
Optimal Write Batch Size in
Lo g-Structured File Sy stems.

Scott Carson Tracer Technology Inc.

Sanjeev Setia George Mason University

ABSTRACT: Log-structured file systems create a
performance benefit by maximizing the rate at which
disk write operations can occur. However, this benefit
comes at the expense of individual read operations,
which can experience long queuing delays due to
batched write service. This paper presents an ana-
lytic derivation of the write batch size that minimizes
read response time, while retaining the benefit of write
batching. Simulations that relax the assumptions of the
analytic model demonstrate that the analytic result can
be used to advantage in a practical setting.

* The work described in this paper was supported in part by a grant from
the Digital Equipment Corporation. The views expressed herein are those
of the authors. This work was performed while the authors were at the
University of Maryland, College Park, MD.

@lgg4 The USENIX Association, Computing Systems, Vol. 7 . No. 2 . Spring 1994 263

l. Introduction

Recent studies [Rosenblum and Ousterh orrt 1992] have shown that log-structured
file systems can exhibit substantial system performance gains over "traditional"
file systems by batching write operations. On the other hand, in a recent pa-
per [Carson and Setia 1992], we showed that bulk write operations can have an

adverse effect on read performance experienced by processes. The conflict be-
tween these results is due to their different performance metrics; in the former,
disk bandwidth utilization is considered important, whereas in the latter, response

time for synchronous operations is of greater interest. In this paper, we continue
to hold that response time is the more important metric, though we acknowledge
that write batching can benefit both system and process performance. Based on
this assumption, we derive the write batch size that minimizes read response time.
Most significantl¡ we show that the optimal write batch size is largely insensi-
tive to system load and that it is primarily dependent on disk characteristics. Thus,
it is possible to create a nearly optimal write-batching policy based on statically
determined parameters.

Log-structured file systems [Rosenblum and Ousterhout 1992; Ousterhout
and Douglis 19891 are based on the idea that write operations can be postponed,

in a disk cache, until there is a large backlog. Then the write operations are exe-
cuted as a small number of disk operations, each of which transfers alarge amount
of data. This procedure amortizes a small number of seek and rotational laten-
cies over a large number of data blocks and allows the log-structured file system
to write data at a rate that approaches the transfer rate of the disk, given a suffl-
ciently high write load.

Unfortunately, the performance beneflts of this method do not extend directly
to read operations, since in general, they are not part of the batching scheme. Our
analysis of the "periodic update" write policy used in some operating systems

showed that creating large sequences of write operations that are served in bulk
produces an intemrption of read service that causes read operations to experience
long queuing delays. In our study, we considered only groups of write operations
that were served singly, without the benefit of write batching. Although write
batching does ameliorate the problem by reducing the collective service time of

264 Scott Carson and Sanjeev Setia

a group of writes, it is clear that the same phenomenon can occur in write-batched
systems, albeit to a lesser degree.

2. Solution

In nonbatching, write-bulk-arrival systems, one simple way to reduce read queu-

ing delays is to give read operations nonpreemptive priority over writes, which
eliminates the intemrption of service caused by the write bulk. In write-batching
systems, however, no such scheme is possible, because the writes are serviced as

a small number of large disk operations (each a "segment" in LFS). One solution
is to break up each batched write operation into a series of smaller batch opera-

tions and to give read operations nonpreemptive priority over these write batches,

thereby introducing a fundamental conflict between write batch size and read re-
sponse time.

Suppose that a read request arrives at the disk queue and that a series ofwrite
requests (each of which represents a batch) is already in queue. Minimizing the

size of these write batches (and increasing the number of batches accordingly)
then minimizes the waiting time for that read operation, since the read must only
wait for the batch write operation in service to complete. If a read request arrives
when no writes are in queue, then it is serviced immediately. Maximizing the size

of these write batches (and reducing their number correspondingly) minimizes
the fraction of time the disk is busy servicing writes and therefore minimizes the

probability that an arriving read will find the system busy. This situation suggests

that there is an optimal write batch size that balances the ability of reads to "slip
in" between write operations with the need to complete write operations quickly.
The derivation of this optimal write batch size is the focus of this paper.

Our strategy for finding the optimal write batch size is as follows. First, we
express the read response time as a function of write batch size (assuming read

priority) analytically, under simplifying assumptions. Next, we derive the optimal
write batch size and show it to be dependent only on disk characteristics: seek

time, rotational latency, and transfer rate. Recognizingthat the assumptions used

in the analytic model may not hold in practice, we then relax the assumptions and

simulate the system. Our simulations show that the optimal write batch size pre-

dicted by the analytic model is a reasonable estimate of the optimal write batch
size in a realistic system. Thus, the results of the analytic model can be used to
drive a disk service policy in a nearly optimal way. Next, we discuss the imple-
mentation of this scheme and show example calculations based on our model and

on the characteristics of several popular disks.

Optimal Write Batch Size in Log-Structured File Systems 265

Read queue

Read Request Reads

Poisson rate

Write Requests

Poisson rate À y¡
Writes
Periodic (avg bulk size

Sync Pulse Period T

Figure 1. The model.

3. Analytic Model

This section presents an analytic model of response time for read operations for
the disk service scheme described in the previous section. Under this scheme, read

operations are given nonpreemptive priority over write operations, and the write
batch size is a policy parameter. In concept, the disk server maintains separate

queues for read and write requests (see Figure 1).

We assume, for now, that read operations arrive at the cache according to a
Poisson process with a rate of ÀÊ requests/s. In the model, these requests enjoy a

fixed cache hit ratio of h,,0 < h, < I so that the resulting disk read traffic is a
Poisson process with arrival rate À, : (1 - hr)\a.

A typical method of batching writes is to save them in a main memory cache

and flush them on a periodic basis in response to a "sync pulse." LFS [Rosen-
blum and Ousterhout 19921 is a "pure" periodic update policy; all write operations
are delayed and written out at periodic intervals. We assume that writes arrive at

the cache according to a Poisson process with rate \ry.Let ? be the length of
the interval between two updates. The write hit ratio h-(T),0 < h-(T) (I is
the fraction of writes to blocks that are already dirty or that will not be written to
disk due to deletion. At the beginning of each update period, the dirty blocks are

written to disk. Under LFS, the dirty blocks in the cache are aggregated into "seg-

ments" of a fixed size and sent to the disk queue; under our modified scheme,

these segments are further divided into batches of size c blocks. The number
of dirty blocks written at the update interval is Poisson distributed with mean

A : \.T : (1 - h.(T))\wT. For a batch size of c blocks, tf l, fun batches

and (at most) one partial batch are placed in the write disk queue. To simplify

266 Scott Carson and Sanjeev Setia

Poisson
rate fo,

À rl

our analysis, we assume that the number of blocks written out every ? second is
always Z; thus the partial batch has p:Ã.mod c blocks.

The disk service time for writing out a batch (or a partial batch) is a function
of the batch size. The service time, s(c) can be written as

s(c): sle+rot*tr(c)

where sk is the seek time, roú is the rotational latency and tr(c) is the transfer
time. The transfer time is a function of the batch size c, as well as the character-
istics of the disk, and the seek time and rotational latency depend only on disk
characteristics. In general, the individual random variables that compose the ser-

vice time are not independent. However, for the purpose of this analysis we shall
assume that seek time and rotational latency are independent and have stationary
probability distributions. Hence, the average service time for writing out a batch of
size c is given by

3.: ilc +ld +li(c) (1)

Similarly, the average service time for writing out a partial batch containing p
blocks is

Ep: sk + rd +lFto)

In our model successive read requests are independent. In reality, this may not
always be the case and reads may benefit from various optimizations. However, in
our model the average read service time is given by

3,: slc +7æ +F(I)

where 7F(1) is transfer time for one block.
The variance of the service time for a disk operation is given by the sum of

the variances of the seek time, rotational latency, and the transfer time. In general,
the transfer time distribution is deterministic. We assume that

trlc¡:¡t'" (2)

where k is a constant that depends on the disk. Thus, the service time variance for
an operation is the sum of the seek time and rotational latency variances. That is,
for a disk operation o where s : ,u),p or r denoting a full batch write, a partial
batch write, or a read, respectively, we have

o?:o?n*o?*

Note that the variance in the service time for disk reads, full batch writes, and

partial batch writes is the same. Henceforth we shall drop the subscript o in o!.

Optimal Write Batch Size in Ing-Structured File Systems 267

Then, the coefficient of variation of service time for a disk operation o is given
by

c?": * (3)
ùO

We can see from the expression above that increasing the batch size c results in a
reduction in the coefficient of variation of the write service time.

The system shown in Figure I can be considered a head-of-line priority queu-

ing system with three classes of customers: reads, full batch writes, and partial
batch writes, with reads having priority over the other two classes of customers.

The average response time for reads can be readily derived from results in
Kleinrock |9761for a k-class priority queuing system:

R: sr*
p,s,(l + C?,) + p.s.(l + C?_) + poso\ + C?o)

2(l - p,)
(4)

where

p-: l:l-
and

I + if ,4,modc)0n':Id
otherwise

Note that the read response time depends on the write load but not on the manner

in which the writes are presented to disk. Thus, the analysis applies equally to any

scheme for aggregating writes and is not restricted to the "periodic update" policy.
The write load is divided into two components: the write load due to full batch

writes (p.) and the write load due to partial batch writes (pp). Note further that
the disk utilization due to write batches is a function of the batch size, whereas the

disk utilization due to reads is independent of the batch size. We deflne the offered

load due to writes ãs Qut : À- .s, where s is the service time for writing a single
block.

A number of simulations were run to validate the model; all simulation re-

sults reported are with 95 percent confidence intervals of 1 percent about the

mean. For the simulations, we considered a hypothetical disk with 815 cylin-
ders, in which the seek time function sle(d) : 1.775 + 0.725d0's ms, where d

is the seek distance in cylinders. This condition results in a seek time of 2.5 ms

for a single-cylinder seek and 22.5 ms for an end-to-end seek. We assume that

the rotational latency is uniformly distributed between 0 and 16 ms. The block
size is 8 kilobytes, and the disk transfers data at 2 Mbytels, so that the transfer
time is given by tr(c) :4c ms, that is, the transfer time for one block is 4 ms. In
Figure 2(a) we compare the results of our model with simulations. As the figure

268 Scott Carson and Sanjeev Setia

su

T

Read
Response

time
(ms)

batch size (8 Kb blocks)

(b)

Read
Response

time
(ms)

batch size (8 Kb blocks)

Figure 2. (a) Read Response time (in ms) versus batch size

(in 8 Kb blocks) assuming Poisson read arrivals. Curves

are from the analytical model: marked points are simulation
results. A, p, : 0.6, Q- : 0.6; B, p, - 0.6, 8. : 0.2; C:

P, : 0'2, Qn : 0.6; D, p, - 0.2, 8. : 0.2. (b) shows the

same curves blown up for batch sizes less than 16. c* denotes

the batch size that minimizes read response time. The curves

are linearly interpolated between integral batch-size values.

shows, our model predicts the read response time quite accurately. Note that the

simulations and the model share all assumptions about read and write arrival pat-

terns and service times. In the simulation, however, gathered statistics are based

on read and write arrivals, not the mean number of reads and writes as used in the

model.

Optimal Write Batch Size in Log-Structured File Systems 269

As Figure 2(b) shows, the response time appears to have a minimum for a
certain batch size, irrespective of the read and write loads. We now explore this
observation analytically.

The batch size c can take on only integral values. Hence, Equation (4) for the

read response time is only meaningful if c is an integer. For the moment, however,

let us assume that c is a real number, and that there are no partial batch writes.
Then Equation (4) can be rewritten as a continuous function of the batch size, c:

Ã(c) : s' a
p,E,(l + C?,) + p-s.(I + C?

2(l - P,)

Substituting put :
respectively, we have

À-E-
c and for s- and C!",, fromEquations (1) and (3),

(5)

(6)R1c¡ :
=, * \fJff . # *tf- + o2t

, prsr(l * C?)
,:rr-T

z0-pr) -
)

^!*tãE+rot+k'c)2+o2l
_= I: sr t ryF* . ì:

^'!-:+4
t k2c + zDkt

whereD:sk*rot.
Differentiating E(c) with respect to the batch size c, we have

ry:#^rr,_Yjtt
Setting the derivative equal to 0, we obtain the optimal batch size c*

c. : (e'z-+-"2¡os

(7)

(8)

(e)

(10)

What is remarkable about the preceding result is that the batch size that min-
imizes the read response time is independent of the read and write loads and only
depends on the characteristics of the disk. For the simulations plotted in Figure 2,

o2 : 44.2305, k :4 blocks/ms and D : 23.75,leading to c* : 6.17. However,

270 Scott Carson and Sanjeev Setia

as the batch size can take only on integral values, we have c* : 7 or c* : 6. Fig-
ure 2(b) shows that the read response time is minimized for a batch size of 6 or 7
for all combinations of read and write loads.

Although the write batch size that minimizes read response time is indepen-
dent of the read and write loads, the rate at which the read response time increases

as the batch size increases beyond c* depends on these loads (see Equation 9).
Thus, in Figures 2(a) and 2(b), we observe that the read response time grows at a
much faster rate with increasing batch size for the cases A and C (g- :0.6), than
in the cases B and D (p,, : 0.2).We note that under the disk service scheme mod-
eled in this section, reads have priority over write batches, which is the best-case

scenario from the point of view of read operations. Under disk service schemes

in which reads do not have priority over write batches, the rate at which the read
response time grows with increasing write batch size is always larger than under
our scheme.

4. Relaxing the Assumptions

The model presented in the previous section has several simplifying assumptions

that allow it to be analyzed.In particular, we have assumed that requests arrive in
a Poisson stream and that successive requests are independent. Further, we assume
that read requests are serviced in a first-come-first-serve fashion. If the results
obtained through the model are to prove useful, we must be sure that the results
will also be true for real systems. In this section, we relax several assumptions
made in the previous section and examine their impact on the results of the last
section. Because relaxing the assumptions makes our model intractable, the results
in this section are obtained only through simulation.

All simulations reported in this section were obtained using a simple event-
driven simulator. Read operations were generated according to either an expo-
nential or a hyperexponential interarrival-time distribution. Writes were generated

similarly but were o'saved up" for 30 seconds and then "flushed" to the disk queue.

Disk service times were generated by adding a uniformly distributed, random ro-
tational latenc¡ the seek time corresponding to a uniformly distributed, random
"next cylinder" and the transfer time corresponding to either a single block (for
reads) or a batch-sized block (for writes). Disk characteristics were those de-
scribed in the previous section. Simulations were run long enough to provide 95
percent confldence intervals of 1 percent about the mean.

The first assumption we address is that of Poisson read and write arrivals to
the disk cache, leading to Poisson read arrivals to the disk and to the number of
blocks being written out to the disk at the sync pulse being Poisson distributed.

Optímal Write Batch Size in Log-Structured File Systems 2lI

Most experimental studies of VO traffrc for UNIX-like file systems have ob-

served that both read and write traffic is quite bursty [Ousterhout et al. 1985;

Baker et al. 19911. In order to model this burstiness, in our simulations we now

assume that both reads and writes arrive according to a hyperexponential process,

which has a coefficient of variation (C?) > 1. This assumption has two effects:

First, reads arrive in a much more bursty fashion (depending upon the coefficient
of variation), and second, there is a larger variance in the number of blocks writ-
ten to the disk at each sync pulse.

The results of the simulations are plotted in Figure 3. As the graph shows,

the optimal batch size for various read and write load combinations is no

longer the same. Thus, the result derived in the previous section that the op-

timal batch size is independent of the load is not true for non-Poisson read

and write anivals. However, what is noteworthy about the plots in Figure 3

is that the optimal batch size is still strongly dependent upon disk character-

istics. For all the read and write load combinations in the figure, the optimal

batch size is within two blocks of the optimal batch size for the model in the

last section. The effect of the bursty read arrivals is to push the optimum to-

ward a smaller batch size. As Figure 4 shows, the effect of the bursty writes is

less pronounced (compare with Figure 2). This finding is understandable be-

cause the writes are a9gregated by the cache and only delivered to the disk
at the beginning of the update interval. These results show that the optimal

batch size obtained from the model in the previous section can be used by

file system designers to get an idea about the optimal batch size for real sys-

tems.

We now relax another assumption of our model. In the model and in the sim-

ulation just described, the disk service time for writing a batch is the sum of the

seek time, rotational latency, and transfer time. Although this assumes that in writ-
ing out a batch, one always has to pay the price of a seek, in practice, it is only

true when a read request(s) arrives during the time a batch is being written out.

Because the read has higher priority, the read request(s) will be serviced next, thus

necessitating a seek to get back to write the next batch of the segment. However,

if no read request arrives while the write batch is being written, the next batch can

be written out without a seek because the head already will be positioned on the

right track. Thus, only a rotational latency and transfer time cost must be paid for
writing the next batch.

The results of the simulation that take this effect into account are shown in
Figures 5 and 6. We observe that the average read response time is not affected

substantially. The optimal batch size, however, has been pushed even further to

the left than in Figure 3 because the effect of the "zero-seeks" is to reduce the

value of the constant D (as the average seek distance is reduced), thus leading to a

272 Scott Carson and Sanjeev Setia

reduction in the optimal batch size. In Figure 6, the optimal batch size appears to
be two or three blocks, depending on the read and write loads.

Finally, we consider another possible optimization in real systems. If we fix
the batch size such that the batch fits exactly on a track or on multiple tracks,
then while writing out a batch of the segment, we no longer have to pay a cost for
rotational latency because as soon as the disk head is in position on the track to be

8 .ro' 12

baæh size (8 Kb blocks)
(b)

barch size (8 Kb blocks)

Figure 3. Read Response time (in ms) versus batch size (in 8
Kb blocks) for hyperexponential read arrivals with C2, : S

for (a) p, : 0.2, Qw : 0.2 and (b) pr : 0.4,0., : 0.2. Note
that the batch size can only have integral values. Curves are
linearly interpolated between batch-size values.

Read
Response

tin¡e
(ms)

Read
Response

time
(ms)

lo 12

Optimal Write Batch Size in Log-Stuctured File Systems 273

Read
Response

Time
(ms)

batch size (8 Kb blocks)

Figure 4. Read Response time (in ms) versus batch size (in 8

Kb blocks) for hyperexponential write anivals with Q?,: 5)

to the cache. A, p, : 0.6, Qu : 0.6; B, p, : 0.6, Q* : 0.2;

C, p, :0.2, Qw :0.6;D, p, - 0.2, p, : 0.2. Curves are

linearly interpolated between batch-size values.

written, it can initiate the disk transfer. Thus, in this case one has to pay only the

cost of seek (if even that) and data transfen

Simulation results for this optimization are shown in Figure 7. As expected,

the simulations show that read response time is reduced for batch sizes that are

multiples of four 8-Kbyte blocks but otherwise is unaffected. With this optimiza-
tion in place, the optimal batch size may be a multiple of the track size, as it is in
this case.

274 Scott Carson and Sanjeev Setia

batch size (B Kb blocks)

Figure 5. Read Response time (in ms) versus batch size (in
8 Kb blocks) taking "zero-seekso'into account. A: pr: 0.6,

Qu :0.6;8, p, - 0.6, p. :0.2; C, p, :0.2, Q.: 0.6; D:

P, : 0.2, Qw : 0.2. Curves are linearly interpolated between
batch-size values.

Optimal Write Batch Size in Ing-Structured File Systems 275

batch size (8 Kb blocks)
(b)

batch size (8 Kb blocks)

Figure 6. Read Response time (in ms) versus batch size (in I
Kb blocks) taking "zero-seeks'n into account for (a) p, :0.6,
Qu : 0.2 and (b) Pr : 0.2 Qw : 0.6. Curves are linearly
interpolated between batch-size values. A: hyperexponential

read arrivals (Cl :5); B: hyperexponential read arrivals and
t'zero-seeks."

276 Scott Carson and Sanjeev Setia

(a)

Resd
Response

time
(ms)

109

l0
b¿tch size (8 Kb blocks)

(b)

batch sizc (8 Kb blocks)

Figure 7. Read Response time (in ms) versus batch size (in
8 Kb blocks) assuming track-sized batches for (a) p, : 0.6,

Qto : 0.2 and (b) pr : 0.2 Ou : 0.2. Curves are linearly
interpolated between batch-size values.

Optimal Write Bøtch Size in Ing-Strucured File Systems 277

5. Discussion

The results of this study can help to create a parameterized service policy for disk

systems that provides the advantages of write batching while (nearly) minimizing
average response time for read operations. This section considers several practical

issues: use of the results, implementation, and example policy parameters.

We have considered several realistic situations: bursty read and write arrivals,

taking advantage of disk head position when servicing writes, and writing com-

plete tracks at a time. In each case, these conditions introduced some deviation
from the analytic model; in particular, the actual response times were substantially

different from those predicted by the model. However, the optimal batch size was

similar to (actuall¡ smaller than) the predicted value, thus suggesting that it is
possible to derive general policy guidelines from the model.

The write-batching policy described in this paper is easy to implement. The

policy is driven by a single parameter c* that describes the optimal batch size.

The log-structured file system does not need to know about this policy; instead,

it is implemented in the disk driver itself. Suppose that a log-structured ûle sys-

tem delivers groups of write operations to the disk queue. These groups of write
operations can be of arbitrary size. The disk driver then repeatedly issues batches

of writes to the disk, each batch containing n sectors. Between each write batch,

however, the driver checks for the presence of read requests in the disk queue and

services all reads before servicing the next write batch.

Since the nearly optimal value of n is fixed for a given disk, it is possible for
the disk driver to use a table ofbatch sizes, indexed by disk type, to govern the

policy. Table 1 shows c* for three popular one-gigabyte disks.

The values for seek time mean and variance were calculated from manufac-

turers' specitcations of minimum (track-to-track) and maximum (end-to-end) seek

times, assuming a uniform, random seek-distance distribution and constant head

acceleration/deceleration. The values for rotational latency mean and variance

were calculated based on the disk rotation speed, assuming a uniform rotational

latency distribution. Transfer rates were calculated based on disk rotation speed

and track density. The optimal cluster size c* is reported in kilobytes rather than

8-kilobyte blocks as in the previous sections.

Although these disks are similar enough that they might be considered inter-

changeable in practice, their characteristics produce distinct effects that agree with
intuition about the optimal write-cluster size. The IBM disk, for example, seeks

and rotates more quickly than the others. This leads to a smaller optimal cluster

size, since the penalty for breaking up a larger cluster is smaller. The HP disk

seeks and transfers more slowly than the Fujitsu disk, but because it rotates more

278 Scott Carson and Sanjeev Setia

quickly, the penalty for breaking up a cluster is again smaller, leading to a smaller
optimal cluster size. Finally, because the Fujitsu disk transfers data more quickly
than the others, more data per disk operation must be transferred to make the seek
and rotational penalties insignificant.

Table 1. Optimal Batch Sizes (in Kbytes) for Three Contem-
porary Disks.

Drive Model

IBM 0663-H12 Hp 97549 Fujitsu l|,42266S|H

Size (Gbytes)

Mean seek (ms)

Seek variance (ms2)

Mean rotation (ms)

Rotational variance (msz)

Transfer rate (Mb/s)
c* (Kbytes)

Realized write
Transfer rate (Mb/s)

I
14.40

18.90

6.9s
16.10

2.40

52

1.20

I
24.90

61.60

7.47

18.60

2.20

72

1.10

1

2r.l
39.6

8.3

23.2

2.5

74

t.3

In practice, we can expect that the optimal cluster size will be slightly smaller
than c*, since c* is calculated without the effects of seek optimization, track
caching, and bursty arrivals. Although more investigation is needed before firm
policy guidelines can be presented, the results of the previous section show that
the deviation from c* under realistic conditions will be small. However, we must
also note that the larger the batch size, the more write load the system can sustain.
Thus, it may be appropriate to ignore those effects that reduce the optimal batch
size and use c* instead. In addition, for systems that can take advantage of full-
track writes, the best choice for the write batch size may be a multiple of the track
size.

Another measure shown in Table 1 is the realized write transfer tate, which
is calculated as the ratio of c* to the sum of seek, rotational, and transfer delays.
Because the realized write transfer rate is substantially smaller than the maxi-
mum transfer rate provided by the disk, systems that require sustained, high write
rates may require a larger batch size than c*. As pointed out in Section 3, the rate
at which the read response time increases as the batch size increases beyond c*
depends on the read and write loads. By selecting a batch size greater than c*, a

Optimal Write Batch Size in Log-Structured File Systems 279

system designer can trade off an increase in the read response time for an increase

in the write throughput. Depending on the load offered to the disk, a batch size

greater than c* can achieve a much higher write rate, while resulting in a relatively

small increase in read response times.
'

Finally, we note that as disk technology evolves, optimal write batch sizes will
change. Although it is difficult to predict the exact nature of future optimizations,

we can expect disks to become increasingly dense and offer higher transfer rates.

If seek and rotational latencies remain similar to their current values, then c* will
increase in the future. Likewise, synchronized multidisk systems, designed for
high transfer rates, will require larger write batches than single-disk systems of
similar technology.

6. Conclusions

The results of this paper demonstrate that if read response time is an important

performance metric, we must take care in the design of write-batching file sys-

tems. Specifically, making the write-cluster size too large penalizes reads by

making them wait for long write operations, whereas making the write-cluster

size too small penalizes reads by wasting disk bandwidth. The optimal cluster size

is dependent on load and access pattems but is dominated by a function of disk

characteristics.

Although our results are preliminary, in that they have not been confirmed

by measurement on a real system, they do suggest that it is possible to devise a

batching policy that works well with statically determined parameters. Further, our

results contrast sharply with some of the basic design objectives of log-structured

file systems, such as maximizing the size of write batches to increase throughput.

Although there are cases in which write throughput is the most important perfor-

mance criterion, in most general-purpose environments read response time is more

important. Our results indicate that in such cases batch sizes should be consider-

ably smaller than they would be otherwise.

References

M. Baker, J. Hartman, M. Kupfer, K. Shirril and J. Ousterhout. Measurements of
a Distributed File System. In Proceedings of the l jth Symposium on Operating

System Principles, 198-212, 1991.

S. D. Carson and S. K. Setia. Analysis of the Periodic Update Policy for Disk
Cache. IEEE Trønsactions on Softuare Engineering,44-54, Januaty 1992.

1.

280 Scott Carson and Sanjeev Setia

3. L. Kleinrock. Queuing Theory II: Applications. Vol. 2. New York J. \Viley and
Sons, 1976.

4. J. Ousterhout and F. Douglis. Beating the VO Bottleneck: The Case for Log-
Structured File Systems. Operating Systems Review, 11-28 January 1989.

5. J. Ousterhout, H. da Costa, D. Harrison, J. Kunze, M. Kupfer, and J. Thompson. A
Trace-Driven Analysis of the Unix 4.3 BSD File System. ln Proceedings of lùth
Synposium on Operating System Principles, 15-24, 1985.

6. M. Rosenblum and J. Ousterhout. The Design and Implementation of a Log-
Stuctured File System. ACM TOCS, t0(I),26-52, February 1992.

Optimal Write Batch Size in Log-Stractured File Systems 281

