer, LOCKix
lo'Brien r99r], provides UNIX services. As a consequence, the type enforce-
ment mechanism controls tINx emulations instead of individual uNx applica-
tions and does not distinguish among multiple applications running on a single
UNIX emulation. This limitation also exists for a Mach-based LOCK derivative
[Fine 1993], which adds type enforcement to the Mach port, task, and virtual
memory abstractions but provides no type enforcement within the UNIX emula-
tion layer.

In [sterne 1992], type enforcement was added to Trusted XENIX as a TCB
subset. This system provides type enforcement at the UNIX system-call interface
and can individually control UNIX applications. The TCB subset architecture pro-
hibited change to low-level disk formats and mandated use of a separate runtime
database to manipulate such attributes. This strategy is a precursor of the DTE
runtime implicit type concept. That system also incorporated the notion of named
entry point programs that must be executed to enter a domain. Type enforcement
has also been integrated into at least one UNIX-based Internet flrewall product,
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the SCC Sidewinder system [Secure Computing Corporation 1994], but the au-

thors are not aware of any published technical details.

A number of UNIX security controls and tools have been developed. Access

Control Lists (ACLs) fFernandez 1988] provide greater flexibility in UNIX dis-

cretionary access controls, and user-mode capabilities lKlein 1985] also allow

flner-grained control over propagation of access rights, but both mechanisms are

discretionary in nature and provide little protection against elror-prone root pro-

grams. A variety of trusted UNIX systems have been implemented and evaluated

against the Trusted Computer System Evaluation Criteria lNationa] Computing

Security Center 19351. These systems typically provide MAC but lack the flexi-

bility of DTE. Additionally, tools such as COPS [Farmer 1990] check for system

misconfigurations but do not improve on the base UNIX security mechanisms

themselves.

The Trusted Systems Interoperability Group (TSIG) has developed Internet

draft standards for NFS and other protocols that support Multi-Level Secure

(MLS) networking. These standards communicate significant amounts of in-

formation to represent security labels on subjects and objects that may "floaf'

up dynamically and to represent process privileges that may be communicated

across networks. For DTE, all of the required security information is contained in

the relatively space-efficient type and domain identiters carried in the IP-layer

traffic, avoiding most changes to higher-layer protocols. An IPJayer standard

lKent 1991] currently exists for encoding military sensitivity labels in IP data-

grams. While not ideally suited, this standard could potentially be used to transmit

DTE attributes.

8. Open Issues and Plans

Our experience with the DTE prototype has uncovered or clarified several open

issues:

policy complexity Although useful DTEL policies can be simple, some de-

sirable policies appeaf to be complex. In particular, breaking root pro-

grams into as many small domains as possible holds promise for harden-

ing uNIX but also results in a complex policy that could be difficult to

evaluate or maintain. One possible strategy for ameliorating complexity

is to add a module construct and name scoping features to DTEL. Pol-

icy complexity resulting from standard system interactions could then be

reduced by decomposing the policy and encapsulating components with
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well-defined interfaces. It may also be possible to construct new policies
from older, reusable, building blocks.

policy coordination Networks of DTE systems will require techniques to
remotely administer and maintain the consistency of DTE policies on nu-
merous machines. Additionall¡ we expect that some systems will require
different policies. Techniques are required to evaluate the safety of net-
work compositions of heterogeneous policies and to safely administer
DTE policies remotely.

device management Some devices, such as disks, potentially contain mul-
tiple types of data. Other devices, such as bitmapped displays, can mix
data of different types. Attaching a single type to each device special
file provides some pragmatic protection but does not mediate access
to devices based on their actual contents. Additionally, access to some
devices, such as ttys, could be further restricted if the devices could be
temporarily bound to different types based on the domains of the access-
ing processes.

file descriptor inheritance Our strategy for remediating file descrip-
tors when they are passed via exec operations to new domains is
still evolving. For compatibility with TINIX applications, it might
be useful to mediate and minimally restrict the access modes of in-
herited ûle descriptors according to the access rights possessed by a
new domain, and then to restore them later if they are passed through
another domain transition to a more powerful domain. This may,
however, allow undesired interactions between domains based on
shared resources, such as seek pointers, that are associated with file
descriptors.

We are currently working on techniques to address these issues and are also
exploring new applications of DTE. The most immediate and important one is the
integration of DTE into Internet firewalls. We currently plan to integrate DTE into
firewalls in three phases:

DTE Firewalls An integration of DTE into an Internet firewall and selected
hosts. The goal of this integration will be to add defense-in-depth to the
firewall security perimeter. The DTE firewall will direct traffic from spec-
ified external hosts or of specified protocols only to flow to internal DTE
hosts that can confine any malicious effects. The primary goals will be to
strengthen Internet firewalls by controlling the UND( root privilege and
to allow more network services to be safely imported into a LAN than is
prudent without enhanced access controls.
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Distributed DTE Firewalls An integration of IP-layer encryption with the

DTE firewall. This phase will connect multþle DTE enclaves across the

Internet.

Domain and Ïlpe Authority Service A DNS-like network service that will
distribute digitally signed portions of DTEL policies. Communicating

DTE hosts will authenticate to this service and use its DTE policy infor-

mation as a basis for establishing appropriate inter-host trust relations and

also for agreement on how data of speciûc types should be protected by

communicating hosts.

This work will investigate how multiple hosts can exchange DTE information

to negotiate network DTE poticies, how DTE mechanisms can most effectiveþ

use encryption to protect DTE network attributes, how DTEL can be modularized

to reduce policy complexity, and how DTE policies can be dynamically and safely

extended or modified at runtime.

9. Conclusions

A central question in practical UNIX security is whether significant enhancements

can be added in a way that is understandable, effective, and unobtrusive. This is

a difficult question because applications and systems have evolved over time and

now interact in subtle ways: practical security enhancements must allow existing

programs to function properly while preventing unsafe interactions. DTE is an ac-

cess confrol mechanism that uses a specification language to add simplicity and

wes implicit typing to maintain compatibility and interoperability. This paper re-

ports on ideas underlying DTE and facilities it provides for adding greater security

to individual hosts, IP-based networking and NFS services, and on design consid-

erations of a DTE TINIX prototype. Our primary results are positive and, although

the DTE prototype is a research tool, we have used it internally to provide guest

users with safely restricted access to our corporate data.

In summary, DTE has provided a useful research platform for building a hard-

ened, compartmentalized UNIX system. In addition, DTE mechanisms appear

suitable for interoperating and enforcing policies within networks that include

some existing systems having no DTE controls. This capability is critical because

any enhanced protection system must interoperate with existing systems through

an extended transition phase as access controls are gradually adopted.
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