
Applicability of Smart Cards to

N etw ork U s er Authentic ation

Marjan Krajewski, Jr., John C. Chipchak,

David A. Chodorow, Jonathan T. Trostle

The MITRE Corporation

ABSTRACT: This paper addresses security issues as-

sociated with authenticating users to system services

in distributed information systems. Its focus is the pre-

sentation of an approach for augmenting the Kerberos

network user identification and authentication protocol

through the integration of emerging smart card tech-

nology. Our conclusions indicate that the security of
Kerberos-based network authentication can be substan-

tially enhanced by employing a smart card as a trusted

desktop coprocessor.

@Igg4 The uSENIX Association, computing systems, vol.7 . No. 1 ' \Vinter 1994 75

76

l. Introduction

Two critical aspects of information system security are the application of access

controls based on a user's authorizations and the creation of an audit trail based
on a user's actions.[l] Both are dependent on the accurate authentication of users
to guard against the threat of intruders masquerading as valid users. Tradition-
ally, a user is authenticated to a host upon presentation of a valid combination of
user ID and password. In a distributed processing environment, a user often needs

to access resources located at multiple servers from multiple workstations inter-
connected via a communications network. Authentication to each host accessed

is crucial, but presenting separate user ID/password pairs can be both unwieldy
and unsecure. lVhat is needed is a mechanism that requires users to identify and
authenticate themselves once and then transparently performs all further user iden-
tification and authentication.

Although much work has and is being done in this area, a general solution
suitable for truly hostile environments (i.e., those subject to attacks against both
workstations/servers and the networþ does not yet exist. Some identification
and authentication protocols, designed for use in military environments where
the network is physically protected from intruders and the users are trusted, do not
use any form of encryption and can be easily defeated by any one of a number
of commercially available network protocol analyzers capable of intercepting
network transmissions. Other protocols protect against the threat of network
eavesdropping through the use of various forms of encryption but still assume
that workstations and servers are physically protected (e.9., by individual user
ownership/control). The covert introduction of a Trojan Horse program into these

workstations can easily "break" the authentication mechanism. Many organizations
could greatly ease the many problems associated with password management and

the threat from masquerading on their increasingly distributed information systems

with an approach that was secure from both a workstation/server and a network
perspective.

The Kerberos protocol possesses many advantages as a basis for this capabil-
ity. Originally developed to provide user authentication for the distributed open
computing environment of MIT's Project Athena, Kerberos is growing signifi-

Krajewski et al.

cantly in popularity (it has been adopted by the Open Software Foundation and

Unix International and is being offered in several commercial products). It is
based on the use of a trusted authentication server to provide "tickets" for pre-

sentation to other system servers and uses conventional (secret) key encryption to

protect against network eavesdropping and masquerading.

2. Kerberos Overview

Kerberos version 4 was developed at MIT to protect the Project Athena

network[2]; Kerberos version 5 is intended for a wider variety of environments

and has additional security features.[3] Version 5 has recently been approved as a

proposed standard and released as an Internet Request for Comments (RFC 1510,

September 1993).

In Kerberos, the entities that interact in authentication exchanges ¿ìre called

principals; these principals are either users that will access the network via work-

stations or network services running on a host. Each principal receives a secret

Data Encryption Standard (DES) encryption key upon registration. Hosts within a

local group (referred to as a realm) are served by a Kerberos authentication server

(KAS) and a ticket granting server (TGS), which are typically co-located.

The authentication of a user's client application to a particular network ser-

vice requires three steps; the first step occurs during login. The user enters his or

her user ID into the workstation; this user ID is sent to the KAS. The KAS sends

back a ticket granting server ticket (TGS ticket), containing the server name, the

server realm, and an encrypted part. The encrypted part includes a session ke¡
client identification information, ticket lifetime information, and several optional

fields. The encrypted part of the ticket is encrypted in the secret key of the server

(the TGS in this case). The KAS also sends back an encrypted response message

containing the session key included with the ticket (the TGS session key in this

case) along with client identiflcation information and other fields. The response is

encrypted in the secret key of the requesting user. Upon receiving the encrypted

KAS response, the user is prompted for his/trer password; this and other informa-

tion are used to recreate the user's secret key. The user's secret key is then used

to decrypt the KAS response. At this point, the user's workstation holds a TGS

ticket and the user is considered "logged in." When needed, these credentials can

be used to obtain tickets for network services from the TGS.

To request a ticket for a network service, the client application must contact

the TGS. In Kerberos, the authentication of a client to a server requires the client

to send both a ticket (granted by the KAS) and an authenticator (created by the

Applicability of Smart Cards to Network User Authentication 77

78

client) to the server. The purpose of the authenticator is to prove that the request-

ing client is the one to whom the ticket was issued (to prevent replay attacks). The

authenticator contains client identiflcation information, a timestamp, checksum,

and, optionally, a subkey field and is encrypted in the session key contained within
the associated ticket. Upon receiving the TGS ticket and authenticator, the TGS

first decrypts the encrypted part of the ticket with its secret key, then uses the ses-

sion key contained within the ticket to decrypt the authenticator. The TGS then

checks if the checksum in the authenticator is correct and if the client identiflca-

tion information matches the same fields in the ticket. Also, the timestamp field

is checked to determine if the authenticator is fresh or is a potential replay. If the

timestamp is more than five minutes old, the authenticator is rejected. The server

also maintains a record of all authenticators that have been received in the last ûve

minutes; if the timestamp and client names match the same fields in a previously

recorded authenticator, then the authenticator is rejected. If the credentials pass

the various checks, the TGS issues a ticket for the desired application server along

witn a response containing the application server session key and other fields en-

crypted in the TGS session key. The client uses the TGS session key to decrypt

the TGS response and obtain the application server session key. Both the applica-

tion server session key and associated ticket are then stored for later use.

The authentication of the client to an application server involves the creation

of an authenticator (encrypting it with the application session key). The appli-
cation server ticket and authenticator are sent to the application server. The ap-

plication server uses its secret key to decrypt the ticket and perform the various

authentication checks as previously described for the TGS. If the client credentials

pass these various checks, the application session is allowed to begin.

Some of the additional features present in Kerberos version 5 that are not im-
plemented in Kerberos version 4 include the server caching of received authenti-

cators for a five-minute period, the modularizatton of the encryption functions (to

facilitate replacement of DES encryption with other types of encryption), integrity
protection of plaintext (obtained by embedding a checksum before encryption),
use of ASN.I syntax for encoding fields in messages, flexible ticket lifetimes, au-

thentication forwarding (allowing a client access rights based on a ticket issued to

another client), use of a sub-session key to protect a given application session (be-

cause the session key is valid for the lifetime of a ticket, some issues arise from
reusing a session key for several different application sessions), and options for
a challenge/response protocol (to be used as an alternative means for protection

against replay attacks).

Krajewski et al.

3. Kerberos Login Vulnerabilities

Kerberos has been analyzed from a general security perspective.[4] A significant
vulnerability involves its manipulation of the user's Kerberos password and ses-

sion keys within the workstation, thereby making it vulnerable to Trojan Horse
threats that could capture such data for later use by an intruder. Another vulner-
ability involves the threat of repeated attacks at the intruder's leisure following
interception of the initial response from the KAS. This response contains the

ticket granting server session key and is encrypted using the user's relatively
weak password-derived secret key. A third vulnerability involves the inherent
weakness of depending solely on a single factor (i.e., a password) for the initial
user authentication. Passwords can be easily borrowed or stolen. These vulnerabil-
ities are depicted in Figure 1.

Figure 1. Kerberos login vulnerabilities.

Advances in encryption and smart card technology have reached the point
where significant amounts of information can be stored and processed within the
card itself.[S] When this technology is combined with user-unique information
such as a password or personal identification number (PIN) that is useless except
when processed by the appropriate smart card, the security provided by Kerberos
can be greatly improved.

Ongoing work in this area has involved the use of magnetic stripe or mem-
ory cards to hold the user's password/secret key and the use of time-varying smart
cards to provide a unique, perishable secret key known only to the KAS and the
user. When combined with a PIN, these approaches address two of the vulner-
abilities mentioned above (i.e., the interception of the initial response from the
KAS and the dependence on a single authentication factor). However, they do not
provide a wholly satisfactory solution for the third vulnerability (i.e., data cap-

Client Kerbêros
TGS session key
Berver sesslon keys

Bor¡owed? I
Stolen? IÂt

(\ J/ ,on,n,"o

N-/u
3,æ\

ffi"ry'

Applicability of Srnart Cards to Network User Auîhentication 79

ture by a Trojan Horse), since decrypted Kerberos session keys remain within the

workstation.

4. Augmentation Concept

The ability of smart cards to provide an independent storage and processing en-

vironment allows the migration of a user's secret key and the sensitive crypto-

graphic processing associated with it from an untrusted workstation to a trusted

device that is always under the physical controVprotection of the user (see Fig-

ure 2). The user key stored on the card would itself be encrypted in a key derived

from a password. In this way, neither possession of the card alone nor knowledge

of the password alone would be suffrcient to allow an imposter to masquerade

as the authorized user. Encryption and decryption operations and the storage of
unencrypted authentication information would occur only within the trusted envi-

ronment of the smart card, and workstation software would only be allowed access

to session keys in encrypted form. With this approach, the smart card forms a per-

sonal trusted extension of the Kerberos processing environment. This concept was

frrst proposed by Krajewski.[6]
In addition to enhancing security, it is important to maintain interoperability

with existing Kerberos implementations in order to allow augmented Kerberos

components to be gradually introduced into an operational environment as time

and resources permit. This constraint mandates that neither the Kerberos authen-

tication server (KAS) nor the server Kerberos implementations be affected in any

way. It also mandates that the client Kerberos software be modified in a way that

results in the least impact to the existing code. The initial concept was modified

[7] to require only that selected cryptographic routines in client Kerberos be re-

placed with smart card driver software. The driver software, together with the

attached smart card, emulated the original code with one difference-all session

Cryptographic
processing

Figure 2. Kerberos augmentation concept.

Krajewski et al.80

keys presented to the smart card driver were returned to the calling routine in en-

crypted form rather than unencrypted form. By doing this, the remaining client
Kerberos software is tricked into "believing" that it is handling red (unencrypted)

session keys when, in fact, it is handling only black (encrypted) session keys.

Issues that quickly arise in attempting to implement this concept include those

related to feasibility, security, and performance. Regarding feasibility, it is not ob-

vious how well current smart card technology can support the required functional
partitioning between inboard and outboard elements. Regarding security, it is not

obvious how well current smart card technology can provide a trusted environ-
ment and protect sensitive information. Regarding performance, it is not obvious
how severely the use of an outboard microprocessor will impact response time.

The details of and lessons learned from a prototype built to answer these questions

are the focus of the remainder of this paper.

5. Prototype Environment

The Kerberos smart card prototype was developed using the Kerberos version
5 beta 1 release of the software. The prototype environment consisted of both
prototype components and development components. The prototype compo-

nents consisted of a Sun SPARCstationrM IPC workstation, which served as the

Kerberos authentication server/ticket granting server (KASÆGS); a Sun 3/50

workstation, which was used as the Kerberos client workstation, a SOTA Elec-
tronics Inc. OmegaCardtt Reader connected to the RS-232-C serial port of the

client; and a SOTA OmegaCardrM. Both of the workstations ran SunOS release

4.1.1 and had the Kerberized telnet daemon running for both client and server

modes of operation. The development components consisted of an IBM PC

clone with an OmegaCardru Reader, an OmegaCardtM, and development soft-
ware. The development software included the SOTA development applications

and routines supported by the Archimedes Software Inc. C-8051 software-
a C-cross compiler and an 8051 assembler. An OmegaCardtM is a smart card

with an embedded 8051 microcontroller; 128 bytes of random access memory
(RAM); 4 kilobytes of masked read-only memory ßOM), which contains a small
operating system; 8 kilobytes of electrically erasable programmable read-only
memory @EPROM), which stores the user application and data; and serial in-
puloutput (VO) to interface the smart card to the outside world (see Figure 3).

The OmegaCardrM Reader provides power, clock, and an RS-232-C interface for
the OmegaCardru. The OmegaCardrM will henceforth be referred to simply as the

smart card.

Applicability of Smart Cards to Network User Authentication 8l

SOTA omsg¡ Clrd

Ëffiffiffiffi l\.\.\,\.\,\.\,1

tffiffiffi
l,',,,=i,ry",

'I

[,,?åT,-l

lnterfrce Connrctor

8051
. /, _ _ _ .r

I tl, proce¡¡or : i .i3"'
i,

I lt ----./ ffi oovetopecsotlware

lïl uoorrr"o son*ar"

ffi ProvldedSoltware

Figure 3. Smart card hardware architecture.

6. Kerberos Client Modifications

In developing the prototype, we confined our modiflcations of client Kerberos to

files within the DES directory. Thus, the prototype can, in principle, be readily

modified to work with a version of Kerberos that uses a cryptographic algo-

rithm other than DES. The prototype demonstrates kinit and Kerberized telnet.

Due to resource constraints, mutual authentication was not implemented (i.e., the

prototype only performs telnet client authentication), nor have we made the mod-

ifications to allow private or safe messages to be exchanged. We feel it would not

be difficult to modify the prototype to include these features, but it would require

client modifications outside of the DES directory.
The program kinit is responsible for getting the ticket granting ticket and

the ticket granting server session key from the Kerberos authentication server

(see Figure 4). In the prototype, as in regular Kerberos, the principal name is

first sent to the authentication server, which responds with a message contain-

ing a TGS ticket and an encrypted string. The encrypted string contains the

TGS session key in bytes 31 through 38 and is encrypted in the user key. The

user then enters his or her password into the workstation, and this password

is hashed into a DES key by the mit-des-string2key function. At this point,

modifrcations to the mit-des-stringZkey function open and configure the se-

rial port line attached to the smart card for exclusive access (thereby prevent-

ing other processes on the workstation from accessing the smart card between

the exclusive open system call and the close of the serial port when kinit ex-

its). In addition, the modified mit-des-string2key function sends reset, login,

and prompt commands to the smart card to initialize it. Next, the modified

Krajewski et al.82

usor ld TGS tlckst,
fsnc. partlusa/ ftay

-+
ussf ld
---->

paaawofd hashód pas8word,

[onc. panlusar ßey
ffGS EkIIGS 8¡

Iueù Røylheshêd paoEwotd

DES slgoilthm

Figure 4. Kinit.

mit-des-string2key function sends the hashed password key to the smart card to

decrypt the user key.

The mit-des-cbc-encrypt function and the mit-des-ecb-encrypt function are

the Kerberos cryptographic functions. We removed the mit-des-ecb-encrypt

function since its work is performed by the smart card. We modified the

mit-des-cbc-encrypt function to transfer the encrypted string to the smart card.

For decryption operations, the message is returned in decrypted form except for
the portion containing the session key (bytes 31 through 38), which is encrypted in
the TGS session key. Upon the return of the decrypted message, the client work-
station believes it has an unencrypted session key and handles it as it would any

such key.

The main problem encountered in the prototype implementation of kinit was

that the client computes a checksum over the decrypted string containing the TGS

session key and compares it to the checksum that was computed over the same

string by the authentication server and included in the message prior to encryption.

These values are no longer equal in the prototype because the TGS session key on

the client is encrypted. Our interim solution was to remove the checksum calcula-

tion code from the client. This introduces a vulnerability in that a malicious Trojan

Horse could change the order of bytes in the message sent to the smart card and

cause the session key to be returned in the clea¡. A more general solution, there-

fore, would be to compute and validate the checksum on the smart card prior to
returning any decrypted information.

The sequence of operations to establish a Kerberized telnet session is as fol-
lows (see Figure 5). First, the client creates an authenticator (intended to counter

the replay threat) for the TGS ticket. Next, using the modified mit-des-cbc-encrypt

function, the TGS session key (in encrypted form) is sent down to the smart card.

Then, the authenticator is sent to the smart card and returned to the client, in en-

crypted form. The client sends the encrypted authenticator and TGS ticket to the

--+
f
sr"tr c"rd I

Applicability of Smart Cards to Network User Authentication 83

Ticket Granting Server I I Server
TGS tickot,
!uth.,
seruer ld

tolnst llckêt, I telnet lickst,
lonc. padltcs skl auth.

Client WS

auth. c(
IGS el

rnlents, I auth,
lTcs sk I

t enc. narr Ircs s*ffrotnot sklrcs st aufh. conlonls, I auttr,
ltelnot sklTcs sk i

Smart Card lnterface
SmaÌt Csrd

lueet køylhesh act pesswotd
DES algorhhm
TGS sk

Figure 5. Kerberized telnet.

TGS; the TGS responds with the appropriate telnet ticket and a string encrypted

with the TGS session key. As in the case of kinit, the telnet session key is in bytes

31 through 38 of this encrypted string. Using the modified mit-des-cbc-encrypt
function, the client sends the encrypted string to the smart card and receives the
decrypted result (again, as with kinit, the telnet session key is encrypted in the

TGS session key before being sent back). The client then creates an authenticator

for the telnet ticket and sends the telnet session key (encrypted) and the authenti-
cator to the smart card. The encrypted authenticator is returned to the client and

sent with the telnet ticket to the desired server. Once the telnet server receives

the telnet ticket and the encrypted authenticator, it decrypts them, performs the

necessary authentication checks, and, if successful, allows the telnet session to
begin.

The main problems encountered in developing the modifled telnet implemen-

tation were twofold and, as was the case with kinit, were due to the fact that the

keys on the client are in encrypted form whereas the Kerberos code expects them

to be in the clear. One such problem results from the fact that the Kerberos ver-

sion 5 beta 1 code uses the keys themselves as the DES algorithm cipher block
chaining (CBC) mode initialization vectors. We thus found it necessary to have the

smart card use the decrypted keys as the initialization vectors rather than obtain

them from the client. Vy'e also encountered a problem resulting from the client's
use ofthe session key to create a sub-session key to include in the authenticator.

The client Kerberos routines check the parity of the session key, and since this key
is encrypted on the client, it often has bad parity, thereby causing an error to be

flagged. In the prototype implementation, we simply removed the error flagging
code. A more general solution is to make a copy of the encrypted session key on

the client and allow this copy to be "txed up" by the mit-des-ûxupÌey-parity
function.

Krajewski et al.84

7. Smart Card Implementation

The smart card is programmed to be an encryption service provider for the en-

cryption of Kerberos authenticators and the decryption of Kerberos KASÆGS
responses. It implements the DES CBC mode, performing an encryption or de-

cryption operation on 8-byte blocks of data using a DES key and an initialization
vector. The software architecture of the smart card consists of the operating sys-

tem, VO routines, interface routines, the control application, and DES algorithm
(see Figure 6). The operating system and VO routines are provided in the smart
card development system. Assembler interface routines were modified to allow
Archimedes version 4.0 C-8051 to make calls to the operating system to read mes-

sages into the smart card, write messages out of the smart card, and write bytes
to EEPROM. Both the control application and the DES algorithm are written
in C.

The control application implements the control protocol to communicate with
client Kerberos and performs the requested encryption service on the input data.

There are two additional functions in support of the encryption service: decrypting
the user key for decryption of the first KAS message and downloading a session

key for encryption of authenticators. The control protocol has been implemented
such that each request message sent to or from the smart card has a correspond-
ing response message (acknowledgment) returned before another message may
be sent. This serves to keep the client Kerberos and the smart card message ex-
changes tightly coupled and helped in smart card software debugging. There
are some smart card initialization procedures regarding card reset, card login,
and execution of the control application. Once the smart card control applica-

ffi o.rttop.osonr.r.

FJI mo¿n"c sonrr.,"

S@ r."u.csot
"r.

Figure 6. Smat card software architecture.

.i,

Control

\\\\\\\\\\\\\\\\\\\\\\¿t ¡tt tt tt tt I ¿ I I I I I I I ¿ I

ì,ì,ì,ì'ì,ì,"uF'n'oütideb' ì,ì,ì,ì,ì,ì,
,i,i,i,i,i,i(B0s I Assem btyl,i,i,i,i,j,j\ \ \ \ \ \ \ \ \ \ \ \ \.\ \ \ \ \ \ \ \ \tt ttttt tttttt tt Ì I I t I I t

Applicability of Smart Cards to Network User Authentication 85

86

tion is running, all messages sent to the smart card are delivered to the control
application.

In support of KAS/TGS response decryption, the following operations are per-

formed. To process the initial KAS response, it is first necessary to decrypt the

Kerberos user key (stored in encrypted form in EEPROM). To do this, client Ker-
beros sends a hash of the user password to the smart card to be used as a DES

key. The smart card decrypts the user key using this hashed password key. Client
Kerberos then sends the KAS response to the smart card, one block at a time in a
Download Block message. The last block is sent in a Decrypt message, notifying
the smart card to start the decryption process. The smart card assumes that the first
response to be decrypted following initializatron comes from the KAS. This re-
sponse is encrypted in the user key and contains the TGS session key. Subsequent

responses are assumed to come from the TGS. These responses are encrypted in
the TGS session key and contain server session keys. Decrypted blocks are sent

back in a Return message. The last decrypted block is sent back in an End mes-

sage. All decrypted session keys are re-encrypted in the TGS session key before

being sent back. The decrypted user key is destroyed after the first response is

processed. Thereafter, the smart card uses the stored TGS session key for all de-

cryptions.
For subsequent support of the TGS authenticator encryption, the following

operations are performed. The appropriate session key is sent to the smart card in
the Send Session Key message. The session key is decrypted with the TGS session

key and stored in memory. Next, the TGS authenticator is sent down to the smart

card one block at a time in a Download Block message. The last block is sent as

an Encrypt message, notifying the smart card to start the encryption process. The
TGS authenticator is then encrypted in the session key previously downloaded. As
each block is encrypted, it is sent back to the client Kerberos in a Return message.

The last block is sent in an End message.

Given that the smart card was not required to act as a bulk encryptor for mes-

sage data streams, the implementation of the DES algorithm on the smart card was

driven by memory constraints rather than encryption rate, with the understanding

that higher encryption rates could be achieved by trading space for time. We chose

a straightforward implementation of the DES algorithm[8] and attempted to fit it
into the available memory. The problem was not EEPROM for code, but RAM
space for working storage. Ultimately, we were not totally successful and were

forced to use EEPROM to hold the key schedule and other intermediate results.

Krajewski et al.

8. Lessons Learned

The clearest lesson learned from the prototype implementation is that a suitable

smart card must provide at least 256 bytes of RAM for application use. The card

used in the prototype came with 128 bytes of RAM, a significant portion of which
was reserved for operating system use. In the prototype implementation, we were

thus forced to use EEPROM to augment the available RAM.
Using EEPROM for working storage has a variety of implications. In the pro-

totype, encryption/decryption of a single 8-byte block takes approximately 5.3

seconds, 4.6 seconds of which is spent simply writing data into EEPROM. Per-

forming a standard telnet login first requires the encryption of an authenticator to

be associated with the ticket granting ticket (14 blocks), followed by a decryption

of the response from the TGS to obtain the telnet server session key (23 blocks),

followed by an encryption of an authenticator to be associated with the desired

telnet server ticket (14 blocks). In the prototype, this process requires approxi-

mately 270 seconds. This represents an obvious performance issue. There is also

the less obvious issue of security. In using EEPROM in this manner, there is a sig-

nificant window of time in which key material is in non-volatile memory. Should

the card be removed from the reader during an operation, the key material could

be recovered. Finally, there is a reliability issue, since EEPROM supports only a
finite number of write cycles (usually in the tens of thousands). Clearly, use of a
smart card possessing several hundred bytes of RAM is criticaal for any practical

implementation.
The decryption of the encrypted portion of the KASÆGS response messages

by the smart card presents a vulnerability whereby blocks of data may be trans-

posed by a Trojan Horse prior to being sent to the card and the decrypted session

key obtained from the decrypted field to which it was moved. This vulnerabil-
ity can be mitigated if the smart card verifled the message checksum following
decryption and prior to returning any decrypted fields. This was not done in the

prototype due to the limited amount of memory available.

Another vulnerability associated with the prototype implementation is due pri-

marily to the flexible programming environment of the particular smart card used.

The postulated attack involves a workstation-resident Trojan Horse surreptitiously

downloading to the smart card modified software containing an embedded Tro-
jan Horse whose purpose is to transmit unencrypted smart card data back to the

workstation. The prototype smart card will require a restart and execute integrity
tests, but the modified software's header block can be set such that the new code

will pass those tests and execute with the Trojan Horse in place. For the smart

card used in the prototype, placing the encrypted user key immediately after the

Applicability of Smart Cards to Network User Authentication 87

header block (i.e., prior to any application code) provides partial protection against

this attack in that the user key would be destroyed during any overwrite attempt

or the card would fail its startup integrity tests (in either case rendering the smart

card useless for future logins and allowing the tampering to be detected). A more

secure solution requires the use of a smart card that prevents downloading of soft-

ware from the workstation (e.g., one in which the application code is in masked

ROM).

9. Summary and Conclusions

The essential concept underlying this work involves exploiting the ability of smart

cards to provide an independent storage and processing environment to enable

the sensitive cryptographic processing associated with Kerberos network user au-

thentication to occur only within a trusted device that is always under the physical

controVprotection of the user. This improves system security in three significant
ways. First, it requires a user to provide both something he or she possesses

(i.e., a smart card) as well as something he or she knows (i.e., a password). Ei-
ther item alone is useless. This greatly reduces the risk from password borrowing

or theft. Second, it allows the initial message from the authentication server to
be encrypted in a truly random key (i.e., the user key need not be derived from
a password). A cryptographic attack on this message must therefore assume that

the entire keyspace is available for use. This greatly reduces the risk from network
eavesdropping. Finally, it ensures that security-critical cryptographic data is en-

crypted while on the user's workstation. A malicious Trojan Horse program can

obtain no sensitive information. This greatly reduces the risk from such programs.

The prototype implementation described in this paper has proven that the

concept is feasible. The primary lessons learned indicate that performance and

security are major factors in the selection of a suitable smart card. The smart card

used in the proof-of-concept prototype contained 8 kilobytes of EEPROM and I28
bytes of RAM. This amount of memory was found to be marginal for the appli-
cation. In particular, intermediate computational results that would normally be

stored in RAM had to be stored in EEPROM, dramatically increasing response

time and potentially compromising security. A smart card possessing a minimum
of 256 bytes of RAM appears necessary. In addition, the smart card used in the

prototype is potentially vulnerable to an attack whereby EEPROM-resident appli-
cations software is overwritten with malicious software from the workstation. Use

of a smart card possessing protected areas that cannot be viewed or altered from

Krajewski et al.88

the workstation also appears necessary. Should these conditions be met, and cur-
rent technology indicates that they can, this work has shown that a highly secure

network user authentication mechanism can be constructed.

References

1. National Computer Security Center, "Department of Defense Trusted Computer
System Evaluation Criteria," DOD Standard 5200.28-STD, December 1985.

2. Steiner, J., Neuman, C., and Schiller, J., "Kerberos: An Authentication Service for
Open Network Systems," USEMX Conference, 1988.

3. Kohl, John T., "The Evolution of the Kerberos Authentication Service," Spring
Europen Conference, 1991.

4. Bellovin, S. M. and Merritt, M., "Limitations of the Kerberos Authentication Sys-
tem," Computer Communications Review, October 1990.

5. Smart Card Industry Association and Personal Identification Newslette¡ CardTech
Conference Proceedings.

6. Krajewski, M., "Concept for a Smart Card Kerberos," 15th National Computer
Security Conference, October 1992.

7. Krajewski, M., "Smart Card Augmentation of Kerberos," Privacy and Security
Research Group Workshop on Network and Distributed System Security, February
1993.

8. Press, W. H., Flannery B. P., Teulosky, S. 4., and Vetterling, W.T., Numerical
Recipes: The Art of Scientiftc Computing, Cambridge University Press, 1986, pp.
2t8-220.

Applicability of Smart Cørds to Network User Authentication 89

