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ABSTRACT: Trends toward shared-memory program-
ming paradigms, large (64-bit) address spaces, and

memory-mapped files have led some to propose the

use of a single virtual-address space, shared by all
processes and processors. To simplify address-space

management, some have claimed that a 64-bit address

space is sufficiently large that there is no need to ever
re-use addresses. Unfortunately, there has been no data

to either support or refute these claims, or to aid in the

design of appropriate address-space management poli-
cies. In this paper, we present the results of extensive
kernel-level tracing of the workstations on our campus,

and discuss the implications for single-address-space

operating systems. V/e found that single-address-space

systems will probably not outgrow the available ad-

dress space, but only if reasonable space-allocation
policies are used, and only if the system can adapt as

larger address spaces become available.
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l. Introduction

Many researchers have proposed single-address-space operating systems. With
such systems, the entire memory hierarchy is mapped into a single large ad-

dress space, including files and processes, and often remote memories of other

machines. A good discussion of the advantages, disadvantages, and other issues

concerning such systems can be found in [Chase et al. 1994].

One of the major problems with single-address-space operating systems is

managing the address space. Once space has been allocated, it is often prefer-

able not to reallocate the same space for other purposes. Hence, over time, the

address space will eventually be consumed. Previous work has not studied the rate

at which this consumption takes place.

In this paper, we examine the issue of address-space consumption, based on

traces of Ultrix-based workstations running computer-science, numerical-analysis,

and server workloads. Though we recognize that applications under a single-

address-space operating system would behave somewhat differently, we believe

that the data gathered from these workloads lays a basic foundation for under-

standing consumption rates.

In the next section we examine some of the previous work in single-address-

space operating systems, focusing on their assumptions of address-space usage.

In Section 3, we discuss our trace collection and the analysis of current usage

patterns. In Section 4, we show how we used this data to predict the lifetime of
single-address-space operating systems. Finally, in Section 5, we summarize.

2. Background

The MONADS-PC project lBroessler et al. 1987, Rosenberg et al. 1992, Rosen-

berg 19921was one of the first systems to place all storage (all processes and all

files) in a single, distributed, virtual-address space. They use custom hardware that

partitions the bits of an address into two frelds: a 32-bit address-space number and

a28-bit offset. The address-space numbers are never re-used. A newer version of
the system, MONADS-MM lKoch & Rosenberg 1990], uses 128-bit addresses,
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extending the address-space numbers to 96 bits and the offsets to 32 bits. The
MONADS project does not report on any experience with a long-running system
and its address-space consumption.

Hemlock lGarrett et al. 1992] proposes a single 64-bit address space. Persis-

tent and shared data are allocated a non-reusable segment ofthe address space.

Files are mapped into contiguous regions in the address space, requiring them to
allocate a large address range (4 GB) for each file to leave room for potential ex-
pansion. This fragmentation may limit the effective size of their (64-bit) address

space. Another characteristic of their model is that they "reserve a 32-bit portion
of the 64-bit virtual address space for private code and data." This exception from
the otherwise single address space simplifies some relocation issues and provides

a limited form of re-use. Hemlock dynamically links code at run time to allow for
different instances of global data.

Opal [Chase et al. I9941uses other techniques to avoid Hernlock's o'private"

32-bit subspace and dynamic linking. For example, all global variables are ref-
erenced as an offset from a base register, allowing separate storage for each

instance of the program (this technique is also used in the Macintosh operating
system [Wakerly 1989]). They concede that conserving and re-using address space

is probably necessary.

Bartoli et al. point out that that "if ten machines create objects at a, rate of ten
gigabytes a minute, the [64-bit] address space will last 300 yearso' [Bartoli et al.
19931. Hence, a collection of 200 machines would only last 15 years, and larger
collections would likely be out of the question.

Patterson and Hennessy claim that memory requirements for a typical program
have grown by a factor of 1.5 to 2 every year, consuming l/2-I address bits per
year [Patterson & Hennessy 1990]. At this rate, an expansion from32 bits to 64

bits would only last 32-64 years for traditional operating systems, and a single-
address-space operating system would run out sooner.

Though most researchers recognize that even a 64-bit address space presents

limits for a single-address-space operating system, there is not any real under-
standing of the rate of address-space consumption, and thus some data is needed.

This problem was the motivation for our work.

3. Current Usage

To provide a basis for our analysis of single-address-space systems, we first mea-

sured address-space usage in current operating systems. Our goals were to deter-
mine the rate that address space was used in our current operating systems, and

to collect traces to use in trace-driven simulations of future address-management

The Expected Lifetime of Single-Address-Space Operating Systems 157



policies. For two servers and two workstation clusters on campus, we traced the

events that may consume address space in a single-address-space system, record-

ing every system call that could create or change the size of files, shared-memory

segments, process data segments, and process stack segments.

The data we collected differs from most previous studies in that it mea-

sures virtual rather than physical resources. We did not take into account the

text-segment size, assuming that it would be allocated at compile time.l Table 1

summarizes the ffaces we collected.

To collect this data, we modified the DEC Ultrix 4.3 kerrrel2 to generate a

trace record for all relevant activities. In particular, we recorded every exec, fork,

exit, sbrk, stack increase, shared-memory creation, shared-memory deallocation,

unlink, open (for write only), close, truncation, and write.

Our method was modeled after the Ultrix error-logging facility. The kernel

stored trace records in an internal 20 KB buffer, which was accessible through

a new device driver that provided a file-like interface to the buffer. A user-level

trace daemon opened the device, and issued large (20 KB) read requests. When

the internal buffer contained sufficient data (15 KB), the kernel triggered the de-

vice driver, which then copied the data to the trace daemon's buffer, and woke the

trace daemon. The kernel buffer was then available for new data, while the trace

daemon wrote its buffer to a fface file. The activity of the trace daemon, and thus

of the trace files, was explicitly excluded from the trace by the kernel. This buffer-

ing strategy decoupled trace generation from disk writes so that no activity was

ever significantly delayed to write trace records to disk, and so that the overhead

was amortized across large groups of frace records. While it is not a new tech-

nique, we highly recommend this simple, unobtrusive, portable mechanism for
other trace-collection efforts.

To measure the performance overhead of our tracing activity, we ran 25 trials

of the Andrew benchmark [Satyanarayanan 1989] on the standard Ultrix 4.3 kernel

and on our instrumented kernel. The Andrew benchmark extensively uses most of
the system calls we modified for tracing, by creating, searching, and deleting files,

and compiling programs. We ran 25 trials with the standard kernel and with the

tracing kernel. We discarded the first trial in each case, due to a cold file cache.

An unpaired t-test [Jain 1991] showed the difference to be insignificant atthe 99Vo

confidence level, implying that our tracing apparently had no significant effect on

performance. This result matches our qualitative experience (no users reported any

perceived difference).

1. With dynamic linking, as in Hemlock, the addresses allocated for the text segment could likely be re-used.

2. DEC and Ultrix are trademarks of Digital Equipment Corporation. Ultrix 4.3 is a variant of Unix 4.2BSD.

Unix is a trademark of )lOpen.
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Group Days Records Lost records Processes Lost processes

Server 1 23.8 36895501 18564 (0.05Vo) 1640775 930 (0.06vo)

Server 2 25.3 6595110 6L709 (0.94Vo) t14435 99 (0.097o)

22.9

22.9

22.9

22.9

22.9

Cluster I 23.0

22.9

22.9

23.0

22.1

23.0

22.9

915718

3667000

378430

3293680

4r7550
884393

1402850

1343890

849289

601798
1850030

605955

614 (0.077o)

6 (0.00Vo)

1409 (0.377o)

1935t (0.597o)

26 (0.0IVo)

2(0.OOVo)

132692 (9.467o)

31,80 (0.24Vo)

5995 (0.7l%o)

2100 (0.35Vo)

0 (0.O0Vo)

88 (0.O2Vo)

39041 0 (0.00Vo)

40110 0 (0.007o)

33707 2 (0.0lVo)
1.22402 92 (0.08Vo)

45423 3 (0.0l%o)

49144 0 (0.007o)

51669 0 (0.007o)

61480 0 (0.007o)

54974 0 (0.007o)

49277 lI0 (0.22Vo)

190958 0 (0.00%)

42666 0 (0.00%)

Total 1.621.0583 165463 (I.Ol7o) 780851 331(0.04Vo)

29.4

29.4

Cluster 2 29.4

29.4

175785 (I.80Vo)

1.61.44 (1..49Vo)

6051(0.99vo)
5458 (1..12Vo)

405368 tII (0.03Vo)

49859 78 (0.16%o)

48196 58 (0.l2%o)

42920 57 (0.l3%o)

9792880
1082960

610202
486763

Total 11972805 203438 (l.67%o) 546343 304 (0.06Vo)

Table 1. Summary of the traces collected. Server 1 was used

as a general-purpose unix compute server by many peo-

ple on campus. Server 2 was the primary file, mail, and ftp
server in our computer-science department. Cluster 1 included
general-use workstations in the computer-science department,

most located in faculty off,ces. Cluster 2 contained worksta-

tions used primarily by a compute-intensive signal-processing

research group. All workstations were DECstation 5000s run-
ning Ultrix 4.3. A small ftaction of records were lost in the

collection process, accounting for a generally even smaller

fraction of processes not being accounted for (see Section 3

for details). These data were collected in fall 1993.
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After collection, the raw trace files were post-processed to clean up the

data. In particular, the raw trace files were missing a small percentage of the

trace records, as indicated by record-sequence numbers. This loss was caused

by the trace buffer occasionally filling up before the trace daemon could read

it, or, in one case, the trace disk running out of space. In most cases, the effect

of the missing records was simulated, the data being inferred from subsequent

events. For example, a missing process-fork record was inferred from a subse-

quent process-exec or process-exit record. Only a fraction of a percent ofpro-
cesses were missed entirely due to the missing records. V/hen a large number

of records were lost, the usage that they would have reflected was not recorded.

As shown in Table 2, trace data generation was very bursty, suggesting that

alarger collection buffer may have been preferable. Fortunately, fewer than

two percent of the records were missing from any trace group, with less than

a tenth of a percent of processes unaccounted for, indicating that the effect on

the usage rates should be quite small, most likely underestimating usage by less

than I7o.

3.1. Results

In Figure 1, we show the raw amount of address space allocated (in units of 4 KB

pages) over time, for each of the four trace groups defined in Table 1. This figure

is based on a running sum of the size of private-data segments, stack segments,

shared-data segments, and file creations or extensions. Clearly, most of the us-

age was from data segments, with stack segments second. Shared data was rarely

used on our systems (only by the X-windows server, apparently to share the frame

buffer with the device driver), and is not shown in the figure. Daily and weekly

rhythms are clearly visible. Server 1, heavily used for timesharing, used over

ten times as much space. Cluster 2, used by a signal-processing research group,

occasionally saw large bursts of activity caused by applications with large data

segments.

To discover the nature of the significant address-space users, we compiled a

list of the top programs by address-space allocated. Most of the big users were not

huge user applications, but instead common programs like shells, which were run

often for scripts, progfams run nightly for accounting and compression, pieces

of the C compiler, and periodic background processes. Only two programs in

the top 40 (mmL a signal-processing application, and i'p, an image-processing

application), were user-written applications; all of the others were common ap-

plications used by many users. Only one (ip) could be called alnge application.
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bytes per second

Group mean 95th max
records per second

mean 95th max

Server I 675 2265 87619 17.9 56 3122

Server 2 ll5 630 60968 3.0 13 2159

Cluster 1

r470
701.

513

2065

755
803

3295
1943

3035

385

t2l7
r065

19 0 41311

79 520 19628
8 0 14364

65 l7t 58408

10 0 32398
18 0 22484
24 28 92524

27 0 54580

r7 0 85156

14 0 11005

40 115 34592
t2 0 45194

0.5

1.9

0.2
1.7

0.2

0.4

0.7

0.7

0.4

0.3

0.9

0.3

0
11

0
4
0

0
I
0

0

0
aJ

0

All 28 40 92524 0.7 I 3295

156

t6
Cluster 2 l0

8

3.8 35 2385
0.4 0 1782

0.2 0 404

0.2 0 757

1470

0

0

0

66956
50096
lt312
21196

48 0 66956 1.2 0 2385

Table 2. Amount of trace data collected per second in bytes

and records. The mean, 95th percentile, and maximum values

are listed for each machine. The relatively low 95th per-

centiles indicate that trace data generation was very bursty.

Figures are listed for each machine, as well as the overall
figure for each cluster.

These data make it clear that policies that statically allocate a large region to every
process would waste a lot of virtual-address space on many small but common

applications.

In determining the amount of address space consumed by a process, we ig-
nored the address space consumed by an exec call, assuming that the process

could overwrite the previous data and stack segments. We only recorded address-

All
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address-space usage for all *oräon.
in each trace group, separated by category of memory usage.

Curves for Cluster 1 and Cluster 2 are scaled down by the

number of machines in each cluster, for easier comparison.

Shared Memory, if plotted, would be indistinguishable from

zero. n-axís tic-marks represent midnight before the given

day of the week.

space consumption if the new program had a larger data or stack segment than the

old program. This decision is discussed further in [Kotz & Crow 19931.

4. Single-address-sPace SYstems

To be able to predict the tifetime of single-address-space systems, we had to

consider more than just the current usage rate. First, we considered some space-

allocation policies that might be used in a single-address-space system, to add the
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cost of fragmentation to the usage rate. Then we considered appropriate methods
to extrapolate the current usage rate into the future. V/e begin by describing our
methods.

4.1. Methods

4. l. l. Allocation Policies

Clearly, systems that manage a single virtual-address space by allocating virtual
addresses to processes and ûles without ever reclaiming the addresses for re-

use will eventually run out of the finite address space. Allocation policies with
significant fragmentation would shorten the expected lifetime, and allocation
policies that allow some re-use would extend the expected lifetime. We used

trace-driven simulations to measure the net rate of address-space usage under a

variety of likely allocation policies. Each trace event allocates or extends a region
of virtual-address space, in multiples of 4 KB pages, called a segment.3 We were
concerned with the internal fragmentation caused by allocating too many pages to
a segment, but ignored the small internal fragmentation in the last 4 KB page of a
segment.

Base allocation. For each processor in the distributed system, we allocated

a generous 32-bit (4 GB) subspace to the kernel and its data structures.

We also allocate 4 GB for every machine's initial collection of ûles, as

a conservative estimate of what each new machine would bring to the

address space. Note that this 8 GB was counted only once per machine.

Process allocation. Processes allocated four types of virtual-memory seg-

ments: text (code), shared data, private data (heap), and the stack. We

assumed that the text segment did not require the allocation of new vir-
tual memory since it was either allocated at compile time or was able

to be re-used (as in Hemlock). Shared libraries, though not available
on the systems we traced, would be ffeated the same as text segments.

We assumed that shared-data segments would never be re-used,

but could be allocated with the exact number of pages necessary. The

actual policy choice made essentially no difference in our simula-

tions, because our trace data contained only a tiny amount of shared

We assume a flat (not segmented) address space. We use the word "segment," in the tradition of names like
"text segment" and "stack segment," to mean a logical chunk of virtual address space.
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data. In a single-address-space operating system, shared-data segments

could be managed in much the same manner as private-data segments.

Private-data and stack segments have traditionally been extendible (to

a limit), and thus an allocation policy in a single-address-space system

may need to allocate more than the initial request to account for growth.

Overestimates lead to fragmentation losses (virtual addresses allocated

but never used). We examined several alternative policies, composed from

two orthogonal characteristics. The first characteristic contrasted exact-

size allocation, where each segment was allocated exactly the maximum

number of pages used by that segment in the trace, and fixed-size alloca-

tion, where each process was allocated a 64 MB data segment and a 2 MB

stack segment.4 The exact polícy could be approximated with reasonable

user-supplied stack sizes and non-contiguous heaps. The second charac-

teristic contrasted no ne-use, where no segment was ever re-used, with

re-use, where all freed private-data and stack segments were re-used for
subsequent private-data or stack segments. Note that, of the four possible

combinations, the two re-use policies are similar, in that neither causes

any space to be lost from external or internal fragmentation over the long

term. (Note that the 32-bit subspace of Hemlock [Garrett et al. 1992] is

also similar to the fixed re-use policy.) Thus, we measured only re'use,

exact no-reuse, and fixed no-reuse.

File allocation. Though Figure 1 implies that file data were insignifi-

cant, it does not account for fragmentation caused by address-space

allocation policies in a single-address-space system. We consid-

ered several policies to determine their effect on fragmentation.

A file is traditionally an extendible a:ray of bytes. Newly created

files can grow from an initial size ofzero, so in a single-address-space

system, a new file must be allocated space with room to grow. These "file
segments" can never be re-used or moved, because a pointer into a deleted

file's segment may be stored in another file, or because the file may be

restored from a backup tape. With this limitation in mind, we considered

several policies (note that a higher-level interface could provide a con-

ventional read/write file abstraction on top of any of these file-system

policies):

4. These sizes are the default limits for these segments under Ultrix. Different sizes would not alter the qualita-

tive results observed.
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exacû Each file was allocated exactly as much space as its own lifetime-
maximum size (in pages). This unrealistic policy was useful for com-
parison.

fixed: A fixed 4 GB segment was allocated for each file when it was cre-
ated (as in Hemlock [Garrett et al. 1992]). Any extraneous space was
never recovered.

chunked: Growing files were allocated virtual-address space in chunks,
beginning with a one-page chunk for a new file. Once the latest chunk
was full, a new chunk of twice the size was allocated. When the file
was closed, any unused pages at the end of the last chunk were re-
served for future growth. This reservation strategy limited the number
of chunks, and hence the amount of metadata needed to represent a file,
by doubling the size of each chunk as the file grew, but did cause some
fragmentation.

Distributed allocation. When a single address space spans multþle machines
there must be a coordinated mechanism for allocating addresses. The dy-
namic allocation of space by a centralized allocation server is clearly in-
adequate, for both performance and reliability reasons. The other extreme,
a static division of the entire address space among all machines, does not
allow the addition of new machines to the system, or for any one machine
to allocate more than its original allotment. A compromise policy seems

feasible, in which a cenftalized (or perhaps hierarchical) allocation sys-
tem allocates medium-sized chunks of address space to machines, from
which the machines allocate space for individual requests. When the cur-
rent chunk is consumed, another chunk is requested. Careful selection of
the chunk size would limit fragmentation. If, for example, every machine
requested as much space as it might need for one week, the centralized
service would not be overly busy, and the resulting fragmentation would
reduce the overall lifetime of the system by only a week or two.

To compute the current rates, we played back our fface data through a
simulator that kept track of all allocation. We used a different version of
the simulator for each combination of policies.

4.1.2. Extrapolating to the Future

Any attempt to extrapolate computing trends by more than a few years is nat-
urally speculative. Previous speculations have been crude at best: most of the
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back-of-the-envelope calculations in Section 2 extrapolate address-space usage by

assuming that the yearly address-consumption rate remains constant. A constant

rate seems unlikely, given continuing increases in available technology (faster

CPUs, larger primary and secondary memory), sophistication of software, usage of
computers, and number of computers. A simple linear exffapolation based on the

current usage rate would overestimate the lifetime of single-address-space systems.

On the other hand, it is not clear that we could extrapolate based on the as-

sumption that usage increases directly in proportion to the technology. We found

that the address-space usage was not correlated with CPU usage, so a doubling of
CPU speed (as happens every few years) does not imply a doubling of address-

consumption rate on a per-process basis. Of course, a faster CPU presumably

would allow more processes to run in the same time, increasing consumption,

but our data cannot say by how much. Acceleration in the rate of address-space

consumption is likely to depend significantly on changing user habits (for exam-

ple, the advent of multimedia applications may encourage larger processes and

larger files). This phenomenon was also noticed in a retrospective study of file-

system throughput requirements [Baker et al. 1991]: "The net result is an increase

in computing power per user by a factor of 200 to 500, but the throughput require-

ments only increased by about a factor of 20 to 30. . . . Users seem to have used

their additional computing resources to decrease the response time to access data

more than they have used it to increase the overall amount of data that they use."

These uncertainties make it impossible to extrapolate with accuracy, but we can

nevertheless examine a rafige of simple acceleration models that bound the likely
possibilities.

Disks have been doubling in capacity every three years, and DRAMs have

been quadrupling in capacity every three years, while per-process (physical) mem-

ory usage doubles about every one to two years lPatterson & Hennessy 1990]. It
seems reasonable to expect the rate of address-space consumption to grow expo-

nentially as well, though perhaps at a different rate. Suppose a is the acceleration

factor per year; for example , o, : I models linear growth, and a : 2 models an

exponential growth exceeding even the growth rate of disk capacity (a : 1.26)

or DRAM capacity (ø : 1.59). If r is the current rate of address-space consump-

tion (in bytes per year per machine), and n is the number of machines, then the

number of bytes consumed in year y (year 0 being the first year) is

u(A): nraa (1)

and the total address-space usage after year A (i.e., after g * 1 years) is

a

T(ù:D"Q)
i:0
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v: nrDai' (3)
i.:0

_{"r*# iralt (o)
ln A 1f a:I

'We 
extend this model by assuming that the number of machines, n, is not

constant but rather a function of y. Here, a linear function seems reasonable. For
simplicity we choose n(A) : my, i.e., there are zn machines added each year. We

can further extend this model by adding in a k-byte allocation for each machine's
kernel and initial file set. This extension adds km to u(ù.

u(a): lcm -f myraa
a

T(ù : I "(¿ii,:0
g

: lema + mr\ta¿
i.:0

: {r*, +*, ø-@tuFtu a'+ | 
(s)

Itt*a+mru@p a:I
In the next section we compare equation 8, for a variety of parameters, to

the available address space. It is reasonable to assume that the size of the address

space will also increase with time. Siewiorek et al. noticed that available virtual
address space has grown by about one bit per year [Siewiorek et al. 1982], but
their conclusions are based on old data. In Figure 2, we plot the virtual-address-
bit count of microprocessor chips against the first year of introduction, for those

chips that set a new maximum virtual address space among commercial, general-
pupose microprocessors. We also plot two possible growth curves: the original
from [Siewiorek et al.1982] (one bit per year), and a new linear regression fit
(2.676 bits per year, with correlation coefficient 0.9824):

address bits(year) :2.676(year - 1967) - 2.048

Address bits generally become available in increments, every few years, rather
than continuously. So, for increments of b bits,

available address bits(year) : u L3g*qll{ryÐl

This is the formula we use in Section 4.2.2below.

(5)

(6)

(7)
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Virtual-address bits of leading microprcæssofs

't965 1970 1975 1980 1985 f990 1995 2000

Figure 2.The number of address bits supported by various

CPUs, and two curves fit to the data. The points represent the

Intel 4004 (12 bits), Intel 8008 (14 bits), Intel 8080 (16 bits)'

Intel 8086 (20 bits), Motorola 68000 (32 bits), Intel 80386

(48 bits), and MIPS R-4000 and HP 9000/700 (64 bits). The

data come from [Siewiorek et al. 1982, page 5], [Tanenbaum

19901, and [Glass I99Ll.

4.2. Results

4.2. l. Allocation Policies

Figure 3 shows the cumulative address space consumed by hypothetical single-

address-space operating systems operating under each of the policies described

above (except the "fixed" policies, which used orders of magnitude more space,

and hence are not shown), for each tracing group. Clearly, those that re-use data

segments consume address space much more slowly. Also' the "chunked" file

policy is remarkably close to the (unattainable) "exact" ûle policy'

To understand the burstiness of address-space usage, we computed each pol-

icy's usage for each five-minute interval on each machine. Figure 4 shows the

distribution of this "instantaneous" usage across all 5-minute intervals on all

workstations in each trace group, for each policy, on a logarithmic scale. Sev-

eral interesting results appear. First, the "re-use" policies reduce the consumption

by an order of magnitude or more. Second, the "chunked" file policy is not much

worse than the (unattainable) o'exact" policy. Third, in the clusters, the machines

were frequently idle, as implied by the 69-84Vo of intervals where the reuse poli-

cies consumed at most one Page.
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Figure 3. Cumulative address space consumed under different
management policies, for each tracing group, over the interval
traced. Curves for Cluster I and Cluster 2 are scaled down
by the number of machines in each cluster, for easier com-

parison. z-axis tic-marks represent midnight before the given

day of the week. The "fixed" file and process policies were so

much worse that they are not shown (see Table 3).

Based on these results, we estimate the yearly rate of address-space consump-

tion for each policy, given the current workload. Table 3 shows two rates for each

tracing group, and for each policy: the first is the mean consumption rate (repre-

senting the situation where some machines are idle some of the time, as they were

in our frace) computed by a linear exfrapolation of the observed rates, and the

second is the 95th percentile consumption rate (representing the situation where

all machines are heavily used) taken from the distributions in Figure 4. The ta-

ble makes it clear that both the "fixed" process policy and the 'Îxed" file policy
were, as expected, consuming space extremely fast. The table reconfirms that re-

using private-data and stack segments cut about one to one and a half orders of

T FSSMTWT FS SMTWT FSSMfWT FS
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distribution of "instantaneous" address-usage rates across all
5-minute intervals on all workstations in each trace group,
for each policy, for each trace group. Note the logarithmic
scale. The mean rates are indicated by the box markers.
Mean values significantly larger than median values indi-
cate many intervals where little or no address space was

consumed. Though both the "chunked" and "exact" file poli-
cies were plotted for the "without re-use (exact)" process

policy, there is no significant difference. The "fixed" file and
process policies were so much worse that they are not shown
(see Table 3).

magnitude off the consumption rate, and that there was little difference between
the "exact" and "chunked" file policies. Also, the 95th percentile rate was about
one-half order of magnitude larger than the mean rate, and Server 1 was about
an order of magnitude larger than the other machines, due to its heavy multi-user
load.
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Process

Policy
File
Policy

bytes/yearlmachine

Mean 95th VoiIe

exact chunked Sl
no re-use 52

c1
C2

8.2 x lDt¿ 1.7 x 10rr

5.9 x loll 1.8 x 1012

4.5 x 1011 1.0 x 1012

4.4 x lorl 8.3 x 1011

exact
no re-use

51 8.1 x 10rz 1.6 x 10tj
52 5.8 x 1011 1.7 x 1012

cl 4.6 x 1011 1.0 x 1012

c2 4.3 x 1011 7.6 x 1.011

chunked 51 3.8 x 10Ir 1.1 x 10rz

s2 3.7 x 1o1o 1.1 x loll
cl 1.8 x 1o1o 5.3 x 1o1o

C2 1.2 x roro 3.7 x 1010

reuse exact 51 2.4 x L}tr 6.7 x 10rr

52 2.4 x loro 6.1 x 1o1o

cl 1.1 x 1o1o 3.6 x loro
C2 6.1 x 10oe 2.3 x toro

fixed sl 7.7 x 1016 1.8 x 10r/
s2 6.7 x lols 1.9 x 1016

Cl 1.5 x lols 5.9 x 1015

c2 8.9 x lo1a 4.1 x 101s

ûxed exact

no re-use

sl 1.7 x 1015 3.3 x 1015

52 1.1 x lola 3.1 x lola
cl 7.5 x lo13 1.5 x lola
C2 r.2 x r}ra 1.1 x 10la

Table 3. Address-space consumption rate of various policies,

given the current workload, in bytes per year per machine.

We include both the mean rate, across all times on all ma-

chines in each group, and the 95th percentile rate, across all
S-minute intervals on all machines in each group. The other

"fixed"-policy combinations, not shown, had worse usage

than anything shown, and were not considered further.
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4.2.2. Extrapolating to the Future

We can compare the growth of available address space with the consumption of a
single-address-space system that began in1994. It is difflcult to choose an appro-
priate value for parameters ¿ and m,but by examining a wide range of values we

can bound the likely behavior of future systems. For the acceleration a, we chose

1, 1.1, 1,2, 1.6,2, and 3, i.e., ranging from linear growth (ø : 1) to tripling the

rate every year (a: 3). (To put these rates in perspective, recall that DRAM ca-

pacity grows at a, : 1.59.) V/e chose rn : 100 as the growth rate for the machine
population, although we show below that there was little difference when varying
rn from 1 to 10000. From Table 3, we selected a range ofrepresentative rates r (in
bytes/yearlmachine), as follows:

Clusters roughly representing
oofixed" file policy
oofixed" process policy
"exact, no fe-use" process policy
"exact, no re-use" process policy
"rg-use" process policy
"rg-use" process policy

Note that these rates are dependent on the nature of our workload-
workstations in a computer science department. We speculate that the rate of a
different workload, such as scientific computing, object-oriented databases, or
world-wide-web servers, may differ by perhaps 2-3 orders of magnitude, and have

a similar growth rate. If so, our conclusions would be qualitatively similar for
these other workloads.

Figures 5-8 display the models, using a logarithmic scale to compare address

bits rather than address-space size. Note that we plot the available address space

as growing in increments of 1, 32, or 64 bits (see Section 4.L2).
Figure 5 examines the simple case of o, : I, where the yearly consumption

remains constant at current levels. We see fhat a 64-bit address space is sufficient
(that is, the "address bits needed" curve remains below the "address bits available"
curve) only if the "fixed" file policy was avoided, or if a 96-bit address space were

available soon. If the current consumption rate, r, acceletated (Figures 6-7) or if
the number of machines grew especially fast (Figure 8), it would be even more

important to avoid "fixed" policies or to migrate to a 96-bit address space soon.

Although the acceleration factor ¿ of course has the most profound effect on

address consumption, in the long term address-space growth should outpace even

o, : 2, and in the short term reasonable allocation policies can keep the consump-

tion rate low enough to last until the available address-space doubles agunto I28

1016 ail
1014 all
1013 Server I
l0r2 others
1011 Server I
10lo others
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Figure 9. Comparison of various acceleration factors (ø),

showing the year in which a 64-bit address space will be

completely consumed based on the initial rute (r). The solid

curve indicates the ¿ value used in the other graphs. V/e

assume a 1994 start, and add m: 100 machines per year.

bits. Nevertheless, an intermediate jump to 96 bits would accommodate the most

aggressive growth trends.

In short, Figures 5-8 tel us that it is possible to build a long-lived single-

address-space system without complex space-allocation policies. Figure 9 presents

the lifetime of a 64-bit address space for various a and r.It seems necessary only
to re-use data and stack segments, and to use "chunked" file allocation, for a sys-

tem to last more than 10 years. To accommodate maximum growth, however, the

system should be able to adapt to larger addresses as they became available.

5. Summary

We traced several campus workstation clusters to gain an understanding of the

current rate of address-space consumption, and the behavior of several likely poli-
cies under the current workload. Most of the current usage is from private-data

and stack segments, with files using more than an order of magnitude less space,

and shared data an essentially negligible amount. Fortunately, we found realizable

allocation policies ("chunked" file allocation and "fixed, re-use" process alloca-

tion) that allowed re-use of the private-data and stack segments, leading to yearly
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consumption rates of 10 to 100 gigabytes per machine per year. Because of their
simplicity, and low overhead, we recornmend these policies.

'We 
used an extrapolation model that assumed an exponential acceleration

of the usage rate, linear growth in the number of machines involved, and linear
growth in the number of virtual-address bits, to predict the future of a single-
address-space system. Our model predicts that a single-address-space system

would not run out of vitual-address space, as long as it used reasonable allocation
policies (such as the ones we suggest) and adapted gracefully to larger addresses

(e.g., 96 or 128 bits) as they become available. Indeed, Figure 9 shows that a sys-

tem with a single 64-bit address space could add 100 machines each year, triple its
usage rate each year (a:3), and still last for 10 years, by re-using data and stack

segments and using our "chunked" file allocation policy.
Although our results necessarily depend on speculation about trends in tech-

nology and user behavior, and may or may not apply to workloads different from
the typical office-workstation environment, we believe that our fundamental pre-

dictions are fairly robust. For example, we measured only one workload during
one brief period, yet Figures 5-6 provide fundamentally the same conclusion
for a wide range in the value of r. Similarly, Figure 8 shows that our ultimate
conclusions hold for a wide range of the parameter rn. Potential developers of a
single-address-space system who have a better understanding of their system's

workload can use our model to determine whether simple policies suffrce. Only
systems with unpredictable or extremely aggressive workloads should consider

developing more sophisticated allocation policies.
Although there are many other issues involved in building a single-address-

space operating system that are beyond the scope of this paper, it appears that
address-space consumption will not be an impossible hurdle.
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