
A Distributed Object Model for
the JavarM System

Ann V/ollrath, Roger Riggs, and Jim Waldo

JavaSoft

ABSTRACT: We show a distributed object model for
the Javarul System [Arnold & Gosling 1996; Gosling
et al. 19961 (hereafter referred to simply as "Java")
that retains as much of the semantics of the Java ob-
ject model as possible, and only includes differences
where they make sense for distributed objects. The dis-
tributed object system is simple, in that a) distributed
objects are easy to use and to implement, and b) the
system itself is easily extensible and maintainable. We
have designed such a model and implemented a system
that supports remote method invocation (RMI) for dis-
tributed objects in Java. This system combines aspects
of both the Modula-3 Network Objects system lBirrell
et aL. 19941and Spring's subcontract [Hamilton et al.
19931 and includes some novel features.

To achieve its goal of seamless integration in the
language, the system exploits the use of object se-

ialization (pickling) [Riggs et al. 1996] to transmit
arguments and return values, and also exploits unique
features of Java in order to dynamically load stub code
to clients2. The system includes distributed reference-
counting garbage collection for distributed objects and
will include activation [Object Management Group
1991; Wollrath et al. 19951 of object servers in the
future.

l. Java and other Java-based names and logos are trademarks of Sun Mi-
crosystems, Inc., and refer to Sun's family of Java-branded products and
services.

2. PalÊîÍ- pending.

@ 1997 The USEND(Association, Computing Systems, Vol. 9 . No. 4 . Fall ree6 265

l. Introduction

Distributed systems require entities which reside in different address spaces, po-

tentially on different machines, to communicate. The Javaru system (hereafter

referred to simply as "Java") provides a basic communication mechanism, sock-

ets [Rago 19931. While flexible and sufficient for general communication, the use

of sockets requires the client and server using this medium to engage in some

application-level protocol to encode and decode messages for exchange. Design of
such protocols is cumbersome and can be error-prone.

An alternative to sockets is Remote Procedure Call (RPC) [Rago 1993]. RPC

systems abstract the communication interface to the level of a procedure call.

Thus, instead of application programmers having to deal directly with sockets,

the programmer has the illusion of calling a local procedure when, in fact, the ar-

guments of the call are packaged up and shipped off to ttre remote target of the

call. Such RPC systems encode arguments and return values using some type of
an external data representation (e.g., XDR).

RPC, however, does not translate well into distributed object systems where

communication between program-level objects residing in different address spaces

is needed. In order to match the semantics of object invocation, distributed object

systems require remote method invocation or RMI. In such systems, the program-

mer has the illusion of invoking a method on an object, when in fact the invoca-

tion may act on a remote object (one not resident in the caller's address space).

In order to support distributed objects in Java, we have designed a remote

method invocation system that is specifically tailored to operate in the Java en-

vironment. Other RMI systems exist (such as CORBA) that can be adapted to

handle Java objects, but these systems fall short of seamless integration due to

their inter-operability requirement with other languages. CORBA presumes a het-

erogeneous, multi-language environment and thus must have a language neutral

object model. In contrast, the Java language's RMI system assumes the homo-
geneous environment of the Java Virtual Machine, and the system can therefore

follow the Java object model whenever possible.

We identify several important goals for supporting distributed objects in Java:

266 Ann Wollrath, Roger Riggs, and Jim Waldo

. support seamless remote invocation between Java objects in different virtual
machines;

. integrate the distributed object model into the Java language in a natural

way while retaining most of Java's object semantics;

. make differences between the distributed object model and the local Java

object model apparent;

. minimize complexity seen by the clients that use remote objects and the

servers that implement them;

. preserve the safety provided by the Java runtime environment.

These goals fall under two main categories: the simplicity and naturalness of
the model. It is most important that remote method invocation in Java be simple
(easy to use) and natural (fit well in the language).

In addition, the RMI system should perform garbage collection of remote ob-
jects and should allow extensions such as server replication and the activation of
persistent objects to service an invocation. These extensions are transparent to the

client and add minimal implementation requirements on the part of the servers

that use them. These additional features motivate our system-level goals. Thus, the

system must support:

. several invocation capabilities

. simple invocation (unicast)

. invocation to multicast groups (to enable server replication)

. extensibility to other invocation paradigms

. various reference semantics for remote objects

. live (or non-persistent) references to remote objects

. persistent references to and lazy activatton of remote objects

. the safe Java environment provided by security managers and class loaders

. distributed garbage collection of active objects

. capability of supporting multiple transports

In this paper, we will briefly describe the Java object model, then intro-
duce our distributed object model for Java. We will also describe the system
architecture and relevant system interfaces. Finally, we discuss related work and

conclusions.

A Distributed Object Modet for the JavarM System 267

2. Java Object Model

Java is a strongly-typed object-oriented language with a C-style syntax. The lan-
guage incorporates many ideas from languages such as Smalltalk [Goldberg &
Robson 19831, Modula-3 [Nelson l99l], Objective C [Pinson & Wiener 1991] and

C++ [Ellis & Stroustrup 1990]. Java attempts to be simple and safe while present-

ing a rich set of features in the object-oriented domain.

2.1. Interfaces and Classes

One of the interesting features of Java is its separation of the notion of interface

and class. Many object-oriented languages have the abstraction of o'class" but pro-

vide no direct support (at the language level) for interfaces.

An interface, in Java, describes a set of methods for an object, but provides

no implementation. A class, on the other hand, can describe as well as implement

methods. A class may also include fields to hold data, but interfaces cannot. Thus,

a class is the implementation vehicle in Java; an interface provides a powerful

abstraction that contains no implementation detail.
Java allows subtyping of interfaces and classes by the use of extension. An

interface may extend one or more interfaces; this capability is known as multiple-
inheritance. Classes, however, are single-inheritance and may extend at most one

other class.

While a class may extend at most one other class, it may implement any n\m-
ber of interfaces. A class that implements an interface provides implementations

for all the methods described in that interface. If a class is defined to implement

an interface, but does not provide an implementation for a particular method of
that interface, it must declare that method to be abstracl. A class containing ab-

stract methods may not be instantiated.

An example of an arbitrary class definition in Java is as follows:

class Bar
extends Foo

implements Ping, Pong { ... }

where Bar is the class narne, Foo is the name of the class being extended, and

Ping and Pong are the names of interfaces implemented by the class Bar.

2.2. Object Class Methods

All classes in Java extend the class Obj ect, either implicitly or explicitly. The

class Object has several methods which an extended class can override to have

268 Ann Wollrath, Roger Riggs, and Jim lValdo

behavior specific to that class. These methods are:

. equals-tests the argument for equality with the object

. hashCode-retums a hash code for the object

. toString-returns a string representing the object

o sls¡1g-¡sturns a clone of the object

. f inalize-called to allow cleanup when the object is garbage collected

These methods are integral to the semantics of objects in Java.

2.3. Method Invocatíon

Method invocation in Java has the following syntax:

result = object.method(arg!, arg2, ...);

where: obj ect is the entity which is being acted upon, nethod is the name of the

method being called, argN is a parameter to the method, and result is the return
value.

2.4. Method Parameters and Return Values

In Java, all parameters to and return values from a method are passed by-value.

Only reþrences to objects exist in Java, so object references (not objects) are

passed by value. Thus, a change to an object passed to a method will be visible
to the caller of the method.

The type of an object passed polymorphically does not change the type of the

underlying object. For example, suppose class B extends A. An object of class

B can be passed to a method as the less specific type A. However, the object's

concrete type, B, remains unchanged.

3. Distributed Object Model

In our model, a remote object is one whose methods can be accessed from an-

other address space, potentially on a different machine. An object of this type is
described by a remote interface, which is an interface (in Java) that declares the

methods of a remote object. Remote method invocation (or RMI) is the action of
invoking a method (of a remote interface) on a remote object. Most importantly, a

A Distributed Object Modet for the JavarM System 269

method invocation on a remote object has the same syntax as a method invocation
on a local object.

Clients of remote objects program to remote interfaces, not to the implemen-
tation classes of those interfaces. Since the failure modes of accessing remote
objects are inherently different from the failure semantics of local objects, clients
must deal with an additional exception that can occur during any remote method
invocation.

What follows is a brief comparison of the distributed object model and the

Java object model. The similarities between the models are:

. a reference to a remote object can be passed as an argument or returned as

a result in any method invocation (local or remote);

. a remote object can be cast to any of the set of remote interfaces supported
by the implementation using the built-in Java syntax for casting;

. the built-in Java instanceof operator can be used to test the remote inter-
faces supported by a remote object.

There are several basic differences between the distributed object model and
the Java object model:

. clients of remote objects interact with remote interfaces, never with the
implementation classes of those interfaces;

. clients must handle an additional exception for each remote method invoca-
tion;

. parameter passing semantics are slightly different in calls to remote objects;

. semantics of Object methods are defined to make sense for remote objects.

3.1. Remote Interfaces

In order to implement a remote object, one must flrst define a remote interface
for that object. A remote interface must extend (either directly or indirectly) a

distinguished interface called j ava. rmi . Renote. This interface is completely
abstract and has no methods.

interface Renote {}

For example, the following code fragment defines a remote interface for a bank
account that contains methods that deposit to the account, withdraw from the ac-
count, and get the account balance:

270 Ann Wollrath, Roger Riggs, and Jim V/aldo

inport java.rni.x;

public interface BankAccount
extends Renote

{
public void deposit(float amount)

throws RenoteException;
public void withdraw(float anount)

throws OverdrawnException,
RenoteExceptlon;

public float balanceo
thro¡¡s RemoteException;

]
As shown above, each method declared in an interface for a remote object must
include j ava. rmi . RemoteException in its throws clause. If RenoteException
is thrown during a remote call, then some communication failure happened dur-
ing the call. Remote objects have very different failure semantics than local ob-
jects. These failures cannot be hidden from the programmer since they cannot be
masked by the underlying system lWaldo et al. 1994]. Therefore, we choose to
expose the additional exception RemoteException in all remote method calls, so

that programmers can handle this failure appropriately.

3.2. Remote Implementations

There are two ways to implement a remote interface (such as BankAccount).
The simplest implementation route is for the implementation class, e.g.,
BankAcctfnpl, to extend the class RenoteServer. W'e call this ûrst scheme
remote implementation reuse. Figure I below is an illustration of the interface
and class hierarchies for remote interfaces and implementations in this scheme.

The default constructor for RenoteServer takes care of making an imple-
mentation object remotely accessible to clients by expofüng the remote object
implementation to the RMI runtime. The class Renote0bject overrides methods
inherited from Object to have semantics that make sense for remote objects. We
will discuss the appropriate semantics for these methods in section 3.5: Object
Method Semantics.

In the second implementation scheme, called local implementation reuse, the
implementation class for a remote object does not extend RemoteServer but may
extend any other local implementation class as appropriate. However, the imple-
mentation must explicitþ export the object to make it remotely accessible.

The "local implementation reuse" scheme (shown in Figure 2), while allowing
the class to reuse existing implementation code, does require that the class deal

A Distributed Object Model for the JavarM System 2ll

Intedaces Classes

+ extension

Figure 1. Reusing a Remote Implementation.

with the details of making instances of that class remotely accessible (by exporting

the object to the RMI runtime). Such exporting is already taken care of in the

RemoteServer constructor used in the first scheme.

Implementations using the second scheme must also be responsible for their

own Java Obj ect semantics and therefore must redefine methods inherited from
the class 0bject appropriately. These object methods are already taken care of in
the implementation of Remote0bject, used in the other scheme.

We deem the "remote implementation reuse" scheme more seamlessly inte-

grated into the Java object model as well as requiring less implementation detail;

so we will explain that implementation scheme in depth here. The other scheme,

"local implementation reuse," is included for implementation flexibility if such is

required by the programmer.

Thus, BankAcctlmpl, an implementation class of the remote interface

BankAccount can be defined by extending RenoteServer as follows and would

implement all the methods of BankAccount:

package nyPackage;

inport j ava. rni . RemoteException;
inport j ava. rmi . server. RemoteServer;

272 Ann Wollrath, Roger Riggs, and Jim V/aldo

Interfaces Classes

-+ extension

Figure 2. Reusing a Local Implementation Class.

pubJ-ic class BankAcctInPl
extends RemoteServer
inplenents Ba¡kAccount

{
public void deposit(float amount)

thro¡¿s RemoteException {. . .};
public void ¡¡ithdraw(f1oat a.nount)

tbrows Overdra¡'rnExcePt ion,
RemoteException t. . .);

public float balanceo
throws RenoteException {. ..};

)

A few additional notes about implementing remote interfaces are:

. An implementation class may implement any number of remote interfaces.

. An implementation class may extend any other implementation class of a

remote interface.

. Only those methods that appear in a remote interface (one that extends

A Distributed Obiect Model for the JøvarM System 273

Remote either directly or indirectly) can be accessed remotely; thus non-

remote methods in an implementation class can only be accessed locally.

The server implementation scheme fits very well into the Java object model

and the Java language.

3.3. Remote Reference Types

In the distributed object model, clients interact with stub (surrogate) objects that

have exactly the same set of remote interfaces deflned by the remote object's
class; the stub class does not include the non-remote portions of the class hier-

archy that constitutes the object's type graph. This is because the stub class is

generated from the most refined implementation class that implements one or
more remote interfaces. For example, if C extends B and B extends A, but only
B implements a remote interface, then a stub is generated from B, not C.

Because the stub implements the same set of remote interfaces as the remote

object's class, the stub has, from the point of view of the Java system, the same

type as the remote portions of the server object's type graph. A client, therefore,

can make use of the built-in Java operations to check a remote object's type and to
cast from one remote interface to anothe¡ e.g.:

Remote obj = ...; // lookup object
if (obj instanceof BankAccount) {

BankAccount acct = (BankAccount)obj ;

//...
)

The system employs a mechanism called dynamic stub loading to make the

correct stub for the remote object available to the client (this technique is fully
described in section 4: System Architecture).

3.4. Remote Method Invocation

For a cliènt to invoke a method on a remote object, that client must first obtain

a reference to the object. A reference to a remote object is obtained in the usual

manner: as a return value in a method call or as a parameter passed to a method.

The RMI system provides a simple bootstrap name server from which to obtain

remote objects on given hosts.

Invoking a method on a remote object has the same syntax as invoking a

method on any Java object. For example, here's how the bank account could be

accessed (without exception handling):

274 Ann rù/ollrath, Roger Riggs, and Jim Waldo

BankAccount acct = ..., // tookup account
f l-oat balance;
acct.deposit (243. 50) t

acct . r^'ithdra¡¡ (100 . 00) ;

balance = acct.bala¡ceO ;

Since remote methods include RemoteException in their signature, the
caller must be prepared to handle those exceptions in addition to other applica-
tion specific exceptions. so, for each of the calls above (deposit, withdraw, and
barance), the code needs to catch RenoteException (and the withdrar¡ call
would need to also catch OverdrawnException).

If RenoteException is thrown during a remote call, then some communi-
cation failure happened during the call. The client has little to no information on
the outcome of the call-whether a failure happened before, during, or after the
call completed. Thus, remote interfaces should be designed with these failure se-
mantics in mind [Mullender 1993; Waldo et al. 1994]. The semantics of a remote
method may need to be idempotent whereas calls within the local address space
likely do not have to be. Note that the above bank account interface does not sup-
port idempotent operations, so if an operation fails, the client needs to perform
some type of recovery to determine the true state of the bank account (using trans-
actions would solve this problem).

In most cases, a method invoked on a remote object is indirected through the
remote object's stub to which the caller has a reference. In a method invocation to
a remote object which actually resi.des in the same virtual machine as the caller,
the call may be a local invocation and not a call via the stub for the remote ob-
ject. If the caller has an actual reference to the remote object implementation, the
method call is local and is not forwarded via a stub. However, a caller may re-
ceive, from a remote object in a different virtual machine, a remote reference to
the object whose implementation is in the same virtual machine. In this case, the
client (the caller) has a reference to a stub for the remote object; thus, a method
call on this reference would be indirected through the stub.

3.5. Object Method Semantics

The default implementations for the methods of class Object (equats,
hashCode, toString, clone, and f inalize) arc not appropriate for remote
objects. The class Renote0bject provides implementations for these methods
that have semantics more appropriate for remote objects.

In order for a remote object to be used as a key in a hash table, the methods
equals and hashCode need to be overridden in a remote object implementation.
The semantics of equals for a remote object must be defined such that remote

A Distributed Object Model for the JavarM System 275

objects have reþrence equality. Thus, given any two remote references to the

same underlying object, those objects will be equal. No stronger equality, such

as 'ocontent" equality, may be defined for remote objects, since determining the

equality of contents would require a remote call. Remember that in a remote call,

a RenoteException may be raised, and the method equals has no such excep-

tion in its throws clause. Due to the different failure semantics between local and

remote calls, we chose to implement only reference equality for remote objects.

The hashCode method will return the same value for remote references that

refer to the same underlying object.

The toString method is defined to return a string which represents the ref-

erence of the object. In the current implementation that supports unicast method

invocation, the contents of this string includes transport specific information about

the object (e.g., host name and port number) and an object identifier.

Objects are only cloneable using the Java language's default mechanism if
they support the j ava. tang. Cloneab1e interface. Remote objects do not imple-

ment this interface, but do implement the clone method so that if subclasses need

to implement Cloneable, the remote classes will function correctly.

Cloning a reference to a remote object is a local operation and cannot be used

by clients to create a new remote object.

For RemoteServer objects, clone is implemented to make a new remote

object distinct from the original. Cloning a remote object is only available in the

server process where the remote object exists. If a remote object does not extend

RemoteServer, it must implement its own version of clone and be able to export

a cloned object.

The clone method for a remote object is defined to return a reference to the

remote object. This operation does not copy any contents of the remote object, it
simply returns a reference (since determining contents would require a remote call,

and clone does not have RemoteException in its throws clause which would be

raised in the event of a remote call failure).

The f inalize method is used in specific circumstances depending on the

type of remote object (for example, if a remote object is one that can be activated,

some cleanup may be necessary).

There are several other methods defined in the class Object. These methods,

however, are declared as final, which means that they cannot be overridden in an

extended class. The methods are: getCtass, notify, notifyAll, and wait'
The default implementation for getClass is appropriate for all Java objects,

local or remote. The method needs no special implementation for remote objects.

V/hen used on a remote object, the getClass method reports the exact type of
the generated stub object. Note that this type reflects only the remote interfaces

implemented by the object, not its local interfaces.

276 Ann Wollrath, Roger Riggs, and Jim V/aldo

The ¡uait/notify methods of Object deal with waiting and notification in
the context of Java's threading model. While use of these methods for remote
objects does not break the Java threading model, these methods do not have the
same semantics as they do for local Java objects. Use of these methods would
only operate on the client's local reference to the remote object, not the actual
object at the remote site. Since these methods are final, they cannot be extended to
have behavior specific to remote objects.

Due to the differing failure modes of local and remote objects, distributed
wait and notification requires a more sophisticated protocol between the entities
involved (so that, for example, a client crash does not cause a remote object to be
locked forever), and as such, cannot be easily fitted into the local threading model
in Java. Hence, a client can use notify and wait methods on a remote referenca,
but that client must be aware that such actions will not involve the actual remote
object, only the local proxy (stub) for the remote object.

3.6. Parameter Passíng ín Remote Invocation

A parameter of any Java type can be passed in a remote call. These types include
both Java primitive types and Java objects (both remote and non-remote).

The parameter passing semantics for remote calls are the same as the Java
semantics Øccept:

. non-remote objects contained in a parameter of a remote call are passed by
copy; and,

. non-remote objects returned as the result of a remote call are also passed by
copy'

That is, when a non-remote object is passed in a remote call, the content of
the non-remote object is copied before invoking the call on the remote object.
Thus, there is no relationship between the non-remote object the client holds and
the one it sends to a remote server in a call. For example, let's suppose that the
remote object bank has a method to obtain the bank account given a name and
social security number; the account information inf o is not a remote object but a
local Java object:

Ba¡k bank
String ssn = "999-999-9999";
Accountfnfo i-nfo =

ner'r Accountlnfo("Robin Smith", ssn) ;

BankAccount acct = bank.getAccount(info) ;

info. setName ("Robyn Snith") ;

A Distributed Object Model for the JavarM System 277

The contents of the object inf o is copied before invoking the remote call on

the bank. A client can make changes to inf o without effecting the server's copy

and vice versa.

3.7. Locating Remote Obiects

A simple bootstrap name server is provided for storing named references to re-

mote objects. A remote object reference can be stored using the URl-based

interface j ava. rni . Naming. The Naming interface provides Uniform Resource

Locator (URL) based methods to lookup, bind, rebind, unbind and list the name

and object pairings maintained on a particular host and port.

Here's an example of how to bind and lookup remote objects:

Ba¡kAccount acct = neû¡ BaakAcctlmplO;
IJRL url = new IIRL("rni //zapbod/account");
// Vina url to remote object
java. rmi.Naning.bind(url, acct) ;

// 1.ookup account
acct = java.rni.Naming.lookup(url) ;

In the current implementation, a "naming" registry contains a non-persistent

database of name-object bindings. This database does not survive system crashes.

4. System Architecture

'We have designed our RMI system in order to support the distributed object model

discussed above. The system consists of three basic layers: the stub/skeleton layer,

remote reference layer, and transport. A specific interface and protocol defines

the boundary at each layer. Thus, each layer is independent of the next and can be

replaced by an alternate implementation without effecting the other layers in the

system. For example, the current transport implementation is TCP-based (using

Java sockets), but a tfansport based on UDP could be used interchangeably.

To accomplish transparent transmission of objects from one address space to

another, the technique of pickling [Riggs et al.1996] (designed specifically for

Java) is used.

Another technique, that we caTl dynamic stub loading, is used to support

client-side stubs which implement the same set of remote interfaces as a remote

object itself. Since a stub of the exact type is available to the client of a remote

object, a client can use Java's built-in operators for casting and typechecking re-

mote interfaces.

278 Ann Wollrath, Roger Riggs, and Jim Waldo

Application

RMI
System

Figure 3. System Architecture.

4.1. Architectural Overview

The three layers of the RMI system consist of the following:

' stub/skeletons---client-side stubs (proxies) and server-side skeletons (dis-
patchers)

. remote reference layer-invocation behavior and reference semantics (e.g.,

¡rnicast, multicast)

. transport-connection set up and management and remote object tracking

The application layer sits on top of the RMI system.
Figure 3 is an illustration of the layers of the RMI system. A remote method

invocation from a client to a remote server object travels down through the layers
of the RMI system to the client-side transport, then up through the server-side
transport to the server. The rest of this section summarizes the functionality at
each layer in the system.

A client invoking a method on a remote server object actually makes use of a
stub or proxy for the remote object as a conduit to the remote object. A client-held
reference to a remote object is a reference to a local stub. This stub is an imple-
mentation of the remote interfaces of the remote object and forwards invocation
requests to that server object via the remote reference layer.

Tlte remote reþrence layer is responsible for carrying out the semantics of the
type of invocation. For example this layer is responsible for handling unicast or
multicast invocation to a server. Each remote object implementation chooses its
own invocation semantics-whether communication to the server is unicast, or the
server is part of a multicast group (to accomplish server replication).

Remote Reference Layer

Transport

A Distributed Object Model for the JavarM System 279

Also handled by the remote reference layer are the reference semantics for

the server. For example, the remote reference layer handles live and/or persistent

references to remote objects. Persistent object references are required in order to

activate objects to support long-running servers.

T]¡e transporf is responsible for connection set-up with remote locations and

connection management, and also keeping track of and dispatching to remote ob-

jects (the targets of remote calls) residing in the transport's local address space.

In order to dispatch to a temote object, the seryer's transport forwards the

remote call up to the remote reference layer (specific to the server). The remote

reference layer handles any server-side behavioi that needs to be done before

handing off the request to the server-side skeleton. The skeleton for a remote

object makes an up-call to the remote object implementation which carries out

the actual method call.

The return value of a call is sent back through the skeleton, remote reference

layer, and transport on the server side, and then up through the transport, remote

reference layer, and stub on the client side.

4.2. Stub/Skeleton LaYer

The stub/skeleton layer is the interface between the application layer and the rest

of the RMI system. This layer does not deal with specifics of any transport, but

transmits data to the remote reference layer via the abstraction of marshal streams.

Marshal streams employ a mechanism called pickling which enables Java objects

to be transmitted between address spaces. Objects transmitted using the pickling

system are passed by copy to the remote address space.

A stub for a remote object is the client-side proxy for the remote object. Such

a stub implements all the interfaces that are supported by the remote object imple-

mentation. A client-side stub is responsible for:

. initiating a call to the remote object (by calling the remote reference layer)

. marshaling arguments to a marshal stream (obtained from the remote refer-

ence layer)

. informing the remote reference layer that the call should be invoked

. unmarshaling the return value from a marshal stream

. informing the remote reference layer that the call is complete

A skeleton for a remote object is a server-side entity that contains a method which

dispatches calls to the actual remote object implementation. The skeleton is re-

sponsible for:

280 Ann Wollrath, Roger Riggs, and Jim V/aldo

unmarshaling arguments from the marshal stream

making the up-call to the actual remote object implementation

marshaling the return value of the call onto the marshal stream

4.3. Remote Reference Layer

The remote reference layer deals with the lower level transport interface. This
layer is also responsible for carrying out a specific invocation protocol which is
independent of the client stubs and server skeletons.

Each remote object implementation chooses its own invocation protocol that
operates on its behalf. Such an invocation protocol is fixed for the life of the ob-
ject. various invocation protocols can be carried out at this layer, for example:

. unicast invocation

. multicast invocation

. suppotr for a specific replication strategy

' support for a persistent reference to the remote object (enabling activation
of the remote object)

. reconnection strategies (if remote object becomes inaccessible)

These invocation protocols are not mutually exclusive, but may be combined.
For example, a remote object may require both persistent reference semantics and
replication. Both of these protocols would be carried out in the remote reference
layer.

The invocation protocol is divided into two cooperating components: the
client-side and the server-side components. The client-side component contains
information specific to the remote server (or servers, if invocation is to a multicast
group) and communicates via the transport to the server-side component. During
each method invocation, the client and server-side components are given a chance
to intervene in order to accomplish the specific invocation and reference seman-
tics. For example, if a remote object is part of a multicast group, the client-side
component can forward the invocation to the multicast group rather than just a
single remote object.

In a corresponding manner, the server-side component is given a chance to
intervene before delivering a remote method invocation to the skeleton. This com-
ponent, for example, could handle ensuring atomic multicast delivery by commu-
nicating with other replicas in the multicast group.

A Distributed Object Model for the JqvarM System 281

The remote reference layer transmits data to the transport layer via the ab-

straction of a stream-oriented connection. The transport takes care of the imple-

mentation details of connections. Although connections present a streams-based

interface, a connectionless transpoft may actually be implemented beneath the

abstraction.

4.4. Transport

In general, the transport of the RMI system is responsible for:

. setting up connections to remote address spaces

' managing connections

. monitoring connection liveness

. listening for incoming calls

. maintaining a table of remote objects that reside in the local address space

. setting up a connection for an incoming call

. locating the dispatcher for the target of the remote call and passing the con-

nection to this disPatcher

The concrete representation of a remote object reference consists of an end-

point and an object identifier. We call this representation a live reference. Thus,

given a live reference for a remote object, a transport can use the endpoint to set

up a coÍrmunication channel to the address space in which the remote object re-

sides. On the server side, the transport uses the object identifier to look up the

target of the remote call.

The transport for the RMI system consists of four basic abstractions (based

somewhat on the transport of the Modula-3 network object system):

Endpoint. An endpoint denotes an address space. In the implementation, an

endpoint can be mapped to its transport. That is, given an endpoint, a

specific ffansport instance can be obtained.

Transport. The transport abstraction manages channels. Each channel is a vir-

tual connection between two address spaces. Within a transport, only one

channel exists per pair of address spaces, the local address space and a

remote address space. Given an endpoint to a remote address space, a

282 Ann Wollrath, Roger Riggs, and Jim Waldo

transport sets up a channel to that address space. The transport abstraction
is also responsible for accepting calls on incoming connections to the ad-
dress space, setting up a connection object for the call, and dispatching to
higher layers in the system.

channel. Abstractly, a channel is the conduit between two address spaces. As
such, it is responsible for managing connections between the local address
space and the remote address space for which it is a channel.

Connection. A connection is the abstraction for transferring data (performing
inpulouþut).

A transport defines what the concrete representation of an endpoint is, so mul-
tiple transport implementations may exist. The design and implementation also al-
low multiple transports per address space (so both TCp and UDp can be supported
in the same address space). Thus, client and server transports can negotiate to find
a common transport between them.

4.5. Garbage Collection

In a distributed system, just as in the local system, it is desirable to automatically
delete those remote objects that are no longer referenced by any client. This frees
the programmer from needing to keep track of a remote object's clients so that the
remote object can terminate appropriately. RMI uses a reference counting gnbage
collection algorithm similar to the one used for Modula-3 Network objects [Bir-
rell et aI.19931.

To accomplish reference-counting garbage collection, the RMI runtime keeps
track of all live references within each Java virtual machine. When a live refer-
ence enters a Java virtual machine its reference count is incremented. The first
reference to an object sends a "referenced" message to the server for the object.
As live references are found to be unreferenced in the local virtual machine, their
finalization decrements the count. When the last reference has been discarded an
unreferenced message is sent to the server. Many subtleties exist in the protocol,
most related to maintaining the ordering of referenced and unreferenced messages
to insure the object is not prematurely collected.

when a remote object is not referenced by any client, the RMI runtime refers
to it using a weak reference. The weak reference allows the Java virtual machine's

A Distributed Object Model for the JavarM System 283

garbage collector to discard the object if no other local references to the object

exist. The distributed garbage collection algorithm interacts with the local Java

virtual machine's garbage collector in the usual ways by holding normal or weak

references to objects. As in the normal object life-cycle, f inalize will be called

after the garbage collector determines that no more references to the object exist.

As long as a local or remote reference to a remote object exists, the remote

object cannot be garbage collected and it may be passed in remote calls or re-

turned to clients. Passing a remote object adds the client or server to which it
was passed to the remote object's referenced set. A remote object needing un-

referenced notiûcation must implement the j ava. rmj. . server . Unref erenced

interface. When those references no longer exist, unref erenced will be invoked.

unref erenced is called when the set of references is found to be empty so it may

be called more than once. Remote objects are only collected when no more refer-

ences, either local or remote, still exist.

Note that if there exists a network partition between a client and remote

server object, it is possible that premature collection of the remote object will
occur (since the transport may think that the client crashed). Because of the pos-

sibility of premature collection, remote references cannot guarantee referential

integrity; in other words, it is always possible that a remote reference may in fact

not refer to an existing object. An attempt to use such a reference will generate a

RemoteException which must be handled by the application.

4.6. Dynamic Stub Loading

In remote procedure call systems, client-side stub code must be generated and

linked into a client before a remote procedure call can be done. This code may be

either statically linked into the client or linked in at run-time via dynamic linking

with libraries available locally or over a network file system. In either the case of
static or dynamic linking, the specific code to handle an RPC must be available to

the client machine in compiled form.

This approach to code linking is static in that the stub code must be com-

piled and directly available to the client in binary-compatible form at compile

time and at run time. Also with these systems, the stub code that the client uses

is determined and fixed at compile time. Because of the static nature of the stub

code available to clients in such systems, the code may not be the actual stub

code that the client needs at run time, but perhaps the closest matched code that

can be determined at compile time. For eiample in an RMI system, perhaps only

a supertype (less specific form) of a more specific stub is available to the client

284 Ann lVollrath, Roger Riggs, and Jim V/aldo

at run-time. This code mismatch can lead to run-time errors if the client in fact
needs a subtype (more specific form) of the stub that has been linked in at compile
time.

Our approach solves this code mismatch by loading the exact stub code (in
Java's architecture neutral bytecode format) at run-time to handle method invoca-
tions on a remote object. This mechanism, called dynamic stub loading, exploits
the Java mechanism for downloading code.

Dynamic stub loading is used when code for a needed stub is not available
locally. The argument and return types in remote calls are made available using
the same dynamic class loading mechanism. This technique enables extended
classes of declared parameters and return values to be passed in remote method
calls, since classes are dynamically downloaded if not available locally. In other
words, the RMI system avoids type truncation-parameters and return values are
not truncated to the declared type in the method signature, but are always passed

as their true type.
In this scheme, client-side stub code is generated from the remote object im-

plementation class, and therefore supports the same set of remote interfaces as

supported by the remote implementation. Such stub code resides on the server's
host (or perhaps another location), and can be downloaded to the client on demand
(ifthe correct stub code is not already available to the client). Stub code for a re-
mote implementation could be generated on-the-fly at the remote site and shipped
to the client or could be generated on the client-side from the list of remote inter-
faces supported by the remote implementation.

Dynamic stub loading employs three mechanisms: a specialized Java class
loader, a security manager, and the pickling system. When a remote object refer-
ence is passed as a parameter or as the result of a method call, the marshal stream
that transmits the reference includes information indicating where the stub class
for the remote object can be loaded from, if its URL is known.

A marshal stream is implemented by an underlying pickle stream. Pickle
streams provide an opportunity to embed information for each class and object
that is transmitted. V/hen transmitting class information for a remote object being
marshaled, a marshal stream embeds a URL that specifies where the stub code re-
sides. Thus, when a reference to a remote object is unmarshaled at the destination
site, the marshal stream can locate and load the stub code (via the specialized class
loader, checked by the security manager) so that the correct stub is available to the
client.

Loading arbinary classes into clients or servers presents a potential security
problem; this problem is addressed by requiring that a security manager check any
classes downloaded for RMI.

A Distributed Object Model for the JavarM System 285

4.7. Security

The security of a process using RMI is protected by the existing Java mechanisms

of the security manager and class loader. The security manager regulates access to
sensitive functions, and the class loader makes sure that loaded classes are subject
to the security manager and adhere to the standard Java safety guarantees.

The JDK (Java Developer Kit) 1.0 security manager does not regulate re-

source consumption, so the current RMI system has no mechanisms available to
prevent classes loaded from abusing resources. As new security manager mecha-

nisms are developed to control resource use, RMI will use them.

4.7.1. The Applet Environment

In the applet environment, the AppletSecurityManager and AppletClassloader
are,used exclusively. RMI uses only the established security manager and class

loader. In this environment remote object stubs, parameter classes, and return ob-
ject classes can be loaded only from the applet host or its designated code base

hosts. This requires that applet developers install the appropriate classes on the

applet host.

4.7.2. The Server Environment

In the server environment, where a Java process is being used to serve RMI re-
quests, the server may need to use a security manager to isolate itself from stub

misbehavior. The server functions will usually be implemented by classes loaded
from the local system and therefore not subject to the resffictions of the security
manager. If the remote object interfaces allow objects, either local or remote, to
be passed to the server, then those object classes must be accessible to the server.

Usually those classes will be built-in classes or will be deflned by the server. As
long as the classes are available locally there is no need for a specialized security
manager or stub loader. To support this case, if no security manager is specified,
stub loading from network sources is disabled.

When a server is passed a remote object for which it has no corresponding

stub code, it may also be passed the location from which the classes for that re-

mote object may be loaded. Two properties control if and from where the stub

class can be loaded.
j ava. rmi . server. codebase defines the URL from which stub classes will

be loaded. This is the URL that is passed along with remote object references so

clients will know the location from which to load stub classes.
j ava. rmi . server . useCodebase0nly controls whether the URL's supplied

by clients are used; if set to true, URL's from clients are ignored and stub classes

are loaded using the stub codebase.

286 Ann Wollrath, Roger Riggs, and Jim Waldo

The RMÏClassloader is a specialized class loader used by the RMI runtime
to load classes. When loading any class, the runtime first attempts to use this class
loader. If it succeeds, those classes will be subject to the current security manager
and any classes the stub needs will be loaded and then regulated by that secu-
rity manager. If the security manager disallows creating the class loader, the class
(including stub classes) will be loaded using the default Clnss.forName mecha-
nism. Thus, a server may define its own policies via the security manager and stub
loader and the RMI system will operate within them.

5. RelatedWork

The Common Object Request Broker Architecture (CORBA) [Object Management
Group 19911 is designed to support remote method invocation between hetero-
geneous languages and systems. In CORBA, distributed objects are described in
an interface definition language (IDL). IDL presents its own object model, and
interfaces deflned in IDL must be mapped into a target language and object model.

Because of IDL s language neutrality, the semantics of its object model does
not match the object model semantics of any implementation language. This mis-
match inhibits seamless integration of the CORBA distributed object model into
any specific target language. Hence, programmers must deal with two very differ-
ent object models when writing distributed programs: the local object model of the
language, and the distributed object model mapped from IDL.

Our system differs from CORBA in two essential ways: its language-
dependence and its ability to load stub code dynamically. Since our system is
language-dependent, we can integrate the distributed object model more closely
with the target language, Java. Also, systems that are CORBA compliant are un-
able to exploit the use of dynamic stub loading, since CORBA generally assumes
that stub code is linked in at compile time.

Our approach is more akin to the Modula-3 (M3) network object system [Bir-
rell et al. 19941. The Modula-3 system supports remote mefhod invocation on
objects in a language-dependent fashion (i.e., the system does not support in-
teroperability with other languages). A second similarity is that the M3 system
transmits objects via pickling. Our RMI system is similar in those respects (it de-
pends on the architecture neutrality of Java bytecodes); however, our system is
less static in its determination of stub code. The M3 network object system uses

the closest matching stub code (called the most-speciflc surrogate) available at
compile-time, rather than our approach in which the exact matching stub code is
determined at run-time and downloaded over the network if such code is unavail-
able on the client.

A Distributed Object Model for the JavarM System 287

The implementation of our system is similar to the M3 system in another re-

spect: that is, the inclusion of a distinct abstraction for the tfansport. While the

network object system has a similar notion of a transport abstraction, it does

not include a separate remote reference layer to handle varying types of invo-

cation semantics. Because of this limitation, this type of functionality is not,
easily layered on the network object system without adding some burden to the

prograÍtmer.
Spring lHamilton & Kougiouris 1993] is an object oriented operating system

designed as a successor to UNIX. Spring has the notion of a subcontract [Hamil-
ton et al. 19931 which has similar functionality to the remote reference layer in the

RMI system. Our system differs in that the remote reference layer has a naffower

interface that is more tailored to handling remote method invocation semantics.

Subcontract is also very intimate with its doors-based transport, and as such does

not support alternate transport implementations as readily as our approach.

Like CORBA, Spring uses an interface definition language to describe remote

objects. Spring uses marshaling code generated from IDL descriptions ofobjects,

whereas our system pickles exact representations of objects at run-time'

6. Future Work

The current system supports unicast remote method invocation to remote objects

in Java. The system also employs object serialization, dynamic stub loading, and

garbage collection. We have fully designed and partially implemented activation

for distributed objects in this framework. This effort is on-going. Also included

will be the capability for server replication in this paradigm.

7. Conclusions

Our RMI system design leverages the two basic assumptions of platform homo-

geneity and language-dependence. We can assume homogeneity due to the ar-

chitecture neutrality that the Java virtual machine provides. Since we are able to

focus on language-dependent distributed objects, the resulting system presents a

simple model that fits well into the Java framework, is highly flexible, and is ac-

cessible on a wide variety of machines.

288 Ann Wollrath, Roger Riggs, and Jim Waldo

Availability

The Java RMI system will be released with JDK 1.1. Early access versions of this
system can be obtained from the http://java.sun.com web site.

Aclcnowledgments

We would like to thank Eduardo Pelegri-Llopart and Peter Kessler for useful dis-
cussions during the development of this system.

A Distributed Object Model for the JavarM System 289

Reþrences

1. Ken Arnold and James Gosling, The JavdMProgramming I'anguage, Addison-

V/esley (1996).

2. Andrew Birrell, David Evers, Greg Nelson, Susan Owicki, and Edward V/obber,

Distributed Garbøge Collection for Network Obiects, Digital Equipment Corpora-

tion Systems Research Center Technical Report 116 (1993).

3. Andrew Birrell, Greg Nelson, Susan Owicki, and Edward Wobber, Network Ob-
jects, Digital Equipment Corporation Systems Research Center Technical Report

115 (1994).

4. Margaret A. Ellis and Bjarne Stroustrup, The Annotated C++ Reþrence Manual,

Addison-Wesley (1990).

5. Adele Goldberg and David Robson, SmalltøIk-9): The Language and lts Imple'
mentation, Addison-Wesley (1 983).

6. James Gosling, Bill Joy, and Guy Steele, The Javawl'anguage Specification,

Addison-Wesley (1996).

7. G. Hamilton and P. Kougiouris, The Spring Nucleus: A Microkernel for Objects.

USENIX Summer Conference (July 1993).

8. Graham Hamilton, Michael L. Powell, and James G. Mitchell, Subcontract: A

Flexibte Base for Distributed Programming, Sun Microsystems Laboratories Tech-

nical Report, SMLI TR-93-13 (April 1993).

9. Sape Mullender (ed.), Distibuted Systems (second edition), Addison-Wesley
(1ee3).

10. Greg Nelson (ed.), Systems Programming with Modula-3, Prentice Hall (1991).

11. The Object Management Group, Common Object Request Broker: Architecture and

Specification, OMG Document Number 9l.l2.l (1991).

12. Lewis J. Pinson and Richard S. Wiener, Obiective C: Object-Oriented Program-

ming Techniqa¿s, Addison-V/esley (1991).

13. Steven A. Rago, UNIX System V Network Programming, Addison-Wesley (1993).

14. Roger Riggs, Jim Waldo, Ann Wollrath, and Krishna Bharat, Pickling State in the

Javaru System, The 2nd USENN Conference on Obiect-Oriented Technologies

(1ee6).

15. Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall, A Note on Distributed
Computing, Sun Microsystems Laboratories Technical Report, SMLI TR-9't-29
(November 1994).

16. Wollrath, Ann, Geoff Wyant, and Jim Waldo, Simple Activation for Distributed

Objeóts, lst USENIX Conference on Object-Oriented Technologies, Monterey, CA,
pages 1-11 (June 1995).

29O Ann Wollrath, Roger Riggs, and Jim Waldo

