
Reliable Real-Time Garbage
Collection of C++

Kelvin Nilsen Iowa State University

ABSTRACT: Garbage collection of C++ offers the
potential of improving prograrnmer productivity, reduc-
ing the occurrence of dynamic memory management
errors in both prototype and production software, and
increasing the level of abstraction provided by many
reusable software components. The hardware-assisted
real-time garbage collection system described in this
paper offers the additional benefits of providing more
predictable memory utilization and response times than
are available from traditional dynamic memory man-
agement techniques for C++. This paper describes a

C++ dialect that allows real-time garbage collection of
heap-allocated objects in a manner that is compatible
with traditional real-time development methodolo-
gies. This paper also provides a brief overview of
established methodologies for development of reliable
real-time software, with emphasis on issues that are
relevant to garbage collection, and summarizes the
shortcomings of existing real-time garbage collection
techniques.

@ 1994 The USENIX Association, Computing Systems, Vol. 7 . No. 4 . Fall L994 467



l. Introduction

The term garbage collection describes the automated process of finding previously

allocated memory that is no longer in use in order to make the memory available

to satisfy subsequent allocation requests. Automatic garbage collection geatly
simplifies the development effort required to manage dynamic memory. In systems

that provide garbage collection, programmers need not concern themselves with
explicit freeing of memory that is no longer in use. Besides reducing the program-

mer's intellectual burden, this elirninates two very coÍrmon dynamic programming

errors: the failure to free memory when it is no longer in use, and accidental free-

ing of memory before its useful lifetime has ended. These sorts of programming

effors ¿lre especially diffrcult to find and correct because the consequence of the

error is generally not detected at the time the error occurs. Rather, the error mani-

fests itself much later in program execution, usually in one of the following ways:

. The system runs out of memory because of an accumulation of failures to

free unused memory.

. The system's dynamic memory manager becomes confused because objects

accidently placed onto its free list are still being used. The bookkeeping

information that the dynamic memory manager stores within objects on its

free list is likely to become comrpted by continued use of the object.

. The application becomes confused because the dynamic memory manager

reallocates an object that was erroneously placed onto its free list. There-

after, the memory serves two different purposes.

Rovner [44] estimates that the programming effort required to perform dy-

namic memory management is approximately 40 percent of the total cost of
developing a large software system. This includes both the costs of developing

and of debugging the memory management routines.

Besides reducing the complexity of dynamic memory management, some

modern garbage collection algorithms offer storage throughputs that exceed the

capabilities of traditional memory management techniques. For example, the time

required by the system described in this paper to allocate and reclaim dynamic

468 Kelvin Nilsen



memory has been measured as approximately one fifth the time required to man-
age the same total amount of dynamic memory using typical implementations of
nalloc and free.

Traditional garbage collector implementations periodically suspend application
processing in order to traverse all of memory in search of segments that are no
longer in use. The processing delay associated with occasional garbage collections
is inconvenient in interactive applications and unacceptable in real-time environ-
ments. Incremental garbage collectors allow application processing to continue
while garbage collection is performed. But the frequent synchronization that is re-
quired between background garbage collection activities and ongoing application
processing signifi cantly reduces system throughput [8,36].

one other significant overhead associated with most garbage collection sys-
tems is the effort required to tag data stored within the garbage-collected heap
so that the garbage collector can traverse live data structures.l In dynamically
typed languages, like smalltalk [13] and Icon [14], all data stnrctures are gener-
ally tagged to support dynamic type checking, so the tags required for garbage
collection are available without any additional run-time overhead. However, in
statically typed languages such as c++, the burden of tagging data in order to sup-
port garbage collection has been measured to nearly double the execution time of
many real programs [45]. For a combination of these reasons, many developers
feel that garbage collection is a luxury they simply cannot afford.

2. Real-time Computing

Tlpical real-time computer systems must run unintemrpted for days or months at
a time. High reliability and fault tolerance of both software and hardware are of
utmost importance. In many cases, human lives and significant company revenues
depend on reliable operation of real-time computer systems. In order to ensure re-
liability, software engineers have developed formal techniques and methodologies
that allow pre-runtime analysis of real-time scheduling constraints. Properly engi-
neered real-time software is guaranteed to meet all real-time deadlines, even under
worst-case workloads.

In general, the real-time software engineer is more concerned with ensuring
the system's reliability than optimizing its throughput. In fact, real-time charac-
teristics of the physical environment with which the real-time computer system

1. Conservative garbage collectors avoid the cost of daø tagging by assuming that every memory word and
register that contains a value representing a legal address is, in fact, a pointer to an object residing in memory.

Reliable Real-Time Garbage Collection of C++ 469



interacts generally provide both upper and lower bounds on the rates at which data

is available for processing. Consider, for example, a real-time computer system

that has been configured to handle its worst-case workload of 10,000 intemrpts

per second. In this environment, there may be nothing to be gained by increasing

the system's throughput to support up to 20,000 intemrpts each second. This is

because the device that generates intemrpts is presumably unable to generate any

more than 10,000 intemrpts per second.

Nevertheless, performance considerations are a concern to real-time engineers

for the following reasons:

. The schedulability analysis of a real-time system depends on the worst-

case execution times of each real-time task that participates in the system.

Each task's workload is represented by the product of the task's worst-

case execution time and its desired execution frequency. To guarantee that

all real-time deadlines in the system will be met, the software engineer

must demonstrate that the combination of task workloads is less than some

fixed percentage (generally less than 100 percent) of the system's available

computing resources. If performance is poor, the engineer cannot guarantee

compliance with real-time deadlines.

. Because it is difficult to derive tight upper bounds on the worst-case times

required to execute particular tasks, modern real-time systems are likely

to be comprised of a combination of essential and optional real-time tasks

121,261. Rigorous proofs guarantee that essential tasks never miss their

deadlines. But optional tasks are executed only as time permits. These

systems are designed so that the essential tasks provide the minimal func-

tionality required to sustain robust operation of the system. But system

functionality is greatly enhanced by completion of as many optional tasks

as is possible. Under normal circumstances, essential tasks complete in

much less time than has been set aside for their worst-case execution re-

quirements, and a large percentage of the optional tasks also complete on

schedule.

. Certain dynamic real-time systems are composed of tasks that are prior-

itized according to importance 129). As the system load increases, the

run-time task scheduler automatically sheds some of its workload by not

dispatching low-priority tasks for which it cannot guarantee compliance

with the relevant real-time deadlines.

. Some general-purpose computing environments support combinations of
hard and soft real-time, traditional interactive, and batch processing tasks

128,40,471.In these systems, real-time behavior is provided by giving high-

470 Kelvin Nilsen



est priority to the real-time components of the system. General-purpose
computing needs are best served when real-time components complete
ahead of schedule.

In summary, the engineer of real-time software systems is concerned primarily
with reliability and secondarily with optimization of system throughput. Whenever
possible, it is desirable to engineer a system that provides both predictable compli-
ance with real-time deadlines and high throughput. Tradeoffs between predictable
performance and high throughput are permitted only insofar as they do not inhibit
the engineer's ability to prove compliance with the system's real-time deadlines.

Numerous techniques have been developed for scheduling real-time tasks and
for anaþzing real-time systems of tasks to determine whether all scheduling con-
straints will be satisfied at run ttme f9,24-26,29,48,49,53,54,56f. Regardless of
which analysis and scheduling techniques are used, it is essential that the real-time
engineer be able to determine the worst-case execution times of all the real-time
tasks that compose the system. A variety of techniques for analysis of task execu-
tion times is available 13,15,20,23,30,32,35,41 -43,461.

2.1. Soft Real-Time Systems

Real-time engineers often distinguish between hard and soft real-time systems. In
hard real-time systems, a correctly computed result delivered after its deadline is
as incorrect as an incorrectly computed result. In soft real-time systems, it is desir-
able to deliver all computed results prior to their deadlines, but a result delivered
late is better than no result at all. Coordination with trafflc lights is an example
of a hard real-time process. A driver who enters an intersection after his light has

turned red is just as wrong as the driver who ignores the traffic light entirely. Mul-
timedia teleconferencing provides an example of soft real-time constraints. Users
would generally prefer delayed responses over complete communication failure.

Existing real-time systems are often composed of combinations of hard and
soft real-time components. 'When developing soft real-time systems that contain no
hard real-time components, software engineers have the option of entirely ignoring
üaditional methodologies for design and analysis of real-time systems. However,
even when an occasional missed deadline will not lead to catastrophic results, it is
desirable to use established real-time methodologies in the design and analysis of
the soft real-time system. There are several reasons for this:

. Without systematic real-time design, it is difficult to characterize the worst-
case workloads to which the system should be subjected in order to char-
acteize its performance limitations. If testing reveals shortcomings in the

Reliable Real-Time Garbage Collection of C++ 471



real-time performance, there will be no systematic mechanism to isolate and

modify the offending sections of code.

. Without formal analysis, exhaustive testing is required to determine the

system's throughput and response time limitations. Rarely is it practical

to test all possible workload and input conditions. Thus, it is difficult to
quantify the likelihood that all deadlines will be satisfied.

. Whenever the soft real-time system is modified and/or integfated with other

software, its real-time behavior is likely to be affected. Without the use of
formal real-time analysis techniques, extensive testing would be required to

build confidence that the revised system continues to function correctly.

. Whenever the soft real-time system is ported to new architectures, its real-

time behavior must be reanalyzed. This is especially troublesome if the

software system is ported to a less powerful architecture than the one on

which it was originally developed, a common practice amongst developers

of embedded real-time systems.

In summary, software engineers who want to control the real-time behavior

of software need to organize their systems so as to facilitate systematic analysis

of the system's real-time behavior. Software engineers who want merely to write

software that runs as fast as is feasible need not bother with real-time methodolo-

gies.

2.2. Sample Real-Time Workloads

This section provides brief summaries of several actual working real-time sys-

tems [7,18,19,22,271. The purpose of this discussion is to indicate the timing res-

olution that is typical in today's state-of-the-art real-time systems. We focus here

only on task execution times and scheduled processor utilization. Our summary

presentation ignores interprocess precedence and exclusion constraints, preemption

constraints, and scheduling techniques.

Each real-time system is organized as a collection of repetitive tasks. The

times required to execute the tasks that run on the HARM missile guide processor

range, for example, from 50 ¡^ls to 6.83 ms. Each task has a different execution

frequency. The periods of execution for the tasks that run on the HARM missile's

guide processor range from 1 to 80 ms.

It is especially important in a real-time environment for each task to honor

its advertised worst-case execution time. If a particular task exceeds its allotted

time segment, every real-time task in the system is likely to be compromised.

The analyses that guarantee compliance with real-time deadlines assume that all

472 Kelvin Nilsen



tasks are well behaved. Note that most of the applications summarized in Table 1

have tasks with execution times much shorter than a typical time-slice tick. Thus
it is diffrcult for an operating system kernel to enforce that tasks terminate within
the time frames that they've advertised as their worst-case execution times. 'With

special hardware, it is possible to force real-time tasks to honor their time commit-
ments. The integrated MWave/OS system, for example, has hardware that counts
the machine cycles required by each task, and intemrpts the task if it exceeds the
time allotted for execution of the task [19]. Because a finite amount of time is re-
quired to handle a timeout intemrpt and effect a fully general context switch (In
the best of circumstances, context switches cost from 10 to 50 ps [1]), the sched-

uler must increase the amount of time allotted to whatever tasks it might need to
intemrpt. Note that these context-switching costs can represent a large percentage

of a system's workload, since several of the applications described in Table I have
tasks whose execution times are less than or equal to the time required to perform
kernel-induced context switches.

Table l. Representative Real-Time Workloads.

Application Number Execution
of Tasks Times (ms)

Periods
(ms)

Scheduled
Utilization

HARM missile-Guide processor

HARM missile-Trace processor

HARM missile-Sort processor

Robot elbow manipulator (version 1)

Robot elbow manipulator (version 2)
Ada avionics
Satellite Control
Multimedia

18

7
7

103

90

17

t4
24

0.05 - 6.83
0.05 - 3.25
o.o5 - 2.14

0.01 - 0.57

0.073 - 0.7496
r.0 - 9.0

0.18 - 52.84

0.0024 - 0.491

1.0 - 80.0
1.0 - 20.0
1.0 - 10.0

16.7

t6.7
25.0 - 1000

0.96 - 1000
1.6 - ll8

867o

85Vo

85Vo

28%ot

35VoI

85Vo

857o

40Vo

t The robot elbow manipulator is implemented by five processors, with average utilizations for
each processor as reported above.

In summary, if a real-time system is configured to enforce worst-case task
execution times, schedulable utilization will decrease (due to the overhead of
timeout-induced context switching), hardware costs will increase (in order to
pay for the high-resolution timeout device), and reliability will suffer (because

it is difficult to predict how frequently important tasks might have to be inter-
rupted before completing the work assigned to them). In general, the developer
of cost-effective reliable hard real-time systems prefers to derive reliable upper
bounds on the times required to execute each task so that she can trust each task

Reliable Real-Time Gørbage Collection of C++ 473



to complete its work and relinquish the CPU prior to termination of its allotted

time segment.

3. Real-Time Garbage Collection

Numerous proposals for real-time garbage collection have been put forth by the

garbage collection research community. However, very few of the proposed tech-

niques are compatible with existing methodologies for implementation of reliable

real-time systems. The real-time engineer must be able to derive the worst-case

execution time for each task in the system. Tasks interact with the garbage collec-

tor by allocating new memory and by fetching and storing to memory locations

contained within heap-allocated objects. The delays associated with memory allo-

cation and memory access must be bounded by constants that are small enough to

allow the real-time schedule for the complete system to be analyzed or precom-

puted. If the garbage collector runs on the system CPU, its computation must be

modeled as a periodic task with bounded execution time and a frxed period of ex-

ecution. The performance impact of garbage collection on the complete system

must be small enough that it does not prevent the system from meeting its real-

time deadlines.

Most of the garbage collection researchers who have proposed so-called real-

time garbage collectors rely on personalized definitions of real-time computing,

usually without formalizing their definitions. Real-time practitioners need abso-

lute worst-case bounds on the times required to fetch, store, and allocate memory.

Practitioners cannot build reliable hard real-time systems based on average- or

expected-case costs. Note from examination of Table I that it is difficult for many

real-time workloads to absorb the virtual-memory trap costs associated with cer-

tain "real-time" garbage collectors [10]. Assume, for example, that the worst-case

cost of each memory fetch and store operation is 500 ¡rs. Suppose further that

the 500ps delay associated with these memory operations cannot be intemrpted

by other tasks that make use of the dynamic memory heap. In both the HARM
missile and the satellite control applications, for example, several tasks have pe-

riods of approximately 1 ms. These tasks would be unable to meet their deadlines

if certain other tasks are delayed on consecutive memory operations. Consider

also the impact of occasional 500- ps trapped memory accesses on the calcula-

tion of worst-case execution times. Note that all of the worst-case execution times

in the robotics and multimedia applications are less than 1 ms. If each of these

tasks were to incur the worst-case overhead of only two memory accesses to the

garbage-collected heap, the resulting system utilization would more than double.

In fact, the resulting utilizations would exceed 100 percent.

474 Kelvin Nilsen



If we allow the community of real-time scientists and practitioners to charac-

tenze the operating constraints under which a real-time manager of dynamic mem-

ory must operate, then we must conclude that most so-called real-time garbage

collectors are not real-time at all. Developers of reliable real-time systems need

to know the worst-case execution time of each real-time task that composes the

system. This requires upper bounds on the times required to allocate and access

dynamic memory. Furthermore, these bounds must be tight, so that the expected
performance is as close as possible to the worst-case performance. Otherwise, the

real-time functionality that the system designer guarantees to support is so low
that the complete system would likely be rejected on the grounds that it is not cost

effective.

3. I. Stock-Hardwøre Real-Time Garbage Collection

Real-time garbage collectors allow application processing to continue while
garbage collection is performed. Because the application continues to execute

while garbage collection is carried out, it is necessary to coordinate the efforts of
ongoing application processing with garbage collection. Often, the garbage col-
lector desires to relocate andf or modify the memory structures that application
processing desires to make use of. The frequent synchronization that is required

to coordinate shared access to the garbage-collected heap significantly reduces

system throughput [8,36] in comparison with traditional stop-and-wait garbage

collection techniques. V/ithout special hardware, there are several synchronization

techniques that are available. These include:

1. The code generator can emit special range-checking code to accompany
individual memory fetch and store operations. At run time, the generated

code provides special handling whenever it detects a memory access that

may require coordination with the garbage collector. This technique was

implemented in an earlier software-only version of the garbage collection
algorithm that we've now implemented in hardware [36]. We found that
the overhead imposed on all memory operations referring to the garbage-

collected heap more than doubled the cost of executing typical applications.

Other researchers have reported similar results [6,10].

2. Custom microcode can automatically perform the requisite checks each

time memory is fetched or stored. This is the technique used in certain

Lisp machines [51]. On typical CISC processors, this offers higher per-

formance than option 1. However, the run-time overhead is still so large

(system throughput is reportedly slowed by 30Vo) that most users preferred

to disable real-time garbage collection in favor of more traditional batch

Reliabte Real-Time Garbage Collection of C++ 475



techniques [10,51]. Note that this option is not available on today's high-
performance RISC processors.

3. Virtual memory protection can be configured to generate page faults on any

memory accesses that refer to regions requiring synchronization with the

garbage collector. This technique was first proposed by Appel, Ellis, and

Li t101. Though this technique has demonstrated high performance running

in a custom multi-threaded environment, the cost of servicing page faults

in traditional Unix processes is so high that overall throughput suffers.

Moreover, the resolution of page boundaries is too coarse to support tight
latencies on all memory operations. Appel, Ellis, and Li report worst-case

latencies measured in tenths of seconds.

Options one and two show the greatest potential of providing tight worst-

case bounds on the time required to perform memory operations, but few applica-

tions can afford their high overheads. Two recent publications describe real-time
garbage collection techniques that attempt to reduce system overhead by allow-
ing all read operations to proceed unchecked [34,55]. Since reads are much more

fíequent than writes, especially for programs written in applicative languages like
Lisp and SML, these techniques show some promise of improving upon prior
experience with explicitly checked memory operations. However, the poten-

tial performance gains are not as large for applications that frequently mutâte

existing memory cells, as is common with programs written in imperative and

object-oriented languages such as lcon, Smalltalk, and C++. Yuasa's technique

targets Lisp [55]. As such, Yuasa recommends that the dynamic heap be divided

into regions, each dedicated to allocation of fixed-size objects of a different size.

Yuasa's garbage collection system does not compact live memory and does not

support dynamic reconfiguration of the different heap regions. This artificially
imposed memory fragmentation reduces memory utilization, constrains applica-

tion flexibility, and complicates the software engineer's analysis of the system's

worst-case memory requirements. Nettles, O'Toole, et al. have recently described

a replication-based copying garbage collector that maintains two copies of ev-

ery live object throughout garbage collection 133,341. The algorithm resembles

Baker's copying technique except the invariants that govern sharing of informa-

tion between the application and the garbage collector are much more flexible. In
theory read operations may fetch from either copy of the object, and writes must

update both. In practice, read operations are constrained to refer tofhefrom-space
objects, and write operations are logged so that to-space objects can be updated

in batch. This garbage collector is real time in the sense that the time required

to perform an atomic increment of garbage collection is bounded by a tunable

constant. Nettles and O'Toole have demonstrated measured worst-case times

476 Kelvin Nilsen



of 50¡.rs per atomic action [34]. Additionally, this technique has exhibited good
average-case performance on several sample workloads. For applications written
in SML, Nettles and O'Toole report that their replication-based garbage collector
slows overall execution by less than 25 percent in comparison with stop-and-copy
garbage collection techniques for SML [34]. However, the worst-case real-time
behavior of the current implementation has not yet been analytically determined.
Though replication-based garbage collection shows promise of efûciently support-
ing reliable stock-hardware garbage collection, the current analysis of its real-time
behavior is incomplete. Furthermore, this garbage collector's average-case per-
formance has not yet been measured on C++ code, which is likely to contain a
much higher percentage of memory write operations than is typical of SML appli-
cations. Finally, it is important to recognize that a high percentage of the overhead
associated with accurate garbage collection of C++ is the cost of maintaining run-
time type tags [45], regardless of how inexpensive memory fetches are, or how
efficient garbage collection may be. Given these circumstances and diffrculties,
it appears unlikely that stock-hardware real-time replicating garbage collection
of C++ will be able to offer the same levels of general-purpose performance and

real-time reliability as are provided by the hardware-assisted copying garbage col-
lection system described in this paper. Nevertheless, real-time replicating garbage

collection shows promise of effectively serving the needs of many specialized ap-
plications.

The third alternative mentioned above shows potential for high performance,
but suffers from very high variance in the time required to perform rcad andf or
write operations. Each memory read or write operation may incur the overhead of
a page trap. Recent measurements of idealized trap handlers running on current
RISC processors reveal that trap handlers require an average of 10-50¡rs [1]. The
worst-case costs would, of course, be much higher. In particular, the worst-case
trap handler would miss its cache on every memory operation, would need to wait
for floating point pipelines to flush before servicing the trap, would need to save

and restore a large number of machine registers, and would need to modify vir-
tual memory protection levels. Note that current trends in computer architecture,
which are characterizedby increasingly large register files and caches combined
with deeper pipelines and multiple instruction issue, exacerbate the problem of
minimizing the variance in memory operation processing times. Though numer-
ous garbage collection systems make use of virtual memory protection to improve
system throughput l5J0,l2,l6l, we are not aware of any that provide rigorous
analysis of the worst-case times required to both allocate and access dynamic
memory. Of the systems that have been carefully measured, the best response
latency that we are aware of is 500ps [Iz].It is important to recognize that
real-time engineers are unlikely to accept measured performance as a reliable

Reliable Real-Time Garbage Collection of C++ 477



indication of a component's worst-case run time. They have learned through

years of hard-earned experience that worst-case execution times are rarely seen

in the laboratory. Rather, worst-case performance of individual components is

usually seen only when the complete system is most heavily stressed. Unfortu-

nately, it is when the system is most heavily stressed that reliable operation of the

complete system is most critical. It seems unlikely that future garbage collection

systems that rely on virtual memory protection will be able to provide sufficiently

small rigorous bounds on worst-case response latencies without sacrificing overall

throughput.
In summary, none of the stock-hardware garbage collection systems currently

available offers the combination of capabilities required for reliable real-time

garbage collection of C++. Nobody has yet demonstrated a complete working

system accompanied by careful analysis of worst-case execution times.2

It would appear that existing stock-hardware garbage collection techniques are

more suitable for interactive applications than for hard real-time programming.

It is possible that some existing garbage collection techniques might genetalize

to soft real-time application domains. However, this will necessitate the creation

of new real-time design and development methodologies. Furthermore, whatever

methodologies might be developed will need to give special care to the bursty

nature of garbage collection performance. Regardless of how these conflicts are

eventually resolved, it would be beneflcial for real-time and garbage collection

researchers to both become more familiar with each other's domains of exper-

tise.

3.2. Accurate Garbage Collection of C++

'We 
use the term accurate garbage collection to describe garbage collection tech-

niques in which the garbage collector has full knowledge of which memory cells

contain pointers and which don't, and uses this knowledge to accurately trace

only the dynamic objects that are referenced by memory cells known to contain

pointers. We emphasize this difference because most garbage collectors for C++

use conservative garbage collection techniques, in which every memory cell that

holds a value representing a legal address is treated as a pointer [4]. The real-time

garbage collector described in this paper performs accurate garbage collection with

2. Paul Wilson is currently pursuing a stock-hardware real-time garbage collector for C++ [52] ' His technique

shows promise of supporting tight bounds on memory access times, but makes no attempt to defragment

memory in order to bound the time required to allocate new objects (or to bound the memory required to

support a particular application). Ongoing research attempts to characterize the run-time overhead of this

system. It seems unlikely that the overhead will be as low as what is currently provided by the hardware-

assisted real-time collector described in this paper.

418 Kelvin Nilsen



low synchronizatton and tolerable pointer tagging overheads, while guarantee-

ing to complete all memory fetch, store, and allocate operations in less than 1¡r,s.

The system makes use of special hardware placed within an expansion memory
module to achieve high throughput and tight worst-case bounds on the time re-
quired to perform particular operations. If the special hardware is mass produced,

we estimate the cost of a hardware-assisted memory module to be three to five
times the cost of the memory required to represent the same total amount of live
data, assuming that the data is perfectly packed3 [39]. But it is rare in practice for
high-performance memory managers to achieve 100 percent utilization of memory.
Rather, typical memory utilizations range from 17 to 85 percent [59]. Cost com-
parisons between the hardware-assisted memory manager and traditional memory
management techniques must take these factors into account.

Our system garbage collects all of the objects allocated within the C++ dy-
namic heap without requiring any changes to C++ syntax. There are a few
C++ practices that must be avoided in order for the garbage collector to operate

correctlya:

1. Pointers should not be coerced to integers. A common practice is to use ob-
ject addresses as hash values. Since our garbage collector relocates objects
to eliminate fragmentation, object addresses are not constant.

2. Integers should not be coerced to pointers. Whenever the garbage collector
relocates an object, it automatically updates all pointers that refer to that
object so that the pointers refer to the object's new location. Any pointers
hidden within variables declared as integers will not be updated.

3. All pointers need to refer to addresses contained within the objects they
point to. In case a pointer refers to an affay, the pointer may point to an

imaginary element appended to the end of the allocated array. (This re-
striction is already specified in the C++ standard; we mention it here for
emphasis.)

We have recently redesigned the hardware-assisted memory module so that it supports a hybrid garbage collec-
lion algorithm that collects garbage in certain regions using incremental mark-and-sweep methods and collects
garbage in other regions using real-time copying techniques [38]. Though we have not yet measu¡ed this new
algorithm's throughput, we expect that overall performance will be roughly equivalent, if not superior, to the
fully copying real-time garbage collection technique that we have already measured. The main motivation for
this altemative garbage collection system is to reduce the amount of real memory required to support a par-
licular application's dynamic memory needs. Whereas the original design costs three to five times more than
the cost ofthe perfectly packed memory required to represent an application's worst-case memory needs, the
revised design is likely to cost only 20 to 5OVa more than the perfectly packed memory.

View these requirements as principles of operation rather than hard-and-fast rules. For example, there are
many situations under which it is perfectly reasonable to coerce belween integer and pointer types. In these
cases, it is the programmer's responsibility to verify that the code does not violate the integrity of the garbago
collector.

Reliable Real-Time Garbage Collection of C++ 479



4. Every assignment to a union field that represents both pointer and non-

pointer data must be visible to the compiler as a union field assignment.

Assignments by way of a pointer to the union field violate this constraint.

5. The structure of every heap-allocated object must be represented by the

argument to new.

Our experience porting existing C++ code to the garbage-collected C++ im-

plementation suggests that most existing C++ code already complies with these

restrictions. For example, the troff component of James Clark's groff imple-

mentation is compiled from over 23,000lines of C++ code. To make this com-

patible with our garbage collector, we rewrote only four lines. In each case,

the original code new allocated an object as an ¿uray of characters and coerced

the resulting address to a structure pointer, violating the ûfth constraint listed

above.

Recently, we have also ported several allocation-intensive C programs to our

garbage-collected C++ dialect. The programs are:

cfrac Factors arbitrarily large integers using the continued fraction method.

cham Routes channels for multi-level printed circuit boards.

espresso Optimizes binary logic expressions.

gawk An interpreter for the AWK programming language'

ptc A ffanslator from Pascal to C.

These programs were obtained from Benjamin Zorn (fltp. cs. colorado. edu),

who has studied them in comparing the performance of several alternative dy-

namic memory management implementations [57,59]. In order to analyze these

programs in our environment, it was necessary to:

l. Transform existing Kernighan and Ritchie code to the ANSI C standard. We

used the tools protoize and cproto to automate most of this effort.

2. Rename identiûers that collide with C++ keywords, such as new, delete,
and class.

3. Replace all occurrences of nalloc with appropriate invocations of new.

4. Replace all occurrences of free with delete.

In addition to the work required to convert C to C++, summarized above,

480 Kelvin Nilsen



additional effort was required to enforce compliance with the garbage collector's
operating constraints. This work consisted of:

Identifying code that might violate garbage collection constraints:
In theory it would be possible for a lint-like tool to assist with this effort by
locating all implicit or explicit coercions between pointer and integer types,

and between pointer types possessing different type signatures. This same

tool would also be able to identify all source code locations where a union
field's address is taken. The lint-like tool would not be able to identify
subscript-out-of-bounds erors.

Revising the code so that it is compatible with the garbage collector:
Though this has been straightforward for many applications, the effort
required to rewrite legacy code is sometimes very large.

Our experience porting C code to our garbage-collected C++ dialect has not been
as positive as our experiences with C++ code. In particular, C programmers appear
to be much more willing than C++ prograrnmers to abuse the language's type
system. For example, the author of cfrac implemented his own dynamic memory
manager to improve upon the performance of malloc and f ree. His code to free
the unneeded object located at address u includes the following:

typedef struct precisionType {
short alloc, size, sign;
char value[1];

) *precision;

typedef struct {
struct precisionType *next ;

short count;
Ì *cachePtr;

cachePtr kludge;
precision u;

((cacheType *) u)->next = kludge->next;

Before the above assignment, the first word of the object referenced by u rep-
resents two 16-bit integers. After the assignment, the word represents a pointer.
This form of type coercion is not visible to the compile¡ and thus confuses the
garbage collector.

We discovered similar problems with the implementations of ghostscript
and perl, two additional programs whose use of dynamic memory has also been

Reliable Real-Time Garbage Collection of C++ 481



studied by Zorn.In these programs, we considered the amount of work required

to enforce compliance with the garbage collector's constraints to be more than we

were willing to commit. The diffrculties were both in trying to understand the of-
fending code and in trying to find straightforward ways to rewrite it in a way that

does not violate the garbage collector's operating constraints. In ghostscript's
implementation, for example, we found several situations in which the type of an

object to be dynamically created was separated from the corresponding malloc
invocation by several levels of function calls. V/e also found several examples of
various memory allocation functions being invoked through function pointers.

Though our particular implementation of C++ garbage collection uses special

hardware support to provide hard real-time response, the requirements enumer-

ated in this section are sufficient to allow efficient software garbage collection as

well. In order to experiment with alternative code generation strategies for stack

activation frames, we are currently modifying version 2.4.5 of the GNU C++

compiler to support stock-hardware garbage collection of the same C++ dialect

that is currently supported by our hardware-assisted garbage collection system.

None of the current designs for software garbage collection is capable of hon-

oring the same real-time constraints as our hardware-assisted system. However,

many software garbage collection systems offer overall performance that appears

to be as good or even better than the performance of our hardware-assisted sys-

tem [5,10,33,50,58].

3.3. Standardizøtion Efforts Regarding Garbage Collection of
C++

Recently, John Ellis and David Detlefs proposed a standard for garbage collec-

tion of C++ [11]. Their proposal is not accompanied by an implementation. The

requirements for use of our garbage collection system are much simpler than the

proposed standard. The design constraints outlined by Ellis and Detlefs specify

that C++ garbage collection must require minimal changes to the C++ language,

its implementations, or its programming styles; must coexisr with components

written in other languages such as C or Fortran; must be safe in the sense that the

rules for garbage collection must be clearly defrned and enforceable at compile

time; must be portable in the sense that programs that comply with the rules of
garbage collection safety should run correctly on any C++ implementation that

supports the garbage collection standard; and must be fficient, in the sense that

the standard does not require semantics that is costly to implement. Below, we

compare our garbage collection technique with the proposed standard in terms of
these five criteria.

482 Kelvin Nilsen



Minimal Changes: The standard proposed by Ellis and Detlefs introduces two
new keywords and overloads the semantics for object destruction. The
proposed standard's definition of GC safety includes our requirements 1,

2,3, and 5. The standard does not impose our requirement 4, arguing that
portable support for unions is too diff,cult to implement efficiently. Rathet
they suggest that union fields must be scanned conservatively. In effect,
the proposed standard disallows accurate garbage collection of programs
that make use of unions containing both pointer and non-pointer fields.
In terms of impact on the C++ language definition, our proposed garbage
collection technique is at least as minimal as the Ellis/Detlefs proposal.

On the other hand, the C++ implementation described in this paper
requires significant modification to the compiler's code generation and
optimization components, and depends on special hardware. We argue
that this is the only way to provide reliable high-performance real-time
garbage collection of C++. It is important to note that software imple-
mentations of our garbage-collected C++ dialect are possible. We are

currently implementing a stock-hardware accurate garbage collector for
C++. Furthennore, the Boehm-Weiser C++ garbage collector is capable
of garbage-collecting our C++ dialect with even fewer changes to a C++
compiler than are required to implement the Ellis/Detlefs standard.

Coexistence: The Ellis/Detlefs proposal suggests that it is necessary to sup-
port "libraries written without garbage collection or written in other
languages such as C or Fortran." Thus, Ellis and Detlefs have specified
that the implementation must support at least two virtual heaps, one that is
garbage collected and the other that is managed explicitly. Though not dis-
cussed in detail in their proposal, they presume that the garbage collector
has intimate knowledge of the memory and register usage of these foreign
libraries. Note that foreign libraries introduce loopholes into the safety net.
Both the programmer and the compiler of the foreign library may intro-
duce subtle bugs that prevent reliable operation of the garbage collector.

We make no attempt in our system to support code that ignores the
operating constraints of the garbage collector. Rathe¡ we observe that the
work required to revise non-comforming c code to make it compliant with
the garbage collection constraints is manageable. We support the use of
Fortran and other foreign libraries only if they do not require access to
shared memory.

Note that a Boehm-Weiser implementation of our garbage-collectable
C++ dialect coexists with foreign libraries as well as any of the alternative
techniques discussed in the Ellis/Detlefs proposal.

Reliable Real-Time Garbage Collection of C++ 483



Safety: The Ellis/Detlefs proposal speaks of several layers of safety' First,

it discusses a set of safe-use rules that define the language subset that is

compatible with garbage collection. The safe-use rules for our garbage

collector, which we have listed above, are very similar to the safe-use

rules described by Ellis and Detlefs. With either the Ellis/Detlefs stan-

dard or our garbagq-collected C++ dialect, lint-like tools are capable of

assisting programmers in searching out and correcting all potential vio-

lations olthe safe-use rules. Second, Ellis and Detlefs discuss issues of

code-generator safety. Certain code generation techniques may transform

source code that complies with the safe-use rules into non-comforming

machine code. Our requirements for code-generator safety are more strin-

gent than what has been suggested by Ellis and Detlefs. However, we do

not discuss them here because we are not proposing a standard implemen-

tation technique. For more information on our code generation techniques,

see references 45 and 39. Finall¡ Ellis and Detlefs describe a safe sub-

set of c++, use of which guarantees to programmers that they will not

suffer from any of the following storage-related bugs: dereferencing of

dangling pointers, memory smashes, dereferencing of a null pointer, and

array subscripts out of bounds. Use of the subset is not required for re-

liable operation of their garbage collectors. Thus, their definition of the

safe subset is really more of a style guideline than an implementation or

standardization technique for garbage collection of C++. Use of this safe

subset decreases the likelihood of dynamic-memory-related programming

elrors, regardless of the implementation technique'

Effrciency: Ellis and Detlefs state: "To be successful, garbage collection

needn't be quite as efficient as programmer-written deallocation, since

many pfogrammers would gladly sacrifice a little extra run time or mem-

ory to eliminate storage bugs quickly and reliably." They point out that

recent measurements by Zorn suggest that conservative garbage collec-

tion techniques can run as fast as explicit memory deallocation [58]' The

measufements that we report in this paper demonstrate that our system can

likewise run as fast as explicit memory deallocation'

In summary, our garbage collectable dialect of C++ satisfies most of the same

design constraints as the Ellis/Detlefs proposal. However, our implementation

technique is not 100 percent compatible with the proposed Ellis/Detlefs standard.

Besides providing support for automatic reclamation of dynamic memory in

c++ programs, the Ellis/Detlefs proposal extends the programmer's repertoire of

expressive mechanisms. In particular, it adds support for weak pointers and for au-

tomatic flnalization of garbage-collected objects. Our completely general gatbage

484 Kelvin Nilsen



collection system supports these mechanisms [37,45], but our C++ garbage col-
lector does not, since traditional C++ does not offer these capabilities. One of our
goals in designing garbage collection for C++ was to demonstrate how small an

impact garbage collection would have on the language.

It is important to note that there is no known garbage collection technique
that complies both with the Ellis/Detlefs proposal and with the requirements of
reliable real-time garbage collection as outlined in this paper. V/e believe that
a standard for garbage collection of C++ is important, and we believe that the
Ellis/Detlefs proposal represents a valuable step in this direction. However,

its adoption as a standard seems premature given the limited experience of the

C++ user community with conservative garbage collection techniques and the pro-
posal's lack of support for real-time programming.

3.4. Hardware-Assísted Real-Time Garbage Collection

In the discussion that follows, we use the term descriptor to denote a pointer. By
pointing to objects allocated elsewhere, each descriptor is capable of "describing"
all conceivable kinds of information. We use the adjective terminal to characterize
memory locations known not to contain pointers. If all live memory is represented

as a directed graph in which nodes represent dynamically allocated objects and

directed edges represent pointers from one object to another, the terminal nodes

are those from which no directed edges emanate. The source nodes in this directed
graph are pointers residing outside the garbage-collected heap. These source point-
ers, which are under direct control of the CPU, are called root descriptors.

During garbage collection, live objects are copied from one region of memory
to another. At the moment garbage collection begins, the application process tends

each of the root descriptors by communicating their current values to the garbage-

collected memory module (GCMI[) which in turn provides the application process

with updated values to reflect the new locations of the objects they refer to. In-
ternal to the GCMM, tending consists of checking whether the pointer refers to
a from-space object, arranging for the from-space object to be copied to to-space
if necessary, and updating the pointer to reflect the new to-space location of the

object.

Application processes run on the CPU and certain garbage-collection tasks run
on the GCMM. Application tasks are collectively referred to as the rnutator, since,
insofar as garbage collection is concerned, their only role is to modify (or mutate)
the contents of heap-allocated memory.

The GCMM plays the role of traditional expansion memory within a standard

bus-oriented memory architecture, as illustrated in Figure 1.

Reliable Real-Tîme Garbage Collection of C++ 485



C?U

It
Cache

iÈ xÈ f
ROM KAM

Garbaqe-Collecteà
Memory Moàule

Figure 1. Proposed system architecture.

Logically, the GCMM looks like a bank of traditional expansion memory ac-

companied by a small number of memory-mapped I/O ports. The GCMM is like
traditional memory except for the following special capabilities:

1. Each word of GCMM memory is accompanied by a descriptor tag which
distinguishes between words holding pointers and those holding non-
pointers.

2. Each word of GCMM memory is also accompanied by a write-protect tag

which signifies that certain words cannot be overwritten by the mutator.
The write-protect tag is used to ensure that the dynamic memory manager's
internal data structures will not be comrpted by accidental or malicious
C++ writes to out-of-bounds memory addresses.

3. The GCMM monitors all read and write operations. Depending on the

current mode of operation, the GCMM provides special handling of cer-

tain read and write requests. For typical workloads, fewer than 1 percent

of the memory operations that escape the cache require special han-
dling [39]. The other 99 percent of memory operations are unimpeded by
the GCMM.

4. The GCMM supports several direct-memory-access (DMA) operations to,
for example, allow the mutator to initialize descriptor tags and to improve
the performance of certain garbage collection activities.

486 Kelvin Nilsen



lo-øpace:

Traniouøly allocafeà objecfø

Newly allocateà object 
1

1

Upàafeàvalue of New

Figure 2. Allocation of memory within to-space.

A complete description of the GCMM is beyond the scope of this paper. For fur-
ther information, see references 39 and 38.

Our garbage collection algorithm is derived from the real-time copying algo-
rithm originally described by Baker [2]. The mutator allocates dynamic memory
as independent objects. Each object occupies a contiguous segment of memory
the first word of which is a title describing the object's type and size. All dynamic
objects are allocated from a large region of memory named to-space.Initially, to-
space contuns no objects. This allows very fast allocation of new objects. V/ithin
to-space, the New pointer initially points to the end of to-space. To allocate a new
object, the system simply decrements the value of New by the object's size, as

illustrated in Figure 2.

As execution proceeds, the New pointer eventually bumps against the end
of to-space. When this occurs, garbage collection begins. The system allocates a
new to-space, and the old to-space is renamedy'om-space. We call this a garbage
collection flip. Garbage collection consists of incrementally copying live objects
out of from-space into to-space. After all of the live objects residing in from-space
have been copied into to-space, from-spac¿ contains no useful data. At the time of
the next flip, the anrentfrom-space will be renamed to-space.

To minimize the real-time latency of the flip operation, the garbage collector
does not copy all live objects at the time of the flip. Rather, it arranges to copy
only those objects that are directly referenced by the system's root descriptors.
For example, suppose Figure 3 represents live memory immediately before exe-
cution of the garbage collection flip. In this figure, there are two root descriptors,
represented by address registers one and two, and three live objects, labeled A,
B, and C. Note that object A is not directly referenced by the mutator. The mu-
tator can only access A by first fetching its address from within object B. At flip

1

Olàvalue of Nøw

Reliable Real-Time Gørbøge Collection of C++ 487



lo-ø?ace

adàreøø r4løtcrl

ì
adhæøtqlatar2

A ts Ct\
Figure 3. Memory immediately before garbage collection

begins.

time, the garbage collector copies objects B and C, and the two root descriptors

are updated to represent the new locations of these two objects. This is illustrated

in Figure 4.

This illustration shows objects B and C having been copied verbatim (bitwise)

into to-spac¿. For each object copied into to-space,lhe gatbage collector creates

a forwarding pointer from the original object to the new copy of the object. These

forwarding pointers are indicated in this illustration as dotted directed edges. Note

that object B/ contains pointers to the obsolete copies ofthe A and C objects that

reside in from-spac¿. These pointers need to be overwritten with pointers to the

new locations of these objects. The garbage collector's handling of these obsolete

pointers is described below.

The flip operation described above is really Baker's original flip algorithm.

Baker was primarily interested in garbage collection of Lisp, in which all objects

are the same size: two words. Compliance with real-time performance constraints

requires that the flip operation execute within a small constant time bound. Note

that the time required to execute Baker's flip operation depends on how much

time is required to copy objects B and C out of from-space. This is unacceptable,

lrom-øpace

lo-øpace

B C

--J
'2

L t

addreøa reøíetcr1

ragrewr'

Figure 4. Memory following the garbage collection flip
(Baker algorithm).

488 Kelvin Nilsen



because either object may be arbirarily large. Suppose, for example, that object B
were a 512KByte bitmap image. Then the flip would require at least 5 msec, the
approximate time required to perform 32 K memory cycles, each transferring 16

bytes worth of information.
Rather than copy objects B and C at flip time, our algorithm simply reserves

space within to-space into which the objects will eventually be copied. V/hen the

space is reserved, the garbage collector overwrites the frrst two words of the re-

served space with the object's title and source location respectively. The title word
of the from-space version of each object queued for copying is overwritten with
a forwarding pointer to the object's new to-space location. This is illustrated in
Figure 5.

In this figure, the Reserved pointer points to the end of memory reserved
for copying of objects out of from-spøce. The Relocated pointer points to the

end of memory already copied oat of from-space. Following completion of the
flip operation, the garbage collector repeatedly examines the object found at the
location named by the Relocated pointer, incrementally copies that object into to-
space, and updates Relocated to point to the end of the object that has just been

copied. Pointers contained within the objects that are being copied are tended be-
fore they are written to to-space. Tending consists of checking whether the pointer
refers to afrom-space object, aranging for the from-space object to be copied to
to-space if necessary, and updating the pointer to reflect the new to-space Loca-

tion of the object. During copying of B to B' in our example, two pointers are

tended. First, the pointer to A is processed, which causes space to be reserved in
to-space for A/. When the pointer to C is processed, the collector simply looks
up the new location of C by examining the forwarding pointer that comprises C's
header. After both C and B have been copied, memory appears as shown in Fig-
ure 6.

from-opace

t'o-øpace c'l t

Figure 5. Memory following the garbage collection flip
(Nilsen algorithm).

I
New

J"ro"u""o l."u"*"a

Reliable Real-Time Garbøge Collection of C++ 489



from'øpace

lc-ø?ace

s"to"*J¿ â."u"*"¿
I

New

Figure 6. Memory after copying B and C, and reserving

space for A.

Note that the reverse link from the to-space objects to their from-space copies

is destroyed as a side effect of copying the objects. Also, observe that the New
pointer has been adjusted in this illustration to reflect that new memory is typi-
cally allocated while old memory is being garbage collected.

While garbage collection is active, certain mutator memory fetch and store

operations require special handling. In particular, any attempt to fetch or store

memory found between Relocated and Reserved must be redirected to the ap-

propriate location infrom-spøc¿. Furthermore, after redirecting a memory fetch

to from-space, the garbage collector must tend the fetched word before making

it available to the mutator if the word happens to be a descriptor. This interac-
tion between mutator and garbage collector is the major overhead associated with
software implementations of Baker's real-time copying garbage collection tech-

nique. The hardware-assisted garbage collection system avoids these performance

penalties by performing the required checks in parallel with the memory and com-

munication activities that comprise the interface between the CPU's cache and the

memory subsystem, as illustrated by the flow chart in Figure 7.

In this flow chart, the data is returned to the CPU speculdtively, as soon as it
is available from the memory system [31]. The protocol for interaction with the

CPU allows the memory subsystem to send a data retry signal on the clock that

follows the data transfer. If the CPU receives this signal, it discards the transferred

data and reissues its fetch request. The simulation results presented in reference 39

indicate that fewer than 1 percent of the memory fetches that miss the cache need

to be retried. The worst-case delay associated with a fetch request that requires

special handling is approximately I ¡1"s.

A large write buffer is built into the memory controller so the work required
to handle write operations is generally amortized over time. The memory system's

implementation of a write operation is illustrated in Figure 8.

The worst-case time required to wait for a slot in the write buffer is less than

1ps. The write buffer is serviced by the independent process illustrated in Fig-

ure 9.

490 Kelvin Nilsen



ReaàDara(aààr)

Clearlhe retry flaqløøuet'he feVch

requeøllo memory

Waif for memory
lo become reaày

if the letcheà àata exhibilø
an ECC error, or if fhe àata
iø laqqeà aø a poinler anà

refere lo from-epace,
øelthe refry flaq

Figure 7. T\e memory subsystem's processing of fetch
requests.

if aààr >= Relocaleà anà aààr < Reøeweà,
or if aààr iø in the wrile buffer,

øelthe retry flaq

Reliable Real-Tbne Garbøge Collection of C++ 491



WrileDara(aààr, àata)

Figure 8. The memory subsystem's processing of store

requests.

492 Kelvin Nilsen



Figure 9. The memory subsystem's handling of its write
buffer.

Reliable Real-Time Garbage Collection of C++ 493



4. Empirical Perfolmance

Though we consider predictable real-time latency to be of primary importance,

we also desire good average-case performance. To estimate the overhead of
our garbage collection protocol in comparison wilh traditional dynamic mem-

ory management techniques, we have constructed a hardware simulator for our

garbage-collected memory module and have customized an implementation of the

GNU C++ compiler, version 1.37.1, to generate code that communicates with our

hardware-assisted garbage collecting memory module for all dynamic memory

allocation needs. We have conducted experiments to compare the performance

of code generated by the customized C++ compiler running on the simulated

garbage-collecting memory architecture with code generated by the traditional

GNU C++ compiler as simulated on a traditional memory architecture. Both ar-

chitectures depend on separate 32-Kbyte instruction and data caches, organized

with two-way associative one-word cache lines. The data cache uses a write-back

policy. We assume that both architectures use static-column RAM for all memory.

This memory responds especially quickly to read and write requests that happen

to access the same row of memory as was referenced by the previous request. The

traditional C++ implementation uses GNU malloc and free [58,59]. This par-

ticular implementation of nalf o cf f.ree is known to be very space efficient while

exhibiting average run-time performance in comparison with alternative imple-

mentations.

We have ported three real-world C++ applications to the simulated envi-

ronments. These applications are sfft, a sliding fast fourier transform; lisp, a

lisp interpreter written in C++ by Tim Budd for instructional support of Kamin's

comparative.programming language text [17]; and trof f , the typesetting com-

ponent of James Clark's grof f software. These three applications cover a broad

spectrum of programming styles. sf ft is floating-point intensive, performs no

dynamic memory allocation except what is required to allocate a single I/O
buffer, and performs a large amount of work between function calls. Since

sf ft does very little dynamic memory allocation, this program helps charac-

tenze the overhead of garbage collection on applications that do not beneflt

from the use of dynamic memory. On the other hand, lisp makes heavy use

of dynamic memory allocation, never frees allocated objects, and does com-

paratively little work between function calls. sfft and lisp represent oppo-

site ends of the programming spectrum. trof f represents the middle of the

road. The typical troff function is twice as long as the average lisp func-

tion size. And trof f is careful to recycle dynamic memory after it is no longer

needed.

494 Kelvin Nilsen



Table 2 summarizes the behavior of the traditional implementations of the
sample applications, each application running two different workloads.

Table 2. Traditional Implementations of Experimental \Vorkloads.

Tþst Case Instructions
Per Call

Instructions
Executed

Cycles
Executed

Bytes
Allocated

Heap Size
(bytes)

Cycles in
nalloc/free

sf f t/small
sf f t/medium
lisp/prune
lisp/db
troff/paperl
troft fpaper2

61,033,415
243,298,164
250,626,176
430,967,788
312,497,672
843,986,701

77,7tt,461
309,626,744
304,271,795
520,369,298
519,231,664

1,644,574,888

13,328
13,328

643,435

9t0,571
1,407,369

3,431.t19

37,392
37,392

1,276,432

r,790,496
760,080

1,014,000

6,t23
6,123

9,061,562
12,661,448
15,120,973
4r,982,325

448
448
23

23
45

45

The first column of Table 2 represents the quotient of dividing the total num-
ber of instructions executed by the total number of function calls. These values
are extrapolated from studies performed previously [45], and do not represent ex-
actly the same workloads otherwise reported in this paper. The cycles reported
for nalloc and free invocations exclude the time occasionally required by the
operating system to expand the brk region. The ratio between the number of cy-
cles and the the number of instructions executed varies from 1.2 to 1.9, depending
primarily on the likelihood of instruction and data cache hits. Instruction and data
accesses are much less localized for troff than for lisp and sfft. Note that
lisp's heap size is approximately twice as large as the total number of bytes
allocated. This is because each allocated object must be aligned with two-word
boundaries, and each object is accompanied by a header that describes the size of
the dynamic object. The size of sf ft's heap is almost three times as large as the
number of allocated bytes. For this program, the size of the heap is determined
by the default initial heap size rather than by the application's need for dynamic
memory. Note that the heap size for the troff applications is much smaller than
the total number of bytes allocated. This is because trof f recycles memory by
deleting objects whose useful lifetime has ended.

Thble 3 summarizes the performance of the garbage-collected c++ implemen-
tations of the same experimental workloads.

Semispaces are constrained to power-of-two sizes by limitations in the cur-
rent simulator implementation. The smallest heap configuration supported by the
garbage-collected system is 256K8 per semi-space, which is 5I2KB (524,288
bytes) total. This heap configuration is large enough to support the sfft and risp
workloads, but larger heaps are required to support the troff application. For the

Reliable Real-Time Garbage Collection of C++ 495



garbage-collected implementation, the cycles spent in allocation of new memory

includes both the time spent allocating new objects, and the time spent initializing

tag bits to enable the garbage collector to distinguish between words containing

pointers and words known not to contain pointers. The last column of Table 3

reports the number of times that each experimental workload requires garbage

collection.

Table 3. Garbage-Collected Implementations of Experimental Workloads.

Test Case lnstructions
Executed

Cycles
Executed

Bytes
Allocated

Heap Size
(bytes)

Number
of Flips

Cycles in
Allocation

sf f t/small
sfft/medium
lisp/prune
lisp/db
troff/paperl
trof.f,f paper2

6r,345,060
2M,456,999
304,4ø,457
52s,611,056
339,538,043
9r2,908,256

78,714,908
313,387,314
378,763,456
654,509,97r
507,428,938

1,514,830,175

53,650
53,650

779,281.

I,104,109
1,598,820

3,654,093

5U,288
524,288
524,288
524,288

2,097,152
4,t94,304

31,512 0
3t,512 0

l,7tl,t43 4
2,429,129 6

2,251,436 2

s,994,677 2

Table 4 tabulates the comparative performance of the two implementation

techniques.

Table 4. Garbage-Collected C++ vs. Traditional C++.

Test Case Instructions
Executed

Cycles
Executed

Bytes
Allocated

Heap Size
(bytes)

Allocation
Cost

sf ft/small
sfft/medium
lisp/prune
lisp/db
troff/paperl
trof.f. f paper2

+5.1 percent

+4.8 percent

+21.5 percent

+22.0 percent
+8.7 percent
+8.2 percent

+1.3 percent

+1.2 percent

+24.5 percent

+25.8 percent

-2.3 percent

-7.9 percent

+302.5 percent
+302.5 percent

+21.1 percent
+21.3 percent
+13.6 percent

+6.5 percent

N/A
N/A

-58.9 percent

-70.7 percent

+175.9 percent

+313.6 percent

+414.6 percent
+414.6 percent

-81.1 percent

-80.8 percent

-85.1 percent

-85.7 percent

In all cases, the garbage-collected implementations require more instructions

to perform the same total amount of work. The increase in instruction counts is

due primarily to the overhead of maintaining run-time type information to describe

the contents of each function activation frame. The combination of prologue and

epilogue code in the garbage-collected implementation of C++ executes a mini-

mum of nine extra instructions pef function call [39]. This is why the lisp work-

496 Kelvin Nilsen



loads, which have the smallest average function size, exhibit the greatest increase
in executed instructions. Even though the garbage-collected implementations exe-
cute more instructions than the traditional implementations, the garbage-collected

implementation of trof f requires fewer total machine cycles than does the tradi-
tional implementation. The traditional troff implementation uses a single bank of
memory to represent all code and data. The garbage-collected implementation uses

one bank of memory to represent code and static data known not to contain point-
ers, and a different bank of memory to represent the dynamic heap. Since each

bank of memory is implemented using static-column DRAMs, localized memory
accesses within each bank perform better than completely random accesses. By
separating the dynamic heap and code into distinct memory banks, the garbage-
collected implementation improves the locality of memory references within each
bank. This is the primary reason that the garbage-collected implementation of
troff runs faster than its traditional implementation. Note, however, that this is
not the only factor that influences the comparative CPI (cycles per instruction) of
each application. In the lisp applications, for example, the percentage increase in
number of cycles is greater than the percentage increase in number of instructions.
This is because the garbage-collected lisp implementation exhibits a worse cache
hit rate than the traditional implementation. Remember that the garbage-collected
system periodically invalidates the cache in order to initiate garbage collection.
All of the garbage-collected implementations heap-allocate more memory than
the traditional implementations of the same applications because the garbage-

collected implementations heap-allocate stack activation frames [39]. V/e do not
compare the heap sizes for sfft because this comparison would serve only to re-
port the relationship of the smallest initial heap sizes for the two implementations.
The garbage-collected lisp implementation uses a much smaller heap than the
traditional implementation because the garbage collector automatically recycles
memory that the system's developer did not bother to reclaim. Comparisons be-
tween the memory utilizations of the two trof f implementations emphasize that
copying garbage collectors require at least twice as much memory as the amount
of live heap-allocated data. In the simulator's measured conûguration, the ex-
pected ratio between real memory and live memory is 2.25 [39]. Using trof f 's
traditional heap sizes as an estimate of the amount of live data, we would expect
the garbage-collected memory requirements to be 1,710,180 and2,28I,500 bytes
for the paperl andpaper2 workloads respectively. Note that the measured memory
usage of the garbage-collected troff implementations is consistent with the val-
ues calculated by rounding 1,710,180 and,2,281,500 respectively up to the nearest
power of two. In an actual hardware implementation, semispace sizes need not
be equal to a power of two. The last column of Table 4 emphasizes the poten-
tial performance benefits of the hardware-assisted garbage collection technique in

Reliable Real-Time Garbøge Collection of C++ 497



comparison with more traditional dynamic memory management techniques. For

all of the workloads that make effective use of dynamic memory management, the

garbage-collected implementation runs in less than 25 percent of the time required

to explicitþ manage the same dynamic memory.

Table 5 is of particular relevance to the real-time practitioner. This table re-

ports the range of times, measured in terms of machine cycles, for each dynamic

memory operation.

Table 5. Variation in Cycles Required to Manage Memory.

Test Case Traditional Implementation Garbage-Collected Implementation

Cycles per Cycles per

mallocl free
Cycles per

allocation{

sf ft/small
sf ft/medium
lisp/prune
lisp/db
troff/paperl
trof.f f paper2

378 - 5,745
378 - 5,745
132 - 4,357
132 - 7,081
132 - 7,350
132 - 7,256

N/A
N/A
N/A
N/A

70 - 828

70 - 816

rt-43
rt-43
rl -97
tt -96
Lt-99
rt-94

f Excludes the costs of system calls to expand the brk region.
I Excludes certain communication costs associated with the exchange of
information between the CPU and the GCMM. This communication adds

approximately 10 additional machine cycles per allocation.

The garbage-collected implementation was measured to perform all memory

allocations in less than 100 machine cycles. Assuming a 50MHz clock rate, this

corresponds roughly to a worst-case memory allocation time of 2 p,s.ln contrast,

the time to allocate a new object using a traditional implementation of nalloc
was measured to range from approximately 2 to 150 p,s. Though ffaditional imple-

mentation techniques offer good average-case performance, occasional allocations

result in unacceptably long latencies.

These simulations have demonstrated that the proposed architecture executes

programs in time roughly comparable to that of traditional architectures. But it is
important to remember that average-case performance is not the only issue here.

The hardware-assisted garbage collection system provides the additional benefit

of guaranteeing small upper bounds on the time required to read, write, and allo-

cate an object in garbage-collected memory and it automatically reclaims unused

498 Kelvin Nilsen



memory. The major shortcomings of the proposed memory architecture are that
the system incurs a high overhead on function invocation, and the system requires
more memory than traditional dynamic memory management implementations.

continuing research focuses on constructing and evaluating a hardware pro-
totype of the real-time garbage collection system. The system currently under
development differs in several ways from the simulated design:

1. The code generation model for the new system will generate function pro-
logues and epilogues that are, on average, nearly as time efficient as what
is currently used in traditional c++ implementations. we achieve this by
establishing a standard activation frame template that serves all functions.
The layout specifies which fields within the activation frame contain point-
ers. Large activation frames are represented by several contiguous copies
of the standard template. Functions whose activation frames must represent
structured data that does not fit the standard activation-frame template heap-
allocate the structured data using techniques similar to the techniques used
for all activation frames in the current implementation of garbage-collected
C++ [39].

2. The hardware protocol for communication between the CPU and the
GCMM has been modified to reduce the need for the CPU to wait for
GCMM operations to complete before proceeding. The new system al-
lows the GCMM to pipeline the most commonly executed operations, only
stalling the CPU when the pipeline fills. This new protocol will provide
much better average-case performance for object allocation and descriptor
tag initialization.

3. We have designed a hybrid garbage collection technique that uses copy-
ing garbage collection to compact certain segments of the heap while
processing the remainder of the heap using mark-and-sweep techniques.
This hybrid technique provides the benefits of compacting garbage collec-
tion without limiting heap utilization to less than 50 percent. The hardware
prototype will support this newly designed hybrid garbage collection tech-
nique in addition to the fully-copying garbage collection technique that has
already been simulated.

Considerable performance evaluation will be required to fully characterize the
costs and benefits of the proposed hardware prototype. Nevertheless, extrapolation
of current performance results suggests that the hardware prototype will provide
much better performance than has been demonstrated by the simulated architec-
ture.

Reliable Real-Time Garbage Collection of C++ 499



5. Conclusions

Software engineers specializing in the development of real-time systems have in-
vested decades of research and experience in the creation of methodologies that
promote the creation of real-time software that reliably complies with all real-time

constraints. Garbage collection researchers who undertake to develop techniques

for real-time garbage collection must find ways to integrate their garbage collec-

tion systems with existing real-time development methodologies.

The technique for hardware-assisted garbage collection of C++ that is de-

scribed in this paper is compatible with traditional real-time development tech-

niques. Most other so-called real-time garbage collection techniques do not pro-

vide the fine granularity of timing behavior that is required for the creation of
reliable real-time systems.

Though special hardware is required to achieve real-time performance, the

experiments reported in this paper serve also to demonstrate that accurate garbage

collection of C++ is feasible.

Acknowledgments

I thank Benjamin Zorn for his thoughtful criticisms of an earlier draft of this doc-

ument. His comments motivated me to broaden the scope of this paper to include
more specific discussion of the shortcomings of existing stock-hardware real-time
garbage collectors. I also thank the anonymous referees, whose comments served

to motivate the comparison of our garbage-collected C++ dialect with the pro-
posed Ellis/Detlefs standard for garbage collection of C++, and also to improve
the section on empirical performance by requesting that we tabulate the system's

measured performance rather than simply summarizing previous results.

This work was supported by the National Science Foundation under grant

MIP-9010412, and by a grant from the U.S. Department of Commerce. William
Schmidt ported the GNU C++ compiler to the special-purpose memory architec-

ture and performed the experimental measurements that characterize the system's

average-case throughput. I also thank Jim Lathrop and Craig YanZante, students

at Iowa State University, for their assistance in developing the sfft and lisp test

cases. Hong Gao, another Iowa State University student, is currentþ analyzing

the performance of the cf rac, cham, espresso, gawk, and ptc applications. Her

experience porting these C applications to the garbage-collected dialect of C++ is

summarized in section 3 of this paper.

500 Kelvin Nilsen



1.

Reþrences

T. E. Anderson, H. M. Iævy, B. N. Bershad and E. D. Lazowska, The Interaction
of Architecture and Operating System Design, Fourth International Conference on
Architectural Support for Programming Languøges and Operating Sys/ems, Santa
Clara, CA, 1991, 108-119.

H. G. Baker Jr., "List Processing in Real Time on a Serial Computer," Comm.
ACM 21,4 (April 1978),280-293.

S. Basumallick and K. Nilsen, Cache Issues in Real-Time Systems, ACM SIG-
PLAN Notices, Worlcshop on Language, Compile4 and Tbol Support for Real-Tirne
Systems, June 1994.

H. Boehm and M. Weiser, Garbage Collection in an Uncooperative Environment,
Sofnuare-Practice & Experience 18,9 (Sep 1988), 807-820.

H. Boehm, A. J. Demers and S. Shenker, "Mostly Parallel Garbage Collection,"
ACM SIGPLAN Notices, Conference on Programming Innguøge Design ønd Im-
plementation June 1991.

R. A. Brooks, Trading Data Space for Reduced Time and Code Space in Real-
Time Garbage Collection on Stock Hardware, ACM Symposium on LISP and
Functional Prograrnming, August 1984, 256-262.

A. Burns, A. J. Wellings, C. M. Bailey and E. Fyfe, The Olympus Auirude and
Orbital Command System: A Case Study in Hard Real-Time System Design and
Implementation, YCS190, Department of Computer Science, University of York,
1992.

C. Chambers, Cost of Garbage Collection in the SELF System, I99I Worlcshop
on Garbage Collection in Object-Oriented Systems of OOPSI,A, Phoenix, AZ,
October 1991.

S. Cheng, J. A. Stankovic and K. Ramamritham, Scheduling Algorithms for Hard
Real-Time Systems-A Brief Survey, in Tutorial on Hard Real-Time Systems, J.
A. Stankovic and K. Ramamritham (ed.), IEEE Computer Society Press, 1988,
150-173.

J. R. Ellis, K. Li and A. TV. Appel, "Real-time Concurrent Collection on Stock
Multiprocessors," ACM SIGPIAN Notices, Conference on Programming Language
Design and Implementation, June 1988.

J. R. Ellis and D. L. Detlefs, Safe, Efûcient Garbage Collection for C++, Digital
Equipment Corporation Systems Research Center Report 102, June 1993.

S. L. Engelstad and J. E. Vandendorpe, Automatic Storage Management for Sys-
tems with Real-Time Constraints, Oral presentation at 1991 Workshop on Garbage
Collection in Object-Oriented Systems of OOPSI,A. Phoenix, AZ, October 1991.

A. Goldberg and D. Robson, Smalltalk-\}: The Language and its Implementation,
Addison-W'esley, 1983.

R. E. Griswold and M. T. Griswold, The lcon Programming Innguage, Prentice-
Hall, Inc., Englewood Cliffs, NJ, 1983.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

Reliable Real-Time Garbage Collection of C++ 501



15. S. Hong and R. Gerber, Compiling Real-Time Programs into Schedulable Code,

ACM SIGPI-A.N Notices, Conference on Programnring l,anguage Design and Im-
plernentation 28, 6 (June 1993), 166-176.

16. R. Johnson, Reducing the Latency of a Real-Time Garbage Collector, ACM l¿tters
on Prog. Lang. and Systems 1, 1 (March L992),46-58.

I7. S. N. Kamin, Progrømming Languages: An Interpreter-Based Approach, Addison-
Wesley, Reading, MA, 1990.

18. H. Kasahara and S. Narita, Parallel Processing of Robot-Arm Control Computation
on a Multimicroprocessor System, IEEE JournøI of Robotics and Automation 1,2
(June 1985), 104-113.

19. D. I. Katcher, J. K. Strosnider and E. A. Hinzelman-Fortino, Dynamic versus

Fixed Priority Scheduling: A Case Study, submitted for publication.

20. K. B. Kenny and K. Lin, A measurement-based performance analyzer for real-time
progmms, University of Illinois at Urbana-Champaign Report UIUCDCS-R-90-
1606, 1990.

21. K. B. Kenny and K. Lin, Building Flexible Real-Time Systems Using the Flex
Language, IEEE Computer, ivlay l99l,70-78.

22. T. Kuo and A. Mok, SSP: A Semantic-Based Protocol for Real-Time Data Access,

IEEE Real-Time Systems Symposiurn, December 1993.

23. P. S. Lavoie, Tool to Analyze Timing on 68020 Processor, Master's Project, Uni-
versity of Massachusetts-Amherst, 1991.

24. J. P. Lehoczky, Fixed Priority Scheduling of Periodic Task Sets with Arbitrary
Deadlines, IEEE Real-Time Systems Symposium, December L990, 2Ol-209.

25. C. L. Liu and J. V/. Layland, Scheduling Algorithms for Multiprogramming in a
Ha¡d-Real-Time Environment, J. ACM 20, 1 (January 1973),44-6I.

26. J. W. S. Liu, K. Lin, rùy'. Shih, A. C. Yu, J. Chung and W. Zhao, Algonthms for
Scheduling Imprecise Computations,IEEE Computer, May 1991, 58-68.

27. C. D. Locke, D. R. Vogel and T. J. Mesler, Building a Predictable Avionics Plat-

form in Ada: A Case Stud¡ IEEE Real-Time Systems Symposium, December 1991,

181-189.

28. H. Massalin and C. Pu, Fine-Grain Adaptive Scheduling using Feedback, Comput-
ing Systems 3, I (Winter l99O), 139-173.

29. F. fV. Miller, The Performance of a Mixed Priority Real-Time Scheduling Algo-
nthm, Operating Systems Review 26,4 (October 1992), 5-13.

30. A. Mok, P. Amerasinghe, M. Chen and K. Tantisirivat, Evaluating Tight Execution
Time Bounds of Programs by Annotations, Sixth IEEE Workshop on Real-Time
Operating Systems and Sofûuare, May 1989, 272-279.

31. Power PC 601 RISC Microprocessor User's Manual, Motorola,1993.

32. K. Narasimhan and K. Nilsen, Portable Execution Time Analysis for RISC Pro-
cessors, ACM SIGPLAN Notices, Workshop on Language, Compiler, and Tool
Support for Real-Time Systems, June 1994.

502 Kelvin Nilsen



33. S. Nettles, J. O'Toole, D. Pierce and N. Haines, Replication-Based Incremental
Copying Collection, in Memory Management, Y. Bekkers and J. Cohen (ed.),
Springer-Verl ag, 1992, 357 -364.

34. S. Nettles and J. O'Toole, Real-Time Replication Garbage Collection, ACM SIG-
PI,AN Notices, Conference on Programming Innguage Design and Implementation
28, 6 (June L993),217-226.

35. D. Niehaus, Program Representation and Translation for Predictable Real-Time
Systems, Proceedings of the Twelfth Real-Time Systems Symposium, San Antonio,
TX, December 1991, 53-63.

36. K. Nilsen, "Garbage Collection of Strings and Linked Data Structures in Real
Time," Sofii'vare-Practice & Experience 18,7 (July 1988), 613-640.

37. K. Nilsen and W. J. Schmidt, Hardware-Assisted General-Purpose Garbage Collec-
tion for Hard Real-Time Systems, lowa State Univ. Tech. Rep.92-15, 1992.

38. K. Nilsen, Cost-Effective Hardware-Assisted Real-Time Garbage Collection, ACM
SIGPIA,N Notices, Workshop on Innguage, Compiler, and Tbol Support for Real-
Time Systems, June 1994.

39. K. D. Nilsen and V/. J. Schmidt, A High-Perfonnance Hardware-Assisted Real-
Time Garbage Collection System, Journal of Programming Languages 2, I (Jan-
uary 1994), I-40.

40. C. Pu, H. Massalin and J. Ioannidis, The Synthesis Kernel, Computing Systems I,
I (rù/inter 1988), 11-32.

41. P. Puschner and C. Koza, Calculating the Maximum Execution Time of Real-Time
Programs, The Journal of Real-Time System 1, 2 (September 1989), 159-176.

42. R. Rajkumar, L. Sha and J. P. Lehoczky, On Countering the Effects of Cycle-
Stealing in a Hard Real-Time Environment,IEEE Real-Time Systems Symposium,
December 1987.

43. J. Rawat, Static Analysis of Cache Performance for Real-Time Programming, Iowa
State Univ. Tech. Rep. 93-19, Master's Thesis, Iowa State Univ., 1993.

M. P. Rovner, On Adding Garbage Collection and Runtime Types to a Strongly-Typed
Statically-Checked, Concurrent Language, CSL-84-7, Xerox Palo Alto Research
Center, 1984.

45. W. J. Schmidt, Issues in the Design and Implementation of a Real-Time Garbage
Collection Architecture, Ph.D. Dissertation, Iowa State Univ. Tech. Rep. 92-25,
t992.

46. A. C. Shaw, Reasoning About Time in Higher-Level Language Software, IEEE
Transactions on Sofltuare Engineering L3,7 (July 1989), 875-889.

47. J. A. Stakovic and K. Ramamritham, The Design of the Spring Kemel, IEEE
Real-Time Systems Symposium, December 1987.

48. K. Tindell, An Extendible Approach for Analysing Fixed Priority Hard Real-Time
Tasks, YCS189, Department of Computer Science, University of York, December
t992.

49. K. Tindell, A. Burns and A. Wellings, Allocating Real-Time Tasks (An NP-Hard
Problem made Easy), Real-Time Systems, to appear.

Reliable Real-Time Garbage Collection of C++ 503



50. D. Ungar, Generation Scavenging: A Non-disruptive High Performance Storage
Reclamation Algorithm, ACM SIGPI^A,N Notices 19, 5 (May 1984),157-167.

51. S. Wholey and S. E. Fahlman, The Design of an Instruction Set for Common Lisp,
ACM Symposium on LISP and Functional Progrømming,1984,150-158.

52. P. R. Wilson and M. S. Johnstone, Real-Time Non-Copying Garbage Collection,
1993 ACM OOPSLA, Workshop on Memory Management ønd Garbage Collection,
Washington, DC, Sepæmber 1993.

53. J. Xu and D. L. Parnas, Scheduling Processes with Release Times, Deadlines,
Precedence, and Exclusion Relations, IEEE Transactions on Soþ'vare Engineering
16, 3 (March 1990),360-369.

54. J. Xu and D. L. Parnas, On Satisfying Timing Constraints in Hard Real-Time
Systems, IEEE Transactions on Sofiiuare Engineering 19, I (January 1993),70-
84.

55. T. Yuasa, Real-Time Garbage Collection on General-Purpose Machines, Journal of
Systems and Sofiware 1l (1990), 181-198.

56. W. Zhao, K. Ramamritham and J. A. Stankovic, Scheduling Tasks with Resource
Requirements in Hard Real-Time Systems, IEEE Trqnsactions on Sofii,vare Engi-
neering SE-13, 5 (May 1987),564-577.

57. B. Zom and D. Grunwald, Empirical Measurements of Six Allocation-intensive C
Programs, SIGPLA,N Notices 27, 12 (December 1992).

58. B. Zom, The Measured Cost of Conservative Garbage Collection, Sofiiuare-
Practice & Experience 23,7 (July 1993), 773-756.

59. B. Zom and D. Grunwald, Evaluating Models of Memory Allocation, ACM Trans-
actions on Modeling and Computer Simulntion 4, | (January 1994).

504 Kelvin Nilsen


