
A Language with Distributed
Scope

Luca Cardelli Digital Equipment Corporation,

Systems Research Center

ABSTRACT: Obliq is a lexically-scoped, untyped,
interpreted language that supports distributed object-
oriented computation. Obliq objects have state and
are local to a site. Obliq computations can roam over
the network, while maintaining network connections.
Distributed lexical scoping is the key mechanism for
managing distributed computations.

@ 1995 The USENIX Association, Computing Systems, Vol. 8 . No. I . Winter 1995. 27

I. Introduction

A simple guiding principle separates Obliq from other distributed procedural lan-

guages: adherence to lexical scoping in a distributed context. This principle has a

number of interesting consequences: it supports a natural and consistent semantics

of distributed computation, and enables elegant techniques for distributed pro-

gramming.
In lexically scoped languages, the binding location of every identifier is deter-

mined by simple analysis of the program text surounding the identifier. Therefore,

one can be sure of the meaning of pfogram identifiers, and can much more easily

reason about the behavior of programs. In a distributed language like Obliq, lex-

ical scoping assumes a further role. It ensures that computations have a precise

meaning even when they migrate over the network: a meaning that is determined

by the binding location and network site of identifiers, and not by e¡ecution sites.

Network-wide scoping becomes an issue in the presence of higher-order dis-

tributed computation, for example when a site acting as a compute server accepts

procedures for execution. The question here is: what happens to the free identi-

fiers of network-transmitted procedures? Obliq takes the view that such identifiers

are bound to their original locations, as prescribed by lexical scoping, even when

these locations belong to different network sites.

In the rest of this introduction we review the main notions. In Section 2 we

describe Obliq's object model and distributed semantics. In Section 3 we illustrate

the object model by means of single-threaded examples. In Section 4 we present

a collection of distributed programming techniques, enabled by Obliq's unique

features. The most illuminating example is the compute server, in Section 4'2; the

most intriguing one is object migration, in Section 4.6. The syntax is summarized

in the Appendix.

1.1. Language Overview

The principal way of structuring distributed computations in Obliq is through the

notion of objects. Network services normally accept a variety of messages; it is

Luca Cardelli28

then natural to see each service as a network object (or, more neutrally, as a net-
work interface). Obliq supports objects in this spirit, relying for its implementation
on Modula-3's network objects [Birrell, Nelson et al. 1993].

The Obliq object primitives are designed to be simple and powerful, with a
coherent relationship between their local and disfibuted semantics. Obliq objects
are collections of named fields, with four basic operations: selection/invocation,
updating/overriding, cloning, and aliasing. There are no class hierarchies, nor
complex method-lookup strategies. Every object is potentially and transparently a

network object. An object may become accessible over the network either by the

mediation of a name server, or simply by being used as the argument or result of a
remote method.

In any framework where objects are distributed across sites, it is critical to de-
cide what to do about mobility of state. To avoid problems with state duplication,
objects in Obliq are local to a site and are never automatically moved over the net-
work. In contrast, network references to objects can be transmitted from site to site
without restrictions. Atomic object migration can be coded from our primitives,
specifically from cloning and aliasing.

In addition to the distribution of data, the distribution of computations must
also be designed carefully. It is clearly desirable to be able to transmit computing
agents for remote execution. However, one should not be satisfied with trans-
mitting just the program text of such agents. Program text cannot carry with it
live connections to its originating site, nor to any data or service at any other site.
Hence the process of transmitting program text over the network implies a com-
plete network disconnect from the current distributed computation. In addition,
unpredictable dynamic scoping results from transmitting and then running program
text containing free identifiers.

Obliq computations, in the form of procedures or methods, can be freely trans-
mitted over the network. Actual computations (closures, not source text) are trans-
mitted; lexically scoped free identifiers retain their bindings to the originating
sites. Through these free identifiers, migrating computations can maintain connec-
tions to objects and locations residing at various sites. Disconnected agents can be
represented as procedures with no free identifiers; they do not rely on prolonged
network connectivity.

In order to concentrate on distributed computation issues and to reduce com-
plexity, Obliq is designed as an untyped language (lacking static typing). This
decision leads to simpler and smaller language processors that can be easily
embedded in applications. Moreover, untyped programs are somewhat easier to
distribute, avoiding problems of compatibility of types at multþle sites.

The Obliq run-time, however, is strongly typed: erroneous computations pro-
duce clean errors that are correctly propagated across sites. The run-time data

A Language with Distributed Scope 29

space is heterogeneous, meaning that there are different kinds of run-time values

and no provisions to discriminate between them; heterogeneity discourages writing
programs that would be difficult to typecheck in typed languages.

Because of heterogeneity and lexical scoping, Obliq is in principle suitable for
static typing. More importantly, Obliq is compatible with the disciplined approach

to programming that is inspired by statically typed languages.

I .2. Distríbuted Semantícs

The Obliq distributed semantics is based on the notions of sites, locations, values,

and threads.

Sires (that is, address spaces) contain locations, and locations contain values.

Each location belongs to a unique site. Sites are not explicit in the syntax but are

implicit in the creation of locations: when a location is created during a computa-

tion, it is allocated at the current site.

Threads are virtual sequential instruction processors. Multþle threads may

be executed concurrently, both at the same site or at different sites. A given

thread may stop executing at a site, and continue executing at another site. That

is, threads may jump from site to site while retaining their conceptual identity.

In the Obliq syntax, constant identifiers denote values, whlte variable iden-

tifiers denote locations. A location containing a value may be updated by assign-

ment to the variable denoting the location.

Obliq values include basic values (such as strings and integers), obiects, ar-

rays, and closures (the results of evaluating methods and procedures).

A value may contain embedded locations. An array value has embedded lo-

cations for its elements, which can be updated. An object value has embedded

locations for its fields, which can be updated. A closure value may have embedded

locations because of free variables in its program text that refer to locations in the

surrounding lexical scope.

Values may be transmitted over the network. A value containing no embedded

locations is copied on transmission. A value containing embedded locations is

copied up to the point where those locations appear; local references to locations

are replaced by network references. Because of transmission, a value may thus

contain network references to locations at different sites. This semantics of value

transmission has particular implications for closure values.

In general terms, a closure is a pair consisting of a piece of source text and

a pointer to an evaluation stack. Transmission of a closure, in this view, implies

transmission of an entire evaluation stack. Obliq, however, implements each clo-

sure as a pair of a soutce text and a table of values for free identifiers; this tech-

nique is well-known and applicable to lexically-scoped higher-order languages.

Luca Cardelli30

In our context, this implementation of closures has the effect of reducing network
traffic by transmitting only the values from the evaluation stack that are needed
by the closure. A closure that has been transmitted may thus contain program text
that, when executed, accesses remote locations (via its table of free identifiers)
over the network.

Every Obliq object consists of a collection of locations spanning a single site;
hence the object itself is bound to a unique site, and does not move.l This im-
mobility of objects is not a strong limitation, because objects can be cloned to
different sites, and because procedures can be transmitted that allocate objects at
different sites. Hence, a collection of interacting objects can be dynamically al-
located throughout the network. If migration is necessary, cloning can be used to
provide the needed state duplication, and aliasing can be used to redirect opera-
tions to the clones.

We have stressed so far how Obliq computations can evolve into webs of net-
work references. However, this is not necessarily the case. For example, a proce-
dure with no free identifiers forms a completely self-contained computing agent.
The execution of such an agent may be carried out autonomously by a remote
compute server; the agent may dynamically reconnect to the originating site to
report results. Intermediate situations are also possible, as with semi-autonomous
agents that maintain low-trafflc tethers to their originating site for status queries.

I .3. Díscussíon

The distributed semantics of Obliq is defined so that data and computations are
network-transparent: their meaning does not depend on allocation sites or exe-
cution sites (of course, computations may receive different arguments at differ-
ent sites). At the same time, Obliq programs are network-aware: distribution is
achieved by explicit acts that give full control on communication pattems. Central
to network transparency is the notion of distributed lexical scoping.

The combination of lexical scoping with strong run-time typing and inter-
preted execution can provide network security guarantees. Conside¡ the situation
of a server executing incoming foreign agents. Because of lexical scoping, these
agents have access only to the data and resources that they can reference via
free identifiers or that they explicitly receive in the form of procedure parame-
ters. Hence, foreign agents cannot access data or resources at the server site that
are not explicitly given to them. As a concrete example, operations on files in

1. In the implementation, network references are generated to objects and anays, not to each of their embedded
locations. However, it is consistent and significantly simpler to carry out our discussions in terms of network
references to locations.

A Language with Distributed Scope 31

Obliq require file system handles that are provided only as global lexically-bound

identifiers at each site. A foreign agent can use the file system handle of its origi-

nating site, simply by referring to it as a free identifier. But the file system handle

at the server site is outside its lexical scope, and hence unobtainable except with

the cooperation of the server. Degrees of file protection can be represented by file

system handles with special access rights.

In summary, distributed lexical scoping makes it easy to spread computations

over multþle network sites, since computations are likely to behave correctly even

when they are carried out at the wrong place (by some measure). This flexibility
in distribution can, however, result in undesirable network traffic. Obliq relieves

some of the burden of distributing data and computations, but care and planning

are still required to achieve satisfactory distributed performance.

2. Objects

Obliq is an object-oriented language based on objects, rather than classes. An ob-

ject is a self-contained exemplar of behavior that can be either constructed directly

or cloned from other objects. The Obliq language is therefore prototype-based

[Borning 1986], but is not delegation-based [Lieberman 1986]. Obliq belongs

to a category of prototype-based languages that we may call embedding-based2

[Taivalsaari 19931. This name indicates that all the methods of an object, as well

as its value fields, are embedded in the object itself (at least in principle) rather

than being located in other objects or classes. In spirit, this model is close to

Boming's original prototype-based proposal [Borning 1986], and to recent lan-

guages that are not delegation-based [Blaschek l99l,Taivalsaari 1993].

The embedding-based model is straightforwald, and is well suited to network

applications because ofthe self-contained nature ofthe objects. The delegation-

based model, in contrast, maximizes sharing across objects; this is not always

desirable in a distributed context. For example, when an Obliq object is cloned

over the network it carries with it its embedded methods, thus it can work locally

and autonomously when it reaches its destination. In a delegation-based model

it would be more difficult to obtain the complete relocation of an object and its

methods. Typically, this would require the coordinated migration of the object's

parents [Ungar and Smith l99Il, and would affect other objects that share the

same parents.

2. The terms concatenation-based and copy-based have also been used.

Luca Cardelli32

2.1. Fields

An Obliq object is a collection of fields containing methods, aliases, or other val-
ues. A field containing a method is called a method field. A field containing an

alias is called an alias field. A field containing any other value, including a proce-
dure value, is called a (proper) value field. Each field is identified by a.field name.

Syntactically, an object with r¿ fields has the form:

{*t+ê1,...,xa+aa}
where n > 0, and x1 are distinct field names. The terms ai âre siblings of each

other, and the object is their host object.
A value field is, for example:

x+3
A method ûeld has the form:

x + meth(y,yl,...,yn) b end

The first parameter, y, denotes self : the method's host object. The other parame-
ters, for m) 0, are supplied during method invocation. The body of the method is
b, which computes the result of an invocation of x.

Methods and procedures are supported as distinct concepts. Procedures start
with the keyword proc instead of meth and have otherwise the same syntax. The
main differences between the two are as follows. Methods can be manipulated as

values but can be activated only when contained in objects, since selfneeds to bp

bound to the host object. In contrast, procedures can be activated by normal proce-
dure call. Further, a procedure can be inserted in a value field and later recovered,
while any attempt to extract a method from an object results in its activation.

An alias fleld has the form:

x+ aliasyof bend

Operations on the x ûeld of this object are redirected to the y ûeld of the object
b. If that field is another alias, the redirection continues recursively. (Howeve¡
aliasing operations are not themselves redirected; see Section 2.3.)

As we said, Obliq fields (including methods) are stored directly in objects,
not indirectly in classes or shared prototypes. Therefore, field lookup is a one-step
process that searches a field by name within a single object: there is no class or
delegation hierarchy to be searched iteratively. Field lookup is based on a nearly
constant-time caching technique that does not penalize large objects. A separate
cache is used for each operation instance; the cache records the position where a

field was last found in an object [Cardelli 1986].

A Language with Distributed Scope JJ

2.2. Símple Examples

Let us examine some simple examples, just to became familiar with the Obliq

syntax and semantics. A full explanation of object operations is given in the next

section.

The following object has a single method that invokes itself through self (the

s parameter). A let definition binds the object to the identifier o:

let o = {x + meth(s) s.xO end};

An invocation of o . x () results in a divergent computation. Divergence is obtained

here without any explicit use of recursion: the self-application implicit in method

invocation is sufficient.

Theobjectbelowhasthreecomponents:avaluefieldx,amethodincthat
increments x through self and returns self, and a method next that invokes inc '

through self and retums the x component of the result.

leto=

{x+3,
inc â meth(s,y) s.x := s.x * Yl s end,

next * meth(s) s.inc(1).x end];

Here are some operations that can be performed on o:

o. x Selecting the x comPonent.

o. x := 0 Setting the x component to zelo.

o . inc (1) Invoking a method, with parameters.

o. next O Invoking a method with no parameters.

o.next := meth(s) clone(s).inc(1).x end
Overriding the next method so that it no longer modifies

its host object.

2.3. Operatíons

We now examine the object operations in some detail. Apart from object creation,

there are four basic operations on objects.

2.3.1 . Selection (and Invocation)

This operation has two variants for value selection and method invocation:

a.x

a.x(b1,...,bo)

34 Luca Cardelli

The first form selects a value from a value field x of a and returns it. The second

form invokes a method from a method field x of a, supplies n) 0 parameters, and

returns the result produced by the method; the object a is bound to the self param-

eter of the method. For convenience, the first form can be used for invocation of
methods with zero parameters.

When a value field of a remote object is selected, its value is transmitted over
the network to the site of the selection (see the transmission semantics in Sec-

tion 1.2). When a method of a remote object is invoked, the arguments are trans-

mitted over the network to the remote site, the result is computed remotely, and

the final value (or eror, or exception) is returned to the site of the invocation.

2.3.2. Updating (and Overriding)

This operation deals with both value field update and method field override:

a.x := b

Here the field x of a is updated with a new value b. If x contains a method and

b is a method, we have method override. If x and b denote ordinary values, we
have value update. The other two possibilities are also allowed: a value field can

be turned into a method field, and vice versa.

When a field of a remote object is updated, a value is transmitted over the

network and installed into the remote object. Remote method override involves the

transmission of a method closure.

2.3.3. Cloning

Our third operation is object cloning, generalized to multþle objects:

clone(a1,...,ân)

In the case of a single argument, a new object is created with the same field names

as the argument object; its fields are initialized to the similarly named values,
methods, and aliases of the argument object.

In the caSe of n) 2 arguments, a single object is produced that contains the

values, methods, and aliases of all the argument objects (an error is given in case

of field name conflicts). Useful idioms are clone(a, {. . .}), to inherit the fields of a
and add new fields, and clone(ar,az), to multiply inherit from a1 and a2.

When a collection of remote or local objects is cloned, the clone is created

at the local site. Its contents (including method closures) may have to be fetched

over the network.

A Language with Distributed Scope 35

2.3 .4. Aliasing

Our ûnal operation is aliasing, which is the replacement of field contents with

aliases (Section 2.1). The syntax is similar to updating, but this is really a separate

operation:

a.x := alias y of b end

Further operations on x of a are redirected to y of b; either object may be local

or remote. An aliasing operation replaces field contents with aliases regardless of

whether those ûelds are already aliased.

For a method invocation a. x (c), the field x + alias y of b end behaves just

like the field x + meth(s, z)b.y(z) end; that is, an aliased invocation behaves like

an indirect method invocation. However, aliasing also redirects method override,

as well as value selection and value update.3

A special construct can be used to alias all the components of an object at

once:

redirect a1 to a2 end

The effect is to replace every field x1 of a1 (including alias fields) with

alias xi of a2 end; this is particularly useful for network redirection.

Aliasing is implicit in the distributed-systems notion of local surrogate of a

remote object: we have simply lifted this mechanism to the language level. By

doing this, we are able to put network redirection under flexible program control,

as shown later in the case of object migration.

For method invocation, aliasing redirections behave differently from the redi-

rections typical of delegation-based languages [Lieberman 1986]: in aliasing, self

is bound to the redirection target; in delegation, self is bound to the redirection

source. Aliasing is more satisfactory than delegation when the redirection target

is a remote object: after an initial aliasing redirection over the network, further

accesses to self are local.

2.4. Self-inflicted Operations

Our four basic object operations can be performed either as extemal operations on

an object, or as internal operations through self. This distinction is useful in the

contexts of object protection and serialization, discussed in the next two sections,

3. Note that, for simplicity, we delayed the discussion of redirection in our previous explanation of selection and

update.

Luca Cardelli36

which are essential features of distributed objects. In preparation, we discuss the

general notion of self-inflicted operations.

When a method operates on an object other than the method's host object,

we say that the operation is external to the object. By contrast, when a method

operates directly on its own self, we say that the operation is self-inflicted:

. lf op(o\ has the form o . x, o . x:=b, clone(. . . ,o,. . .), or o . x:=alias. . .end,

then op(o) is self-inflicted (ono) iff o is the same object as the self of the

current method.

. op(o) is external (on o) iff it is not self-inflicted.

Here, by the current method (if it exists) we mean the last method that was in-

voked in the current thread of control and that has not yet returned. Therefore, the

notion of self for self-inflicted operations is preserved through procedure calls, but

not through external method invocations or thread creation.

Whether an operation is self-inflicted can be determined by a simple run-time

test. Consider, for example the object:

{p + meth(s) s.q.x end, q + ...}

Here the operation s.q is self-inflicted, since s is self. But the .x operation in s.q.x

is self-inflicted depending on whether s.q retums self; in general this can be deter-

mined only at run-time.

2.5. Protected Objects

It is useful to protect objects against certain external operations, to safeguard their

internal invariants. Protection is particularly important, for example, to prevent

clients from overriding methods of network services, or from cloning servers.

Even protected objects, though, should be allowed to modify their own state and

to clone themselves.

A protected object is an object that rejects extemal update, cloning, and alias-

ing operations, but that admits such operations when they are self-inflicted. The

syntax is:

{protected, x1 * a1,...,xn 9 ao}

Therefore, for example, methods of a protected object can update sibling flelds

through self, but extemal operations cannot modify such fields.

Note that a protection mechanism based on individual fields would not address

protection against cloning.

A Language with Distributed Scope 37

2.6. Serialized Objects

An Obliq server object can be accessed concurrently by multiple remote client

threads. Moreover, local concurrent threads may be created explicitly. To prevent

race conditions, it must be possible to serialize access to objects and their state.

We say that an object ís serialized when (1) at most one thread at a time can

operate on the object or run one of its methods. Moreover, we want to ensure that

(2) a method can call a sibling through self without deadlock. Note that require-

ment (2) does not contradict invariant (1).

The obvious approach to implementing serialized objects, adopted by many

concunent languages, is to associate a mutex with each object (for example, see

lBal19921). Such mutexes are acquired when a method of an object is invoked,

and released when the method retums, guafanteeing condition (1). This way, how-

ever, we have a deadlock whenever a method calls a sibling, violating condition

(2). We find this behavior unacceptable because it causes innocent programs to

deadlock without good reason. In particular, an object that works well sequentially

may suddenly deadlock when a mutex is added. Brewer and V/aldspurger [1992]

give an overview of previous solutions to this serialization problem.

A way to satisfy conditions (1) and (2) together is to use feentrant mutexes,

that is, mutexes that do not deadlock when re-locked by the "same" thread (for

example, see lForté 1'994]).

On the one hand, reentrant mutexes may be too liberal, because they allow a

method to call a method of a different object, which then can call back a method

of the present object without deadlocking. This goes well beyond our simple desire

that a method should be able to call its siblings; object invariants may be compro-

mised, since objects become vulnerable to unexpected activations of their methods.

On the other hand, reentrant mutexes may be too restrictive, because the no-

tion of "Same" thread is normally restricted to an address space. If we want to

consider control threads as extending across sites, then an implementation of reen-

trant mutexes might not behave appropriately.
'We solve the serialization problem by adopting an intermediate locking strat-

eg¡ which we call self serialization,based on the notion of self-inflicted opera-

tions described in Section 2.4.

Serialized objects have an implicit associated mutex, called the object mutex.

An object mutex serializes the execution of selection, update, cloning, and aliasing

operations on its host object, according to the following rules of acquisition:

. Extemal operations always acquire the mutex of an object, and release it on

completion.

. Self-inflicted operations never acquire the mutex of their object.

Luca Cardelli38

Note that a self-inflicted operation can happen only after the activation of an

extemal operation on the object that is executed by the same thread. The external

operation has therefore already acquired the mutex.

The serialization attribute of an object is speciñed as follows:

{serialized, x1 + al,...,xn =+ arr}

With self-serialization, a method can modify the state of its host object and can

invoke siblings without deadlocking. A deadlock still occurs if, for example, a

method invokes a method of a different object that then attempts an operation on

the original serialized object. A deadlock occurs also if a method forks an invoca-

tion of a sibling and waits on the result.

In addition to mutual exclusion, Obliq provides conditional synchronizatíon

over implicit object mutexes. Conditional synchronization (where threads wait
on a mutex and a condition) allows multþle threads to be simultaneously present

"inside" an object, although at most one thread is active at any time. Producer-

consumer behavior can be handled this way lBirrell 1991].

A watch statement is provided to wait on a condition in conjunction with the

implicit mutex of an object. This statement must be used inside a method of a
serialized object; hence, it is always evaluated with the object mutex locked:

watch c until guard end

The watch statement evaluates c to a condition and, if guard evaluates to true,
terminates leaving the mutex locked. If the guard is false, the object mutex is

unlocked (so that other methods of the object can execute) and the thread waits for
the condition to be signaled. When the condition is signaled, the object mutex is

locked and the boolean guard is evaluated again, repeating the process.

The interaction of conditional synchronization with certain object operations

requires some attention. Objects with implicit mutexes can be cloned: a fresh im-
plicit mutex is created for the clone. Consider then the case of a thread blocked

on a condition within an object that is being cloned: the thread remains blocked

within the original object, not the clone. Consider now the case of a thread

blocked on a condition within a method that is being overridden or aliased. When

the thread resumes, the blocked method runs to completion with a non-trivially
modified self. Object protection, when used in conjunction with serialization, alle-

viates these worries since it prevents extemal cloning and updates.

In summary, mutual exclusion, amended for self-inflicted operations, handles

common situations conveniently, for example for network servers maintaining

some internal state. In addition, conditional synchronization can be used for
standard concurrency-control problems. More complex situations may require

A Language with Distributed Scope 39

sophisticated uses of explicit mutexes; for this, Obliq supports the full spectrum of

Modula-3 thread primitives lBirrell 1991, Horning et al. 19931. Explicit mutexes,

conditions, and threads cannot be transmitted, since these values are strongly site-

dependent.

There is no automatic serialization for variables or arrays. If necessary, their

access can be controlled through serialized objects or explicit mutexes. Even for

objects, serialization is neither compulsory nor a default, since its use is not al-

ways desirable. In some cases it may be sufficient to serialize server objects (the

concurrent entry points to a site) and leave all other objects unserialized.

2.7. Name Servers and Execution Engines

Obliq values can flow freely from site to site along communication channels. Such

channels are initially established by interaction with a name serveL A name server

for Obliq progfams is an external process uniquely identified by an IP address; it
simply maintains a table associating text strings with network references lBirrell
ef al. 1,9941.

The connection protocol between two Obliq sites is as follows. The first site

registers a local, oI remote, object under a certain name with a known name

server. The second site asks the name server for (the network reference to) the

object registered under that name. At this point the second site acquires a di-

rect network reference to the object living in the flrst site' The name server is

no longer involved in any way, except that it still holds the network reference.

Obliq values and network references can now flow along the direct connection

between the two sites, without having to be registered with a name server' This

protocol is coded as follows, using a built-in net module:

Server Site:

net- export(" ob j " ,Namer, site 10b j);

Client Site:

let sitel0bj =

net- import("obj ", Namer);

sitel0bj.opA(args); (remote invocation)

site3Obj .opB(site 1Obj); (re-export to a third site)

where 'robj I' is the registration name for the object, sitel0bj is the object, and

Namer is a string containing the IP address or name of the machine running the

desired name server. The object is now available through the name server, as long

40 Luca Cardelli

as the site that exports it is alive. Objects are garbage collected at a site when

they are no longer referenced, either locally or via the network [Birrell, Evers

et al. 19931.

We shall see soon that compute servers are definable via simple network ob-
jects. However, compute servers are so common and useful that we provide them

as primitives, calling them execution engines. An execution engine accepts Obliq
procedures (that is, procedure closures) from the network and executes them at the

engine site. An engine can be exported from a site via the primitive:

Server Site:

net - exportEngine (" Engine 1 @S it e 1 ", N amer, ar g);

The arg parameter is supplied to all the client procedures received by the engine.

It may contain local data as well as site-specific procedures (services [Stamos
and Gifford 19901). Multiple engines can be exported from the same site under

different names.

An engine, once imported, behaves like a procedure of one argument. Im-
plementing engines as remote procedures, instead of as remote objects, allows

self-inflicted operations to extend across sites; this turns out to be important for
object migration, as discussed in Section 4.6.

A client may import an engine and then provide a procedure to be executed

remotely:

Client Site:

let atSitel =

net - importEngine(" Engine l@Sit eI", N amer);

atsitel(proc(arg) 3 * 2 end);

Communication failures produce exceptions that can be trapped. These failures

may mean that one of the machines involved has crashed, or that an Obliq adclress

space was terminated. There is no automatic recovery from network failures.

3. Local Techniques

In this section we discuss a collection of single-threaded examples to illustrate
Obliq's sequential features. A collection of concurrent and distributed examples is

given in Section 4; the impatient reader may want to skip forward. In both these

sections the emphasis is on advanced, rather than tutorial, examples.

A Language with Distributed Scope 4t

3.1 . Recursion and lteratíon

We start with a simple example, to illustrate the use of definitions, local variables,

and control constructs. The factorial function is defined in recursive and iterative

style.

let rec recFact =
proc(n)

ifnis0thenl
elsen*recFact(n-1)
end;

end;

let itFact =

proc(n)

var cnt = n; var acc = 1;

loop

if cnt is 0 then exit end;

acc := cnt * acc; cnt := cnt - 1;

end;

acc;

end;

Identifiers are declared by let, and updatable variables by var. Recursive defini-

tions are obtained by let rec. The identity predicate is called is. A sequence of
statements separated by semicolons retums the value of the last statement; hence

the iterative factorial program returns acc.

3.2. The Obiect-Oriented Numerals

The next example illustrates the expressive power of the object primitives by en-

coding the natural numbers purely in terms of objects'

let zero =

{case +
proc(pz,ps) Pz0 end,

succ +
meth(se1f)

42 Luca Cardelli

let o = clone(self);

o.case ¡= procþz,ps) ps(self) end;

o

end);

The nurneral zero has two fields. The succ field produces successive nurnerals

by appropriately modifying the current numeral. The case field is used to dis-

criminate on zero: the idiom (n.case)(proco b end, proc(p) c end) is read,

informally, as o'if n is zero then return b, else bind the predecessor of n to p and

retum c".
The code of the succ rnethod depends heavily on Obliq peculiarities: it clones

self, and embeds the current self into a procedure closure so that it can be used

later. For example, the numeral one, computed as zero . succ O, is:

{case + proc(pz,ps) ps(zero) end,

succ * (øs for zero\\

Hence, one.case(pz,ps) correctly applies ps to the predecessor of one.

To show that the encoding is fully general, we define the successor, the prede-

cessor, and the test for zero procedures:

let succ =

proc(n) n.succ end;

let pred =
proc(n)

(n.case) (proc0 zero end, proc(p) p end)

end;

let iszero =

proc(n)

(n.case)

(proc0 true end, proc(p) false end)

end;

3.3. The Prime Numbers Sieve

This example shows an interesting case of methods overriding themselves, and

of objects replicating themselves by cloning. The program below prints the prime

A Innguage with Distributed Scope 43

numbers when the method m of the sieve object is invoked with successive inte-

gefs stafting from 2. Each time a new prime p is found, the sieve object clones

itself into two objects. One of the clones then transforms itself into a filter for

multþles of p; non-multþles are passed to the other clone. ok is a trivial constant.

let sieve =
{r+

meth(s, n)

print(n); (dertned elsewhere)

let s0 = clone(s);

s.m :=

meth(s1, n1)

if (nL Vo n) is 0 then ok

else s0.n(n1)

end

end;

end);

(print the primes < 100)

for i = 2 to 100 do sieve.m(i) end;

At any point in time, if n primes have been printed, then there exist n filter objects

plus a clone of the original sieve object.

3.4. A Calculator

This example illustrates method overriding, used here to store the "pending opera- ':

tions" of a pocket calculator'

let calc =

{arg + 0.0, (the "visible" argument dßplay)

acc + 0.0, (the "hidden" accumulator)

enter + (entering a new argument)
I

meth(s, n)
I

s.arg := n;
i

S

end,
add â Qhe addition button)

44 Luca Cardelli

meth(s)
s.acc := s.equals;
s.equals :- meth(s) s.acc + s.arg end;

s

end,

sub * (the subtraction button)

meth(s)
s.acc:= s.equals;
s.equals := meth(s) s.acc - s.arg end;
s

end,

equals + (the result button, and operator stack)

meth(s) s.arg end,
reset + (the reset bunon)

meth(s)
s.arg := 0.0;

s.acc := 0.0;

s.equals :- meth(s) s.arg end;
s

endh

For example:

calc . reset . enter (3 . 5) . equals; (3 . 5)
calc.reset.enter(3.5).sub.enter(2.0).equals; (1.5)
calc.reset.enter(3.5) .add.equals; (7.0)
calc.reset.enter(3.5) .add.add.equals; (10.5)

3.5. Surrogates

Here we create a non-trivial surrogate for the calculator object of Section 3.4.

Unlike the original calculator, this object is protected against outside interference.

Some of the calculator fields are shared by aliasing, some are hidden, some are

renamed, and one is added.

let publicCalc =
{ protected,

enter + alias enter of calc end,
pi =+ meth(s) s.enter(3.141592) end,

plus I alias add of calc end,

mj-nus + alias sub of calc end,

A Innguage with Distributed Scope 45

equals + alias equals of cafc end,

reset + alias reset of calc end);

4 . D istributed Techniques

In this section we code some distributed programming techniques in Obliq. Each

example is typical of a separate class of distributed programs, and illustrates the

unique features of Obliq.

4.1. A Serialízed Queue

We begin with an example of ordinary concurrent programming to illustrate the

threads primitives that are used in the sequel. We implement a queue that can be

accessed consistently by concurrent reader and writer threads.

The queue is implemented as a serialized object with read and write meth-

ods. These methods refer to free identifiers that are hidden from users of the

queue. The object mutex is used, implicitly, to protect a private variable that

contains an array of queue elements. Another private variable contains a condi-
tionnonEmpty used for signaling the state ofthe queue.

The write method adds an element to the queue, and signals the non-empty
condition, so that at least one reader thread waiting on that condition wakes up
(a similar broadcast operation wakes up all waiting threads). The object mutex is
locked throughout the execution of the write method, therefore excluding other

writer or reader threads.
\ilhen a read method starts executing, the object mutex is locked. Its first

instruction is to watch for the non-empty condition, and for the existence of ele-

ments in the queue. If the queue is non-empt¡ the reader simply goes ahead and

removes one element from the queue. If the queue is empty, the reader thread

is suspended and the object mutex is released (allowing other reader and writer
threads to execute). The reader is suspended until it receives a signal for the non-

empty condition; then the object mutex is locked, and the reader thread proceeds

as above (possibly being suspended again if some other reader thread has already

emptied the queue).

What is important here is that a reader thread may be blocked inside a
method, and yet a writer thread can get access and eventually allow the first thread

to proceed. Hence, even though only one thread at a time can run, multiple threads

may be simultaneously present "in" the object.

Luca Cardelli46

Here, [...] is an array, # is array-size,and @ is aray-concatenation.

let queue =
(let nonEnpty = condition0;
var q: []' (the hidden queue data)

{ protected, serialized,
write =à

meth(s, elen)
q := q@[elen]; (append elem to tail)
signal(nonF.rnFty); (wake up readers)

end,
read *

meth(s)
watch nonEnpty (wait for writers)
until #(q) > 0 (check size of queue)

end;
let q0 = q[0]; (get first element)
q := q[l for #(q) - 1]; (remove from queue)

q0; (return rtrú element)
end; Ì);

Let us see how this queue can be used. Suppose a reader is activated first
when the queue is still empty. To avoid an immediate deadlock, we fork a thread
running a procedure that reads from the queue; this thread blocks on the watch
statement. The reader thread is returned by the fork primitive, and bound to the
identifier t:

let t : (fork a reader t, which blocks)
fork(procO queue.readO end, 0);

Next we add an element to the queue, using the current thread as the writer thread.
A non-empty condition is immediately signaled and, shortly thereafter, the reader
thread returns the queue element.

queue.write(3); (cause t to read 3)

The reader thread has now finished running, but is not completely dead because it
has not delivered its result. To obtain the result, the current thread is joined with
the reader thread:

let result = join(t); (get 3 from t)

In general, join waits until the completion of a thread and returns its result.

A Language with Distributed Scope 47

4.2. Compute Servers

The compute server defined below receives a client procedure p with zero argu-

ments via the rexec method, and executes the procedure at the server site. This

particular server cheats on clients by storing the latest client procedure into a

global variable replay. Another field, lexec, is deflned similarly to rexec, but

rexec is a method freld, while lexec is a value field containing a procedure: the

operational difference is discussed below.

Server Site:

var replay -proc0 end;

net-export ("Conputeserver", Namer,

{ rexec + meth(s, p) replay:=p; p0 end,

lexec + proc(p) replaY:=P; P0 end));

A client may import the compute server and send it a procedure to execute.

The procedure may have free variables at the client site; in this example it incre-

ments a global variable x:

Client Site:

let conputeServer =
net- import (" ConputeServer " , Nanter);

varx = 0;

computeServer. rexec(procO x:=x+1 end);

(now x: l)
When the server executes its rexec method, replay is set to (a closure for)

procO x:=x*l end at the server site, and then x is set to 1 at the client site, since

the free x is lexically bound to the client site. Any variable called x at the servel

site, if it exists, is a different variable and is not affected. At the server site we

may now invoke replay () , setting x to 2 at the client site.

For contrast, consider the execution of the following line at the client site:

Client Site:

(conputeServer. Iexec) (proc O x:=x+1 end);

This results in the server returning the procedure proc(p) replay:=p; pO end

to the client, by the semantics of remote field selection, with replay bound at

the server site. Then the client procedure proco x:=x*l end is given as an ar-

gument. Hence, this time, the client procedure is executed at the client site. Still,

the execution at the client site causes the client procedure to be transmitted to the

server and bound to the replay variable there. The final effect is the same.

Luca Cardelli48

4.3. Remote Agents

Execution engines (Section 2.7) can be used as general object servers; that is, as

ways of allocating objects at remote sites. These objects can then act as agents of
the initiating site, supporting multiple requests.

Suppose, for example, that we have an engine exported by a database server

site. The engine provides the database as an argument to client procedures:

DataBase Server Site:

net-exportEngine ("DBServer" , Nemer, dataBase);

A database client could simply send over procedures performing queries on
the database (which, for complex queries, would be more efficient than repeatedly

querying the server remotely [Gosling 1986, Stamos and Gifford 1990]). Howeve¡
for added flexibility, the client can instead create an object at the server site that

acts as its remote agent:

DataBase Client Site:

let atDBServer =
net-importEngine ("DBServer ", Namer);

let searchAgent =
atDBServer(

proc(dataBase)

{ state * ...,

start + meth ... end,

report + meth ... end,

stop + meth ... end)
end);

The execution of the client procedure causes the allocation of an object at the

server site with methods start, report, and stop, and with a state field. The
server simply retums a network reference to this object, and is no longer engaged.
(Client resources at the server site are released when the client garbage collects the

search agent, or when the client site dies [Birrell, Evers et al. 1993].)

We show below an example of what the client can now do. The client starts

a remote search via start from background thread, and periodically requests a
progress report via report. If the search is successful within a given time period,
everything is fine. If the search takes too long, the remote agent is aborted via
stop. If an intermediate report proves promising, the client may decide to wait
for however long it takes for the agent to complete, by joining the background
thread.

A Lønguage with Distributed Scope 49

Database Client Site:

let searchThread =
fork(proc0 searchAgent. start O end, 0);

Yar report = rrrr;

for i: 1 to 10 do
pause (6 . 0);
report 3= searchAgent.reportOi
if successful(report) then exit end;

if promising(report) then
report := join(searchTrread); exit;

end;

end;

searchAgent. stopO;

This technique for remotely allocating objects can be extended to multiple

agents searching multþle databases simultaneously, and to agents initiating their

own sub-agents.

4.4. Applícatíon Partitíoning

The technique for remotely allocating objects described in Section 4.3 can be used

for application partitioning. An application can be organized as a collection of
procedures that retum objects. When the application starts, it can pick a site for
each object and send the respective procedure to a remote engine for that site.

This way, the application components can be (initially) distributed according to

dynamic criteria.

4.5. Agent Migration

In this example we consider the case of an untethered agent that moves from site

to site carrying along some state [White 1994]. We write the state as an object,

and the agent as a procedure parameterized on the state and on a site-speciflc ar-

gument:

let state = i ... h
let agent = proc(state, æB) ... end;

To be completely self-contained, this agent should have no free identifiers, and

should use the state parameter for all its long-terrn memory needs.

The agent can be sent to a new site as follows, assuming atsitel is an avail-

able remote engine:

Luca Cardelli50

at S it e 1(proc(arg) agent(copy (st at e), arg) end)

The copy operation is explained below, but the intent should be clear: the agent

is executed at the new site, with a local copy of the state it had at the previous
site. The agent's state is then accessed locally at the new site. Implicitly, we as-

sume that the agent ceases any activity at the old site. The agent can repeat this
procedure to move to yet another site.

The copy operation is a primitive that produces local copies of (almost) arbi-
trary Obliq values, including values that span several sites. Sharing and circulari-
ties are preserved, even those that span the network. Not all values can be copied,
however, because not all values can be transmitted. Protected objects cause excep-
tions on copying, as do site-specific values such as threads.

This technique allows autonomous agents to travel between sites, perhaps

eventually returning to their original site with results. The original site may go

off-line without directly affecting the agent.

The main unpleasantness is that, because of copying, the state consistency
between the old site and the new site must be preserved by programming conven-
tion (by not using the old state). In the next section we see how to migrate state

consistenfl¡ for individual objects.

4.6. Object Migration

In this example we use a remote execution engine to migrate an object between
two sites. First we define a procedure that, given an object, the name of an engine,
and a name server, migrates the object to the engine's site. Migration is achieved
in two phases: (I)by causing the engine to remotely clone the object, and (2)by
aliasing the original object to its remote clone (Section2.3).

let nigrateProc =
proc (obj, engineNa"me)

let engine =
net- importEngine (engineName, N amer);

let renoteObj =
engine(proc(arg) clone(obj) end);

redirect obj to remoteObj end;

(r)
(2)

renote0bj;
end;

After migration, operations on the original object are redirected to the remote site,

and executed there.

A Language with Distributed Scope 51

It is critical that the two phases of migration be executed atomically, to pre-

serve the integrity of the object state. This can be achieved by serializing the

migrating object, and by invoking the nigrateProc procedure from a method

of that object, where it is applied to self:

let obj 1 -
{ serialized, protected,

.. . (other ftelds)
nigrate *
meth (self , engineName)

nigrateProc (se1f , engineNane) ;

end);
let remote0bjl =

obj 1 . nigrate ("Engine l@Site 1 ")

Because of serialization, the object state cannot change during a call to migrate.
The call returns a network reference to the remote clone, which can be used in
place of obj 1 (which, anyway, has been aliased to the clone).

We still need to explain how migration can work for protected objects,

since such objects are protected against external cloning and aliasing. Note the

migrateProc (self , . . .) call above, where self is bound to obj1. It causes

the execution of engine(proc(arg) clone(obj 1) end). Rather subtl¡ the cloning

of obj t here is self-inflicted (Section 2.4), even though it happens at a site differ-

ent from the site of the object. According to the general deûnition, clone(obj 1) is

self-inflicted because obj 1 is the same as the self of the last active method of the

current thread, which is nigrate (an engine call behaves like a procedure call).

The redirection operation is similarly self-inflicted. Therefore, the protected status

of obj 1 does not inhibit self-initiated migration.

Migration permanently modifies the original object, redirecting operations to

the remote clone. In particular, if obj 1 is asked to migrate again, the remote clone

will properly migrate.

We can avoid chains of indirections if the migrating object obj f. is publicly

available through a name seweL The migrate method can then register the mi-

grated object with the name server under the old name:

let obj 1 -
net-export ("obj l" , Namer,

{ serialized, protected,

migrate t
meth (self , engineName)

Luca Cardelli52

net-exPort (" obj I", Namer,

migrateProc (self , engineName)) ;
end Ì;

This way, old clients of obj 1 go through aliasing indirections, but new clients

acquiring obj 1 from the name server operate directly on the migrated object.

4.7. Application Servers

Visual Obliq [Bharat and Brown 1994] is an interactive distributed-application

and user-interface generator, based on Obliq. All distributed applications built in

Visual Obliq follow the same model, which we may call the application server

model. In this model, a centralized server supplies interested clients, dynami-

cally, with both the client code (as a closure) and the client user interface of a
distributed application. The closure transmitted to each client retains lexical bind-

ings to the server site, allowing it to communicate with the server and with other

clients. Each client may have independent local state, and may present an inde-

pendent view of the application to the user. A typical example is a distributed

tic-tac-toe game.

5. Conclus¡ons

Obliq addresses a very dynamic form of distributed programming, where objects

can redirect their behavior over the network, and where computations can roam

between network sites. We feel that this kind of programming is still in its in-

fancy, and that not all the fundamental issues can yet be addressed at once. Where

in doubt, we have given precedence to flexible mechanism over robust method-

ology, hoping that methodology will develop with experience. In this spirit, for
example, Obliq could be used to experiment in the design and implementation of
agentfplace paradigms [White 1994], using the basic techniques of Section 4.

5.1 . Related Work

Obliq's features and application domains overlap with programming languages

such as ML [Milner 1989, Reppy l99ll, Modula-3 [Nelson t99l], and Self

[Ungar I99I]: with scrþting languages such as Sundew [Gosling 1986], Tcl

[Ousterhout 1994), AppleScript [Apple 19931, VBA [Brockschmidt 1994, Mans-

field 19941, and Telescript lWhite 1994]; and with distributed languages such as

Emerald [Jul et al. 1988], Orca [Bal etaI.1992], Forté [Forté 1994], and Facile

A Language with Distributed Scope 53

[Thomsen et al. 1993]. None of these languages, however, has the same mix of
features as Obliq, particularly concerning the distribution aspects.

Stamos and Gifford t19901 eloquently describe ¡emote execution as a gener-

alization of remote procedure call, and survey previous work on remote execution

mechanisms. Their proposal, though, restricts the transmission of higher-order pro-

cedures and procedures with free identifiers, inhibiting the techniques of Section 4.

Our choice of features was largely determined by the idea of a distributed lex-

ically scoped language, by the desire for a simple object model that would scale

up to distributed computation, and by the availability of a sophisticated network-

objects implementation technology. The Obliq object primitives were designed

in parallel with work on the semantics and type theory of objects lAbadi and

Cardelli 19941; disfributed scoping and distributed semantics, however, are not

treated there.

5.2. Influence of Modula-3 Network Objects

The characteristics of Modula-3 Network Objects (M3NOs) had a major influence

on the Obliq language design and implementation. Thanks to the low overhead

involved, all Obliq objects are M3NOs, so there is no artificial separation be-

tween local objects, and objects that may be remotely accessed. Similarly, all
Obliq program variables (declared by var) are M3NOs: this is the basis for dis-

tributed lexical scoping. Concems about space reclamation, specially for resources

used by remote agents, are relieved by distributed garbage collection of M3NOs.

Finally, the M3NOs stub generator handles automatically the transmission of all of
Obliq's run-time structures.

Moral: a distributed language like Obliq is easy to implement on top of a li-
brary like Modula-3 Network Objects. Conversely, a network object library should

make it easy to implement a language like Obliq, or is falling short of some im-
portant goals.

5.3. Status

Obliq has been available at Digital SRC since June 1993. In addition to incidental
programming, it has been used extensively as a scripting language for algorithm

animation [Brown 1994] and 3D graphics [Najork and Brown 19941, and as the

basis of the Visual Obliq distributed-application builder [Bharat and Brown 1994].

The Obliq implementation provides access to many popular Modula-3 libraries

fHoming et al. 1993], and to an extensive user interface toolkit [Brown and

Meehan 19941 including digital video [Freeman and Manasse 19941. Obliq can

Luca Cardelli54

be used as a st¡rnd-alone interactive interpeær. It can also be embedded as a li-
brary in Modula-3 applications, allowing them to interact remotely through Obliq
scripts [Cardelli 1994]. The implementation and documentation are available on
the World Wide Web at htþ://www.research.digital.com/SRC/home.html.

5.4. FutureWork

Issues of authentication, security, authority delegation, and accounting are being
explored.

Acknowled,gments

The Network Objects project at Digital SRC provided the infrastructure without
which Obliq would not have been conceived. Alan Knaffimplemented the meta-
parser layer of the Obliq parser as part of â separate project.

A Languøge with Distributed Scope 55

Appendix : Syntax Overview

(See lCardelli 1994] for details.)

TOP-LEVEL PHRASES

a; any term or definition ended by ;

DEFINITI0NS (denoted by d;

identifiers are denoted by x,
terms are denoted by a)

let x1=a1, . . . , xn=ên defrnition of constant identifiers
let rec x1=ã1,. . . , xn=ân definition of recursive procedures
yâr x1=a1, . . . , xn=ân definition of updatable identifiers

SEQUENCES (denoted by s)

all...l an executes each ai (term or deflnition);
yields att (or ok if n : 0)

TERMS (denoted by a, b, c;

identifiers are denoted by x, 1;

libraries are denoted by n)
x I n-x identifiers
x:=a assignment

ok ltrue lfalse I 'a' | "abc" l3l 1.5 constants

[a1,. . ., ao] ¿ilTays

a[b] I a[b]:=c a:ray selection, ¿uray update

a[b1 for bz] I albr for b2]:=c subarray selection, subarray update

option I + s end term s tagged by 1

proc(x1,...,xo) s end procedures

a(br,...,brr) procedure invocation
m-x(a1,. . ., an) invocation of x from library n
a b c infix (right-associative) version of b(a, c
meth(x, xl, . . . , xo) s end method with self x

{f t + â1,. ..,Io + ao} object with fields named 1r .. .1o

{protected, serialized, ...} protected and serialized object

{rr + alias 12 of a2 end,...} object with aliased fields

a.t I a.I(a1,..., ân) field selection/method invocation
a.I:=b field update/method override
clone(a1,..., an) object cloning
a1.l1:=alias 12 of a2 end field aliasing

redirect a1 to a2 end object aliasing

d definition
if s1 then s2 elsif s3 then s4 . . .

56 Luca Cardelli

else so end
aandif b laorif b
aisb laisnotb
case s of

Ir(xr) â s1,...,Io(xo) + so

else s9 end
loop s end
for i=a to b do s end
foreachiinadosend
foreachiinamapsend
exit
exception(' ' exc' ')
raise (a)
try s except a1 + s1,. . . , â¡1 =à sa

else sg end
try s1 finally s2 end
conditionO I signal(a) I broadcast(a)
watch s1 until s2 end

fork(a1, az) | join(a)
pause(a)
mutexo
Iock sr do sz end
wait(ar, az)
(s)

conditional (elsif, else optional)
conditional conjunction/disjunction
identical/not identical predicates

case over the tag Ii ofan option value

binding xi in si (else optional)
loop
iteration through successive integers

iteration through an array
yielding Lî array of the results

exit the innermost loop, for, foreach

new exception value named exc
raise an exception

exception capture (else optional)
flnalization
creating and signaling a condition
waiting for a signal and

a boolean guard

forking and joining a thread
pausing the current thread
creating a mutex
locking a mutex in a scope

waiting on a mutex for a condition
block structure/precedence group

A Lønguage with Distributed Scope 57

References

l. M. Abadi, L. Cardelli, A theory of primitive objects: untyped and first-order sys-

Tems, Proc. Theoreticøl Aspects of Computer Soþuare, Springer-Verlag, 1994.

2. Apple, Applescript Language Guide, Addison Wesley, 1993'

3. H. E. Bal, M. F. Kaashoek, A. S. Tanenbaum, orca: a language for parallel pro-

gramming of distributed systems, IEEE Transactions on Sofnvare Engineering

1.8(3), 190-205.1992.

4. K. Bharat, M. H. Brown, Building distributed applications by direct manipulation,

Proc. UIST94,1994.

5. A. D. Birrell, An introduction to programming wittr threads, In Systems Program'

ming with Modula-3, Chapter 4, G. Nelson, ed., Prentice Hall, 1991'

6. A. D. Birrell, D. Evers, G. Nelson, s. owicki, E. v/obber, Distributed garbage

collectionfor netyvork objects, Report 116, Digital Equipment Corporation, Sys-

tems Research Center, 1993.

7. A. D. Binell, G. Nelson, S. Owicki, E. Vy'obber, Network objects, Proc. l4th Sym'

posium on Operating Systems Principles, 1993'

8. A. D. Binell, G. Nelson, s. owicki, E. wobbeq Network obiects, Report 115,

Digital Equipment Corporation, Systems Research Center, 1994'

g. G. Blaschek, Type-safe OOP with prototypes: the concepts of Omega, Structured

Programming l2(I2)' l-9, I99I.
10. A. H. Borning, Classes versus prototypes in object-oriented languages, Proc.

AC M I I EEE F atl J oint C omputer C onferenc e, 1986.

11. E. A. Brewer, C. A. V/aldspurger, Preventing recursion deadlock in concurrent

object-oriented systems, Proc. 1992 International Parallel Processing Symposium,

1992. Also Report MIT/LCS/TR-526.

12. K. Brockschmidt,Inside OLE2, Microsoft Press, 1994.

13. M. H. Brown , Report on the 1993 SRC atgorithm anim.ation festival, Repott n.126,

Digital Equipment corporation, systems Research cente¡ to appeal 1994.

14. M. H. Brown, J. R. Meehan,The FormsvBT Reþrence Manual, unpublished,

Digital Equipment Corporation, Systems Research Centet, 1994.

15. L. Cardelli, The Amber machine, Proc. Combinators and Functional Programming

Languages, Lecture Notes in computer science 242, Springer-verlag, 1986.

16. L. Cardelli, obliq: A language with distributed scope, Report n.l22,Digital
Equipment Corporation, Systems Research Centet, 1994'

17. Fortê:, TOOL reference manual. Forté, Inc., 1994'

18. S. M. G. Freeman, M. S. Manasse, Adding digital video to an object-oriented user

interface toolkit, P ro c. EC O O P' 94, Spnnger-Yerlag, 1994'

Ig. J. Gosling, Sundew: A distributed and extensible window system, Proc. Winter

USENIX Technicøl Conference, USENIX Association, 1986'

20. J. Horning, B. Kalsow, P. McJones, G. Nelson, Some useful Modula-3 interfaces,

Report 113, Digital Equipment Corporation, Systems Research Center, 1993.

58 Luca Cardelli

21. E. Jul, H. Levy, N. Hutchinson, A. Black, Fine-grained mobility in the Emerald
system, ACM Transactions on Computer Systems 6(1), 109-133, 1988.

22. H. Lieberman, Using prototypical objects to implement shared behavior in object
oriented systems, Proc. OOPSLA'8ó, ACM Press, 1986.

23. R. Mansfield, Visual Basic for Applications, Ventana Press, 1994.

24. R. Milner, M. Tofte, and R. Hatp"r, The definition of Standard MI, MIT Press,

1989.

25. M. Najork, M. H. Brown, A library for visualizing combinatorial structures, Proc.
IEEE Visualization' 94, 1994.

26. G. Nelson, ed. Systems programming with Modula-3, Prentice Hall, 1991.

27. J. K. Ousterhout, Tcl and the Tk toolkit, Addison-Wesley, 1994.

28. J. Reppy, A higher-order concurrent language, Proc. SIGPLAN'9L Conference on
Programming Languøge Design and Implementation, ACM Press, 1991.

29. J. W Stamos, D. K. Gifford, Remote Evaluation, ACM Transactions on Program-
ming Languages and Sysîems l2(4),537-565, 1990.

30. A. Taivalsaari, Kevo, ø prototype-based object-oriented language based on con-
catenation and module operations, Report LACIR 92-02, Universify of Victoria,
1992.

31. A. Taivalsaari, A critical view of inheritance and reusability in object-oriented
programming, Jyvraskylra Studies in computer science, economics and statistics
No. 23, A. Salminen ed., University of Jyvraskylra, 1993.

32. B. Thomsen, L. I€th, S. Prasad, T.-M. Kuo, A. Kramer, F. Knabe, A. Giacalone,
Facile Antigua Release Programming Guide, ECRC-93-20, European Computer-
Industry Research Centre, 1993.

33. D. Ungar, R. B. Smith, Self: The power of simplicity, Lisp and Symbolic Compu-
tation 4(3\. 1991.

34. J. E. White, Telescript technology: The foundationfor the electronic marketplace,
White Paper, General Magic, lnc., 1994.

A Language with Distributed Scope 59

