
Elk: The Extension Language Kit

Oliver Laumann Technische Universität Berlin

Carsten Bormann Universität Bremen

ABSTRACT: In the past, users of an application gen-

erally were at the mercy of its authors when it came to
adapting it to their individual needs and tastes. Fitting
an application with an extension language (ot embed-

ded language) enables users to customize and enhance

it without having to modify its source code. Recently,

variants of Lisp have become increasingly popular for
this purpose, to the point where the abundance of dif-
ferent dialects has grown into a problem. Of the two
standardized dialects of Lisp, only Scheme is suitably
modest, yet sufficiently general, to serve as an exten-

sion language.
Elk, the Extension Innguage Kit, is a Scheme im-

plementation that is intended to be used as a general,

reusable extension language subsystem for integration
into existing and future applications. Applications can

define their own Scheme data types and primitives,
providing for a tightly-knit integration of the CIC++
parts of the application with Scheme code. Library in-
terfaces, for example to the UNIX operating system

and to various X window system libraries, show the

effectiveness of this approach. Several features of Elk
such as dynamic loading of object files and freezing
of fully customized applications into executables (im-
plemented for those UNIX environments where it was

feasible) increase its usability as the backbone of a

complex application. Elk has been used in this way
for seven years within a locally-developed ODA-based
multimedia document editor; it has been used in nu-

merous other projects after it could be made freely
available five years ago.

@lgg4The USENIX Association, Computing Systems, Vol.7 ' No.4 ' Fall 1994 419

l. Introduction

The designers and implementors of a large or complex application can rarely an-
ticipate all requirements future users will have for the application. Typically, users
wish to be able to customize the user interfaces of applications according to their
personal tastes or requirements, or they want to extend the functionality of an
application (either by combining existing functions into new ones or by adding en-
tirely new capabilities). This is especially true for applications used routinely, such
as text editors, and for applications with a high degree of user interaction or with
complex graphical user interfaces.

Certainly any application can be customized by modifying its source code
and recompiling it. But this approach is often not feasible, as the source code of
the application or the tools needed to recompile it may not be available. Even if
it were feasible, it would be a time-consuming process; it would be hard to keep
up with new releases of the application; and the coexistence of multiple, similar
versions of the same application would become a general maintenance headache.

The alternative to this approach is not to "hard-wire" the entire functionality
and all external aspects of an application in the source code at all, but to provide
means to customize the application's behavior later by its users.

I.l. Early Customization and Extension Languages

Many applications support at least simple methods for customization, such as

command line options or conûguration files. More powerful tools for customiza-
tion are macro languages, comrnand Languages, or scripting languages that are
typically found in text editors and word processors. Prominent examples of such
customization and extension languages are the macro language of the now leg-
endary TECO editor and, in UNIX, the macro language of the troff text formatter
[Ossanna 19791 and the configuration language of the sendmnil program.

Although many of these classic extension languages are quite powerful (some

of them are full-fledged programming languages), they have a reputation of be-
ing "cryptic" and hard to understand and use by untrained users. The prevailing
opinion seems to be that only experts can actually benefit from these types of

420 Oliver Laumann and Carsten Bormann

extension languages (for example, people who have mastered lhe sendmail config-

uration language in all details are commonly appointed the status of a "guru").
In fact, it can be observed that only very few users of the troff text formatter
(whose macro language is reputed to be particularly cryptic) are using macro

packages written by themselves; many users give up after some time and fall back

on vendor-supplied macro packages or packages written by a "troff guru."

Experience also indicates that simplified or specialized extension languages

often have more features added and gtow until they resemble a full programming

language. Such "organically grown" extension languages are likely to be contorted

designs as they will consist of several levels of extensions glued on to their initial,
more limited design.

1.2. High-Level Extension Languages

Recently application designers have begun to abandon specialized and cryptic

macro-style extension languages in favor of extension languages that resemble

usual high-level programming languages, mainly languages with Algol/Pascal-
style or Lisp-style syntax and semantics. Prominent examples of such highJevel

extension languages are TPU developed by DEC, the N¿ss language of the An-
drew Toolkit lHansen 1990], AutoDesk's CAD extension language (a dialect

of Lisp), and Emacs-Lisp, the extension language of Richard Stallman's popular

GNU Emacs editor lStallman 1981, Lewis et al. 1990].

Emacs was the first wide-spread application to employ an already existing and

widely used high-level programming language as its extension and customization

language. Emacs-Lisp is a dynamically scoped dialect of Lisp with additional op-

erations for text-editing. The approach taken by Emacs has been tremendously

successful; users of Emacs have contributed a wealth of extensions written in
Emacs-Lisp.

Note that Emacs-Lisp is not a scripting language.It is tightly interwoven with
the application for which it provides extensibility. It also is somewhat inaccessi-

ble to the casual user, who is unlikely to have previous experience with LispJike
languages. This can be contrasted with languages such as Tcl [Ousterhout 1990]

and REXX lCowlishaw 1985], whose underlying models are no less complex,

but which are similar enough to well-known languages such as BASIC to present

less of an obstacle to casual users. On the other hand, non-trivial extensions ben-

efit from the structuring functionality inherent in general purpose programming

languages such as Lisp.

Etk: The Extension Language Kit 421

1.3. Elk as a General, Reusable Extension Language

Using Lisp or Lisp-style languages as extension languages seems to enjoy growing
popularity; several applications besides Emacs now use dialects of Lisp as their
extension language. This development has one disadvantage: the number of in-
compatible (but similar) extension languages is continually growing. Users have
to learn a new language for each new application, and application writers keep
implementing nerw extension language interpreters instead of reusing existing ones.

These problems can be solved by a general, reusable extension language im-
plementation that application writers can include into their applications, an exten-

sion language kit. The main objective of the Elk project was to develop such an

extension language kit and to make it freely available to encourage use by applica-
tion writers.

2. Overview of the Extension Language Kit

2.1. The Evolution of Elk

We were prompted to develop Elk when a search for a suitable extension language
implementation for ISOTEXT [Bormann et al. 1988, Bormann 1991] was fruir
less. ISOTEXT, a document processing system with a graphical user interface, is
almost entirely written in C++; its user interface is based on the X window sys-

tem [Scheifler et al. 1986, Scheifler et al. 1992] and the OSF/Motif widget set.

Customizability and extensibility through a full extension language were basic
requirements on the design of ISOTEXT.

As we consider language design to be the domain of a "selected few" and

did not want to act as amateurs in this fleld, we decided to use an exidtiqg pro-
gramming language as the basis for the extension language of ISOTEXT. This
decision was also influenced by our desire to develop a general, reusable extension
language implementation that is not hard-wired into one specific application. For
a number of reasons an interpreted language seemed preferable: extensions can

be added to (or modified in) a running application without re-linking it; bugs in
extensions can be caught in the interpreter and do not crash the application; in-
terpreted languages usually offer better debugging facilities; and implementing an

interpreter generally is easier than implementing a compiler.
From the beginning we favored Lisp or a dialect of Lisp as the basis for a

general extension language. Most dialects of the Lisp family are o'small," easy to
implement, general-purpose languages with simple syntax and powerful semantics,

and the suitability of Lisp as an extension language had already been demonstrated

422 Oliver Laumann and Carsten Bormann

by several applications, among them GNU Emacs. Early in the project we con-

sidered using Emacs-Lisp, but it appeared infeasible to isolate the Lisp interpreter

from the rest of Emacs. In addition, at the time we investigated Emacs-Lisp it was

lacking several desirable language features, such as support for floating point and

arbitrary precision numbers (bignums). We also considered using MIT Scheme

IMIT 1984], but due to the enoÍnous size of its implementation it would have

dominated the size of the application.

2.2. Scheme as an Extension Language

As other implementations of Lisp or Lisp-like languages available did not meet

our requirements, we finally decided to write an interpreter for the Lisp di-
alect Scheme [Clinger et al. 199'1., Dybvig 1987, Springer et al. 1989, Abelson

et al. 19851. This Scheme interpreter is the main component of the Elk package.

Scheme is a simplified, "cleaned-up" dialect of Lisp with first-class procedures

and static scoping rules. The Scheme language is based on only a few language

features and semantic concepts; it consists of a small core of syntactic forms, a set

of extended forms derived from them, and a number of standard procedures Qtrim-
itive procedttres) that operate on a comprehensive set of types of objects (among

them numbers, lists, vectors, symbols, chalacters, and strings). In 1990 Scheme

became an IEEE standard IIEEE Std 1178-1990] (the standard document, although

only 50 pages long, includes the formal semantics of the language).

The standardization effort has increased the acceptance of Scheme; for in-

stance, the Extension Language V/orking Group of the CAD Framework Initiative
has recently selected Scheme as the extension language for future CAD applica-

tions [CFI l99la, CFI 1991b]. Among the established programming languages

we consider Scheme the ideal candidate for a general extension language-it is
standardized; its semantics are well-defined; it has a simple syntax and is easy to

implement; and it is sufficiently small to not dwarf the application it makes exten-

sible.

2.3. Extending the Extension I'anguage

The implementation of an extension language must itself be extensible. Extension

language code that manipulates objects or state of the application requires adding

application-speciflc primitive procedures to the base extension language. To allow

Elk programs to be expressive in the context of a given application, application

writers are encouraged (and expected) to extend standard Scheme by a rich set

of application-specific data types and Scheme primitives to operate on objects of
these types. In fact, easy extensibility of the language has been the primary design

Etk: The Extension Language Kit 423

consideration in the development of Elk (as opposed to performance or number
of language features). Adding new types and primitives to Elk is an inexpensive
operation; it is not uncommon for an application to define hundreds of application-
specific Scheme primitives.

All primitive procedures of Elk are implemented as C or C++ functions. This
is true for both built-in primitives (such as car and cdr) and primitives defined by
extensions. From the Scheme programmers' point of view, primitives and types
from the base set of the language are indistinguishable from application-specific
primitives and types. Extensions "register" new primitives with the interpreter
by supplying the name of the primitive along with a pointer to the function im-
plementing the primitive and information about the arguments and calling style.
New types are detned in a similar way. Registration of new primitives and types
usually takes place on startup of the interpreter or when a compiled extension is
loaded into the running interpreter.

Another way to use the extension mechanisms of Elk is to provide interfaces
to libraries, such as the C library or the libraries of the X window system (e.g.
xlib). Elk has no facility to directly import "foreign" functions (although one such
facility has been contributed as an extension to Elk). Therefore, a small amount
of code acting as "glue" between Elk and the library has to be written to make
the contents of a library available to scheme programmers. The main purpose of
this interface code is to check the arguments supplied to the library functions, to
convert scheme objects into c types, and to convert the results of library func-
tions back into Scheme objects. Slch library extensions often act as an additional
layer between the application to be extended and the libraries used by the applica-
tion; they allow the application writers to abstract from the details of the libraries.
Although it is useful to distinguish between library extensions and extensions
interfacing to applications, there is no technical difference-in both cases a col-
lection of types and functions is made available to the Scheme world.

Since many of today's applications need to interact with the X window sys-
tem, library extensions are included with Elk that interface to the xll 'xlib"
(similar in its functionality to "CLX" ICLX 1991], but implemented on top of
Xlib), to the Xll toolkit intrinsics ("Xt"), and to the Athena and OSF/Motif wid-
get sets.

In addition, the Elk UNIX extension provides Scheme access to most UNIX
system calls and operating system interface C library functions.l The extension

l. The UNIX extension defines procedures for low-level, file-descriptor-based I/O; creation of pþs; file/record
locking; file and directory system calls; process creation and control; signal handling; enor handling; and
obtaining information about date, time, users, limits, process resources, etc.

424 Oliver Laumann and Carsten Bormann

supports a wide range of different UNIX platforms without restricting its func-

tionality to the lowest common denominator or the POSIX 1003.1 functions. To

facilitate writing portable Scheme programs, the extension attempts to hide differ-

ences between the types of supported UNIX flavors.

3. Using Elk in Applications

In contrast to other extension language implementations (e.g. Tcl), Elk does not

provide its functionality in the form of a library that is statically linked into an

application to be extended. Instead, the object modules comprising the application

and all required library extensions are dynamically linked with and loaded into the

running Scheme interpreter. To accomplish this, the load primitive of Elk has been

extended to load not only files containing Scheme code, but also object files-
compiled extensions written in C or C++. Dynamic loading enables applications to

load less frequently used modules into the running program only on demand; such

an application is initially smaller than the equivalent statically linked application
(where all modules must be combined into one large executable file).

Dynamic loading of object files is often used together with the dump primi-
tive that creates an executable file from the running interpreter, similar to unexec

of GNU Emacs or dumplisp in some Lisp systems. The dump primitive of Elk
differs from existing, similar mechanisms in that the newly created executable,

when called, starts at the point where dump was called in the original invocation
(as opposed to the program's main entry point). Here the return value of dump is

"true," while in the original invocation it returns "f¿lss"-nst unlike the UNIX

/ork system call.

3.1. þnamic Loading and Dump in Cooperation

To generate a new instance of an application one would typically invoke the

Scheme interpreter, load all object modules and all Scheme code required ini-
tiall¡ perform all initializations that can survive a dump, and finally dump an

image of the running interpreter containing all the loaded code into a new exe-

cutable on disk. The use of dump avoids time-consuming activities such as loading

of object flles and other initializations on each startup. The dumped executable,

when started, resumes after the call to dump; at this point one would perform the

remaining, environment-dependent initializations and finally invoke the appli-

cation's "main program" (e.g. enter the X toolkit's event processing main loop).

Figufe I shows a (slightly simplified) Scheme program that generates and starts a

new instance of an apBlication.

Elk: The Extension lnnguage Kit 425

;; r Load initlally required object files and Scheme files of
;;; appficatj-on and dump image into executabfe fife.
;;; Dumped file enters application's main loop on sEartup.

(load 'main.o) ; initial object modufes
(1oad'edit.o)
(load 'x11.o) ; (a library extension)

(load 'ui.scm) ; initiaf scheme fil-es
(load'custom.scm)
(l-oad ' xl1 . scm)

'..(initialize-application)

(if (dump'a.out)
(begin t dumped a.ouc starts execution here

(iniL ia1 i ze-depending-on-environmenL)

(main- foop-of -appl icat ion)
(exit)))

;; Original invocatíon gets here when dump is finished. We're done.

No¡¿; Filenames can be given as symbols (besides the usual string literals). A more meaningful name than a.out
would probably be chosen in practice.

Figure 1. Scheme code to generate and start an application.

On systems that do not support dynamic linking and loading of object files
(such as older versions of UNIX System V) or where dump cannot be imple-
mented, the interpreter kernel and the application and library extensions are linked
statically and combined into one executable.

In any event, in an application using Elk, the control initially rests in the

Scheme interpreter. The interpreter acts as the "main program" of the applica-

tion; it is the interpreter's main) function which is invoked on startup of the
program. Therefore the frrst code to execute in an application is Scheme code;

this Scheme code provides the shell functionality of the application (hence it is
called shell code). The shell code may perform a few simple tasks, for instance,

load a user-provided initialization file containing customization code for the appli-
cation and then enter the application's main loop, or it may be as complex as in
ISOTEXT, where the entire X-based user interface is written in Scheme.

426 Oliver Laumann and Carsten Bormann

3.2. Making Oneself Known to the Extension Innguage

The application, as it is linked with the extension language interpreter, has full
access to all external functions and variables of the interpreter kernel. The in-
terpreter, on the other hand, does not have any knowledge of the contents of
dynamically linked and loaded object modules; all it sees of an object file being

loaded is the file's symbol table. To obtain "hooks" into a newly loaded exten-

sion, the interpreter searches the symbol table of each object ûle being loaded for
functions whose names start with the prefix "init-" (extension initialization func-
tions) and invokes these functions as they are encountered. Likewise, to support

extensions written in C++, any C++ static constructors found in the symbol table

are called. V/hen linked statically with its extensions, the interpreter must scan its

own symbol table on startup to find and invoke the initialization functions. (Simi-

lar support is available for calling extension finalization functions and C++ static

destructors on termination.)
Besides initializing private data of the modules being loaded, these initial-

ization functions register with the interpreter the Scheme primitives and Scheme

data types implemented by the extensions. To enable extensions to register new

primitive procedures and types, the interpreter kernel exports two functions:

Define-Primitive) to register a new Scheme primitive and Define-þpe) to

register a new Scheme data type. Both functions take pointers to C functions as

arguments that implement the new primitive or the basic access functions of the

type (such as the print function and the equality predicates).

A simple example for a library extension is presented in Appendix A.

4. Notes on the Implementation

Designing Elk, not as another Scheme implementation, but as an extension lan-

guage kit, provided a design space different from that traditionally available for
Lisp implementations. The necessary deviations from the treaded paths of UNIX
programming uncovered limitations in portability, aggravated by badly tested

corners of standard UNIX facilities. This section discusses the more interesting

examples of such issues.

4.1. Implementing Continuations

Finding a way to efficiently implement Scheme's continuations called for con-

siderable efforts during the design phase of Elk. Continuations are a powerful

Etk: The Extension Language Kit 427

language feature; they support the definition of arbitrary control structures such

as non-local loop and procedure exits, break and return as in C, exception han-
dling facilities, explicit backtracking, co-routines, or multitasking based on engines

[Dybvig 1987].

The primitive procedure

(call - ¡¡ith - current - continuation receiver)

packages up the current execution state of the program into an object (the con-
tinuation oî escape procedure) and passes this object as an argument to receiver
(which is a procedure of one argument). Continuations are first-class objects in
Scheme; they are represented as procedures of one argument (not to be confused
with the receiver procedure). Each time a continuation procedure is called with
a value, it causes this value to be returned as the result of the call-with-current-
continuation expression which created this continuation. If the procedure receiver
terminates normally (i.e. does not invoke the continuation given to it), the value
returned by call-with-current-continuation is the return value of receiver.

As long as the use of a continuation is confined to the runtime of the re-
ceiver procedure, call-with-current-continuation is similar in its functionality to
catchf throw in most Lisp dialects or setjmpf longjmp in C. However, continua-
tions, like all procedures in Scheme, have indefinite extent (unlimited lifetime);
they can be stored in variables and called an arbitrary number of times, even after
the receiver and the enclosing call-with-current-continuation have already termi-
nated. Figure 2 shows a program fragment where continuations are used to get
back an arbitrary number of times into the middle of an expression whose com-
putation has already been completed. While not particularly useful, this example
demonstrates that continuations can be used to build control structures that cannot
be implemented by means of less general language features like catch/throw or
setjmp/longjmp.

The different approaches applicable to implementing continuations are in-
timately tied to the strategies used for interpreting the language itself. Scheme
interpreters generally employ a lexical analyzer and parser-the reader-to read
and parse the Scheme source code and produce an intermediate representation
of the program. During this phase, symbols are collected in a global hash table
(in Lisp jargon, the symbols are interned), and a tree structure representing the
program's S-expressions is built up on the heap of the interpreter. The majority
of interpreters compile this intermediate representation into an abstract machine
language (such as byte code). The evaluator is then implemented as an abstract
machine which interprets the low-level language; this machine-usually a simple
stack machine-may even be implemented in hardware.

428 Oliver Laumann and Carsten Bormann

(define my-function
(lambda (n m)

(+ n (mark m)))

(define get-back "uninitialized")

(define mark
(lambda (va1ue)

(caf I -with-current -cont inuat ion
(lambda (continuation)

(set ! qet-back continuation)
value))))

(my-function 10 20)

(get-back 5)

(get-back 0)

; return n+m

identity function, but also
assign current continuation
to a gIobal variable

; (assign it)

invoke my-function prints 30

resume with new value prints 15

. . . once more prínts 1O

Figure 2. Using continuations with unlimited extent.

In an abstract machine implementation, the straightforward approach to imple-
ment call-with-current-continuation is to package up the contents of the abstract
machine's registers (program counter, stack pointer, etc.) and runtime stack. Since
continuations have indefinite extent, it would not sufûce to just capture its reg-
isters (as the C library function setjmp does for the real machine). To be able to
continue the evaluation of procedures that have already returned and whose frames
are therefore no longer on the stack, a continuation must also embody the con-
tents of the abstract machine's stack at the time it is created. When a continuation
is applied, the machine resumes the "frozen" computation by restoring the saved
registers and stack contents of the abstract machine.

Just saving the abstract machine's state would not work in Elk, because at the
time a continuation is created, arbitrary library functions may be active in addition
to Scheme primitives. For instance, consider the Elk interface to the "Xt" toolkit
intrinsics of the X window system. Here, a typical scenario is that some Scheme
procedure invokes the primitive that enters the toolkit's event dispatching main
loop (XtAppMainlnop0). When an event arrives (for example, a mouse button
press event), the toolkit's main loop invokes a callback function, which in tum
calls a user-supplied Scheme procedure to be executed when a mouse button is
pressed. This Scheme procedure might in turn invoke yet another function from
the 'Xt" library, and so on. A similar example would be a qsort ot ftw extension
to Elk, where the user-supplied function called by the qsofr) ot frw) C library
function would invoke a procedure written in Scheme.

Elk: The Extension l"anguage Kit 429

The interpreter's thread of execution at any time obviously involves both

Scheme primitives and library functions (such as XtAppMainLoop) and. qsort)
in the examples above) in an arbitrary combination. Therefore, a continuation

must embody not only the execution state of the active Scheme procedures, but
also that of the currently active library functions (such as local variables used

by the library functions). In the approach used by Elk, a continuation is created

by capturing the machine's registers-llke setjmp in C does-and the C runtime

stack. When a continuation is applied later, the registers and the saved stack con-

tents are copied back. Actually, we did not follow the usual "abstract machine"

technique in Elk at all; instead, the Scheme evaluator directly interprets the inter-

mediate representation produced by the reader. In a sense, it is the "reaI" machine

(the hardware on which Elk is executed) that plays the role the abstract machine

plays in implementations with byte-code compilation.
Although the abstract machine technique usually yields faster execution of

Scheme code, the performance of Elk resembles that of existing interpreters

employing this technique, and the implementation of Elk is simpler than that

of comparable interpreters using byte-code compilation. While the technique to

implement continuations in Elk is not strictly portable-it is based on certain

assumptions on the machine's stack layout and the C compiler and runtime en-

vironment-it works on most major machine architectures (with two exceptions,

which are supported using asru statements).

4.2. The Implementation of "dump"

Continuations provide a natural basis for implementing the execution-state pte-

serving semantics of the dump pnmitive. When called, dump invokes call-with-
current-continuation. The real work is done in the receiver procedure; it stores

the newly created continuation into a global variable, sets a global was-durnped

flag to indicate that a dump has taken place, creates an executable file from the

image of the running process, and frnally returns "false." The return value of the

dump primitive is the return value of this call to call-with-current-continuatíon,

i.e. "false" if a dump has just been performed.

When the interpreter-either the original program or a dumped executable-
is started, it examines the was-dumped flag as its very first action. If the flag is

set, the running interpreter was started from a dumped executable. In this case

the interpreter immediately invokes, with an argument of "true," the continuation

that was saved away by a call to dump; this causes that call to dump to finish and

return "true" to its caller. If, on the other hand, the was-dumped flag is not set

(i.e. the running process was not started from a dumped image), the interpreter

initializes and starts up as usual.

430 Oliver Laumann and Carsten Bormann

Before writing an image of the running process to disk, dump has to close

all open Scheme file ports, as open file descriptors would not survive a dump-
they would no longer be valid in the dumped executable. Generally, this is true

for all objects pointing to information maintained by the UNIX kernel, such as

the current directory the current signal dispositions, resource limits, or interval
timers. Users and implementors of Elk extensions must be aware of this particular

restriction. For instance, users of the X1l extensions have to make sure that, if
dump is to be used, connections to X-displays are only established in the dumped

invocation.
To be able to create an executable from the running process, dump has to open

and read the a.out file from which the running process was started (actually, if
the system linker has been called to dynamically load object files, the output of
the most recent invocation of the linker is used instead of the original a.out). The

symbol table of the new executable is copied from the a.out file of the running
program; in addition, the a.out header has to be read to obtain the length of the

text segment and the start of the data segment of the running process. To do so,

dump has to determine the filename of the a.out file from which the process was

started based on the information in argv[0] and in the PAIH environment variable.

This approach is obviously based on several prerequisites: dump must be able

to access its a.out frle (argv[0] must carry meaningful information; the file must

be readable) and the running program's a.out file must not have been stripped. It
would have been advantageous for the implementation of dump if the entire a.out

file were automatically mapped into memory on startup, as it is done, for instance,

in NeXT-OS lMach.
dump combines the data segment and the "bss" segment of the running pro-

cess into the data segment of the new executable. If Elk had a separate heap for
storing constant objects (future versions may have one), dump could place this

read-only part of the memory into the new executable's text segment to make it
sharable. When the interpreter's heap is written to disk, durnp seeks over the un-

used portions of the heap, so that fake blocks (holes) can be used for these parts

of the file. This results in a considerable conservation of disk space in the final ex-

ecutable, as at least half of the interpreter's heap is unused at any time due to the

garbage collection algorithm of Elk.
Since the a.out formats used in the numerous versions of UNIX differ vastly,

Elk has to include separate implementations of dump for the currently supported

a.out formats. Version 2.2 of Elk handles the BSD-style a.out format used in BSD
and "derived" UNIX versions (such as SunOS 4.1), the COf'p a.out format (used

in older releases of UNIX System V and in A/UX), Convex SOFF, Extended

COFF of MIPS-based computers (DEC, SGI), and the ELF a.out format of System

V Release 4 and related LINIX versions (Solaris 2.x, OSF/l).

Etk: The Extension Innguage Kit 431

4.3. þnamic l-oading of Object Files

V/hen loading an object file during runtime, addresses within this object file must

be relocated to their new location in the program's address space. To allow ex-

tensions to directly reference objects of the interpreter kernel, such as the heap

and the built-in primitives, unresolved references into the base program must be

resolved during dynamic loading. Finally, the object file needs to be able to ex-

port its entry points (such as Elk's extension initialization functions) to the base

pfogram.
More than one object file may have to be loaded into one invocation of Elk.

To manage non-trivial, hierarchically sffuctured sets of extensions, where a num-
ber of high-level extensions require one or more lower-level extensions to be

loaded, it is essential that object files loaded later can make use of the symbols

defined by previously loaded object tles. As this style of dynamic loading allows
building complex systems from small components incrementålly, we will use the

term inc remental loading.
With the advent of 4.0 BSD in 1980 [Joy 1980], support for incremental load-

ing was added to the system linker and has since been supported by most major
LJND(variants: when the -A option and the name of the base executable ¿ìre sup-

plied to the linker, linking is performed in a way that the object file produced by
the linker can be read into the already running executable. The symbol table of the

resulting object file is a combination of the symbols defined by the base program

and the newly defined symbols added by the linking process, from the object file
or from libraries used in linking. Only this newly linked code and data is entered

into the resulting object file. The incremental style of dynamic loading is achieved

by saving the resulting output ûle each time the linker is invoked and using this
file as the base program for the next incremental loading step, such that both old
and new symbols can be referenced.

Incremental loading is generally supported by the linkers of UNIX ver-
sions that use the BSD-style a.out format and by those of several UNIX sys-

tems based on more modern a.out formats (e.9. Ultrix). It is not supported by
any existing release of UNIX System V. Some newer UNIX versions that have

shared libraries and dynamic linking (such as System V Release 4 or SunOS)

offer a library interface to the dynamic linker. In some systems this kind of
interface is intended to replace the incremental loading functionality of the

system linker. These dynamic linker interfaces usually come in the form of a
library that exports functions such as dlopen) to map a shared object mod-
ule or shared library into the address space of the caller (the base program) and

dlsym) to obtain the address of a function or data item in the newly attached ob-
ject module.

432 Oliver Laumann and Carsten Bormann

In some implementations, object files attached through dlopen) may directly
reference symbols in the base program; in other implementations they may not.

In any case, object files cannot directly refeÌence symbols defined by objects that

have been placed into the program by previous calls to dlopen0 (only, if at all,

indirectly by calling dlsyn0). Thus, these dynamic linker interfaces are clearly

inferior to incremental loading, as they lack the important capability to load a

set of object files incrementally. Many vendors who have replac ed " f binf ld -Ai'
by a dlopen-style library in their UNIX systems, or who intend to do so, do not

seem to be aware of the fact that this change will break applications that rely on

incremental loading.
For Elk, the consequence of being restricted to dynamic linker interfaces of

that kind is that, except for the simplest applications, one must preJink all pos-

sible combinations of extensions that are not completely independent of each

other. In general, given a set of n extensions each of which can be based on

one out of rn other extensions, this means having to prepare and keep around

n x nl pre-linked object files; not to mention the contortions one has to go

through when the hierarchy of extensions has a depth greater than two (not an

unlikely scenario in practice). If the number of extensions and relations be-

tween them is larger than trivial, or if the extensions are large or require large

libraries, keeping around all pre-linked combinations of object modules will
cause a maintenance problem and may waste a considerable amount of disk
space.

Another, although minor, problem with these dynamic linker interfaces is that

they usually offer only a simple-minded function (such as dlsyrn)) to look up

the address of a specific symbol of a newly accessed object module (typically
some kind of module initialization function); but they do not provide a way to
scan all newly defined symbols. This functionality is insufflcient to implement
extension initialization in Elk, where a dynamically loadable extension often is
composed from a number of small modules, each defining its own initialization
function. Requiring a single, cofirmon initialization function name for the en-

tire object file implies that (often configuration-dependent) "glue code" must be

added to call all the individual initialization functions, including the C++ static

constructors.

Version 2.2 of Elk supports dynamic loading in environments with "ld -lf'
(such as BSD, SunOS 4, Ultrix, and certain versions of SGI Irix and HP-UX), in
HP-UX 9 (based on shl-load), and in MACH/NeXT-OS (rld-load). By gener-

ating shared objects on the fly, System V Release 4 and SunOS 5 (Solaris 2) are

also supported, although in a limited and not yet satisfactory way.

EIk: The Extension lnnguage Kit 433

(define (open-input-fi1e-or-not name)

(cal 1 -with-current -cont inuat ion
(lambda (return) ; return becomes escape procedure

(fluid-Iet ((error-handler ; rebind error-handTer
(lambda arss (return #f))))

(open-input-file name)))))

Figure 3. A version of open-input-file that returns the newly
opened port on success, #f on error.

4.4. Non-Standard Language Features

As the cuffent version of the Scheme standard (deliberately) does not specify sev-

eral important language issues, such as error handling or syntactic extensions, we

have added a number of non-standard language features to the Scheme interpreter
of Elk to filI some of the holes.

A proposal for a macro extension has only recently been added as an ad-

dendum to the R¿vise# Report on the Algorithmic Innguage Scheme [Clinger
et al. 19911 and is still being discussed conffoversially within the Scheme com-
munity. To avoid having to wait for a final version of a macro system to evolve
and be included in the Scheme standard, we implemented a simple-minded macro

mechanism in Elk that resembles the macro facilities offered by various existing
Scheme and Lisp systems.

One area where the Scheme standard does not specify any language features

yet is error and exception handling; the standard merely states which error situa-

tions a conforming implementation is required to detect and report. Since it is es-

sential for a non-trivial application to be able to gracefully handle error situations
(such as failures in interactions with the operating system) and other exceptional

conditions, we have added a simple error and exception handling facility to Elk.
V/hen an error is detected by the interpreter, a user-supplied error handling

procedure is invoked with arguments identifying the type and source of the error.

The standard interactive environment (topJevel) of Elk provides a default error
handler that prints an effor message and then resumes the main read-eval-print
loop by means of a reset primitive. Most primitives of Elk and the extensions use

this error handling facility to signal an effor, as opposed to indicating failure by a
distinctive return value (which would be prone to being ignored). To by-pass the

standard error handler and "catch" failure of a particular primitive, progr¿rms may

enclose the call to the primitive by call-with-currenl-contínuation and dynamically
bind the error handler to the continuation (as shown in Figure 3).

Elk provides a similar facility to handle an interrupt exception: a user-

supplied intemrpt handler is invoked when a SIGINT signal is sent to the

434 Oliver Laumann and Carsten Bormann

interpreter (usually by typing the intemrpt character on the keyboard). Support
for other exceptions, such as timer intem¡pts, may be provided in future versions.

Another non-standard primitive that facilitates handling of errors is dynamic-

wind, a generalization of the unwind-protecf form offered by many Lisp dialects.

dynamic-wind is used to implementthefluid-Ier special form (to createfluid or
dynamic variable bindings). Both dynamic-wind andfluidJet are also provided by
several other Scheme dialects [MIT 1984, Dybvig 19871.

The current version of the Scheme standard does not provide any language

features that would make it possible to implement a useful Scheme debugger
(apart from a debugger based on source code instrumentation). To compensate

for this shortcoming, we have added a few primitives that aid the implementation
of a simple interactive debugger, among them an eval primitive (although, in the-

ory, eval could be implemented by writing an expression into a temporary file and

then loading this file). In addition, Elk, like a few other Scheme dialects, provides

lexical environments as first class (but immutable) objects. Other non-standard
primitives that aid writing debuggers are procedure-lambda to obtain the lambda

expression that evaluated to a given procedure, and a primitive that returns the list
of currently active procedures together with their actual arguments and the lexical
environments in which the procedure calls took place (a back-trace).

4.5. Gørbage Collection

The garbage collector of Elk is based on the stop-and-copy algorithm (see e.g.

[Abelson et al. 1985]). The heap area is divided into two semispaces, only one

of which is active during normal operation. In a garbage collection, all objects
that are still reachable are moved into the unused semispace; the previously used

semispace then remains unused until the next garbage collection. An incremen-

tal, generational garbage collector for Elk, inspired by Yip's garbage collector

[Yip 1991], has recently been implemented as an alternative to the stop-and-copy
garbage collector.2

Extensions to Elk can register beþre-GC and after-GC functions with the in-
terpreter; these functions are invoked by the garbage collector immediately before
and after each garbage collection run. Within after-GC functions, extensions can

2. With a generational garbage collector, objects surviving garbage collections will not be touched again until
there is only a certain amount of memory left on the heap, triggering a full garbage collection. Particularly
in applications with large amounts of Scheme code or other constant data, partial GCs run much faster than
full GCs. With incremental garbage collection, starting a garbage collection does not suspend the application
until the GC is done; instead, the collector returns control to the application almost immediately (after having
marked pages of interest uüeadable wifhthe mprot¿ct system call) and regains control with a SIGSEGV
signal.

Elk: The Extension lnnguage Kit 435

determine whether a particular Scheme object has become garbage, i.e. no refer-
ences to the object exist any longer. In this case, an extension may perform some

kind of clean-up action; for example, if the now unreferenced object contains a
handle to an open file, close this file.

The Elk distribution contains a library based on this mechanism that enables

extensions to register a termination function for objects of a particular type. The
termination function associated with an object is then invoked by the garbage col-
lector automatically when this object has been detected to be unused. The Xlib
extension of Elk uses this library to perform suitable finalization operations on
objects created by the extensions, for example, close windows, unload fonts,
and free colormap objects that have become unreferenced. This mechanism is
slightly complicated by the fact that objects may have to be terminated in a pre-
defined order; for instance, when an Xll display becomes garbage, all objects
associated with this display must be terminated before the display itself is finally
closed.

4.6. Library Extensions

The problems we encountered when designing and implementing Elk's interfaces
to the C libraries of Xll are likely to apply to a wide range of similar APIs. The
Xll libraries, especially Xlib, are quite complex; the core Xlib alone exports more
than 600 functions and macros, with numerous different mechanisms for passing

arguments and for manipulating objects, some of which could be considered rather
verbose and error-prone. This complexity is, at least partly, caused by the semantic
restrictiveness of the C programming language. Thus, when designing the Scheme
language interface, we had the opportunity to eliminate some of the "warts."

If integration of a library with an extension language (or interactive language
in general) is not anticipated at the time the programmer's interface of the library
is designed, writing a properly functioning extension language interface to this
library can become rather challenging or even impossible. This problem is exem-
plified by the "Xt" toolkit intrinsics library of X11, in particular by earlier versions
of this library. The following example illustrates a typical difficulty caused by the
"static" naturc of the programmer's interface to "Xt":

Each class of graphical objects (widgets in "Xt" terminology) exports a list
of attributes (resources) that are associated with objects of this class. A function
is provided by "Xt" to obtain the list of resources of a widget class together with
the name and C type (integer, string, pixmap, color, etc.) of each resource. On
this basis, operations like setting the value of a widget's resource from within
Scheme can be implemented in a straightforward way. The "Xt" extension just

436 Oliver Laumann and Carsten Bormann

has to check if the user-supplied Scheme value can be converted into a C ob-
ject of the resource's type, perform this conversion, and call the xt-function to
set the resource, or complain to the user if the value is not suitable for this re-
source. However, in early versions of xt, some classes of widgets had a subset of
resources (the constraint resources) whose names and types could not be obtained
by an "Xt" application. While this omission was usually not perceived as a prob-
lem for C programmers (who would know each widget's resources a priori from
reading the documentation), it had a dramatic effect on Elk's "Xt" extension, as

now the knowledge about these resources had to be hard-wired into the extension.
As a result, the extension's source code had to be modified for each new widget
set to be made usable from within Scheme code.

This particular problem has been remedied in recent releases of X11, though
several similar problems remain; even in the UNIX C library. While design flaws
of library interfaces often go unnoticed or are considered minor when writing C
or C++ programs (e.g. the fact that implementations of the qsort) functions are
non-reentrant), they become crucial when these libraries are made accessible to
an extension language. As the importance of extension languages is growing, it is
essential that future library interfaces are designed with the particular requirements
of extensions languages in mind.

5. Practical Experiences with Elk

5.1. Elk and ISOTEXT

In developing the document processing system ISOTEXT, Elk proved to be a ma-
jor asset [Bormann 1991]. Scheme was used as the implementation language for
all user interface aspects of ISOTEXT. Apaf from providing extensibility to users
of ISOTEXT, using Elk as the base for ISOTEXT made it possible to write the
shell code in a high level language with all its amenities, e.g. automatic storage
reclamation. As no recompilation and relinking is necessary, it is a quick operation
to apply and test changes to the user interface.

Elk provides for a strong "firewall" in the ISOTEXT system: bugs in the
Scheme code give rise to errors at the Scheme level, which can easily be de-
bugged using the (primitive, but functional) builrin debugger of Elk, while con-
ditions such as core dumps always are the result of bugs in the ISOTEXT kernel
implementation.

All this assistance for the development of ISOTEXT could be obtained with-
out sacrificing the performance of the ISOTEXT kernel system, which is still writ-
ten in efficient C++.

Elk: The Extension Innguage Kit 437

Elk also allowed us to isolate the ISOTEXT kernel from the choice of an X
toolkit the ISOTEXT kernel is unaware of the toolkit being used ("Xt" with
OSF/Motif¡. The Scheme code builds a user interface using the Motif library
interface and provides X windows to the ISOTEXT kernel. Input is processed

by the Scheme code which calls editor primitives provided by the ISOTEXT ker-

nel and schedules redisplay operations. Replacing xt and OSF/Motif by è.g. Xview
would require no changes in the ISOTEXT kernel.

The work on ISOTEXT clearly identified one single main problem in writing
non-trivial extensions: as any request for new heap space can trigger a garbage

collection, extensions must register local or temporary Scheme objects with the

garbage collector to protect them from being discarded during a GC run caused

by any nested procedure call. V/hile this scheme has the advantage that maximum

utilization of the available heap space is guaranteed, it imposes a strict discipline
on the extension prograÍrmer. Failure to properly protect temporary Scheme ob-
jects usually results in delayed crashes of the application that are hard to t¡ace

back to the actual source of the problem. For instance, when developing the Xll
extensions to Elk, most of the time spent for debugging was due to GC-related
bugs.

5.2. Elk and TELES.WSION

Another example for using Elk and its X interface as the basis for a user in-
terface subsystem is the TELES.VISION desktop video conferencing system

ITELES l99Il. First, a somewhat generalized User Interface Management Sys-

tem was built in about 1500 lines of Scheme, which was then instantiated to build
a number of revisions of the TELES.USION user interface. The user interface
communicates with the rest of the conferencing system via a remote procedure

call C library, using Scheme continuations as a basis for a simple form of mul-
tithreading. According to the TELES.VISION implementors [Bastian 1993], Elk
was a "perfect fit" for this application, with the single exception that its initial
garbage collector placed too heavy a burden on the memory-starved initial envi-
ronment (where 8 MB of memory had to be shared among an operating system,

various realtime device drivers, drivers for video codec hardware, and an MS-
V/indows emulation subsystem). This has since been remedied by adding memory.

Using Elk also helped when TELES.VISION was ported to OSl?-in particu-
lat its continuations ported easily. Also, Elk was used in the TELES.VISION
project to build a rapid prototype of the central conference management subsys-

tem (again using continuations to provide multithreading) within less than two
weeks.

438 oliver Laumann and Carsten Bormann

5.3. Other Projects

rWhile Elk has been used in the ISOTEXT project since 1987, legal issues pre-
vented making it publicly available until the fall of 1989. Since then, Elk has

gained acceptance, in fact sufficient momentum to encourage others to contribute
software. Elk has been used successfully as an extension language for a hypertext
database, a distributed version management system, various CAD programs, test-
ing and simulation systems for digital circuits as well as environmental models. It
also has found use simply as a Scheme programming environment, in particular
for its X and Motif interface.

The X extensions have proven useful in particular for writers of applications
with graphical user interfaces based on X; Elk enables them to write their user
interfaces or parts thereof in Scheme to achieve a high degree of customizability.

Elk also has found use as a free-standing Scheme implementation. In combi-
nation with the X extensions it is well-suited for teaching X to beginners, as a tool
for interactively exploring X, and as a platform for rapid prototyping of X-based
applications.

Outside of the UNIX world, we are aware of user-done ports to DOS (both 16

bit and 32 bit using DJGPP), OS12, and MacOS.
Users cited the following features as significant for their choice of Elk: dy-

namic object code loading, dumping of ready-to-run executables, Elk's perfor-
mance, its legally unencumbered availability, and finally its simplicity and adapt-
ability (and, as users say, its consistent, clean and well-structured code).

Users are not happy with various artificial limitations still in the system (such

as the static heap size, which with the stop-and-copy garbage collector needs to be
fixed at invocation time), with Elk's performance, and with the fact that Elk "likes
to be in control" (i.e., supplies the main program). In addition, prospective users

tend to ponder acceptance problems with their fellow workers and customers (who
might not be well versed in Lisp/Scheme) before committing to Elk. Finally, for
many extension language applications, Elk is "too big," and users have asked for
versions without the more expensive Elk features such as arbitrary size number
support or continuations. On the other hand, users have asked for additional fea-
tures such as an inter-process communication interface, or a better debugger. Also,
a port to MS-Windows has been actively sought.

6. Conclusions

Since the Elk project began, both the research community and significant in-
dustry projects have generated increasing numbers of "embeddable language"

Elk: The Extension Language Kit 439

implementations. While many such languages inherit the syntactic flavor of BA-
SIC, those projects that focus on the ability to build non-trivial extensions recently

seem to almost exclusively turn to the Scheme language.

Scheme has proven to be an effective language for extension language pur-

poses. In the beginning of the ISOTEXT project, there were concerns that an

implementation of the full Scheme language would be both too large and too

slow. These reservations proved to be unfounded: the binary code size of Elk is
still significantly below that of a medium size application such as vi. lVhile the

performance of Elk may be uninspiring (no compiler is available), this turned out

not to be a critical issue, as any bottlenecks can easily be replaced by a primitive

recoded in C or C++.

There also were concerns that Scheme was going to be hard to learn for UNIX
users familiar with, say, the Bourne Shell and C. This seems to be more of a prob-

lem with initial acceptance than with a steep learning curve: after having over-

come the initial barrier (which generally had to do mainly with perceiving the

syntax as queer), users reported the same rapid increase in productivity they al-

ready knew from shell programming. It certainly has not been necessary to recruit

Lisp programmers to be able to extend applications with Elk.

Finally, Elk was an exercise in writing portable software without being re-

stricted to what is considered portable today. Apart from the well-known problem

that true portability between current relevant platforms cannot be attained by just

picking one of the proclaimed "standards,o' ard the unwieldy situation that there

are too many standards for (auto-)configuration of software, a significant part of
the effort in generating Elk was consumed by devising support for each new plat-

form for dynamic loading, generation of executables from running programs, and

switching between threads of control (continuations). Note that many non-trivial
applications of today (apart from Lisp programming environments, GNU Emacs

and T¡[come to mind) need one or more of these features; also note that most

relevant current platforms can be made to support these features quite well-just
in wildly different ways.

7. Availability

Elk is available in legally unencumbered status. The current version as of June

1994 is 2.2.The most recent version of Elk is available via anonymous FTP from

ftp.x.org (/contrtbldevel-tools) and fç.fu-berlin.de (lgftlwixllanguages/scheme).

440 Oliver Laumann and Carsten Bormann

Acknowledgments

An early version of Elk was written while one of us was employed at TELES
GmbH, Berlin. We are grateful to Prof. Dr. Sigram Schindler of TELES and TU
Berlin for providing the work environment for ISOTEXT and Elk and for permis-

sion to publish this software.
The present version is a result of our research work at Technische Universität

Berlin, with the benefit of the work of many contributors. In particular, we wish to
thank Marco Scheibe who wrote the generational, incremental garbage collector.

Appendix A: Extending Elk-An Example

A.1. The "ndbm" Library Extension

The extensibility mechanisms of Elk can be demonstrated best by examining a

simple library extension. Consider the ndbm library that is available on most ver-

sions of UNIX. This library implements functions to maintain a simple database

flle of key/contents pairs.

As shown in Figure 4, both the keys and the data to be stored are described by
the type datum; it consists of the data (a string of bytes) and the length of the data.

dbm-open) opens a database file and returns a handle to that file to be used in
subsequent operations on that database (a pointer to an opaque data type, similar
to the fopen and readdir interfaces); it returns a null pointer if the file could not
be opened. A database is closed by a call to dbm-close). The data stored under

a given key is accessed by the function dbm-fetchQ; it returns an object of type

datum (with a null dptr if the key could not be found). dbm-storeQ is used to
insert an entry into a database and to modify an existing entry; it returns zero on
success and a non-zero value on eror.

The straightforward way to write an ndbm extension to Elk is to provide a

new Scheme data type dbm-file together with the obligatory type predicate dbm-

fiIe? and the Scheme primitive procedures dbm-open, dbm-close, dbrn-fetch and
dbm-store that operate on objects of type dbm-fi\e.

dbm-open receives the filename (a string or a symbol); the second argument is

one of the symbols reader (open the file read-only), wriîer (read and write access),

and, create (read and write access, create new file if it does not exist). The optional
fllemode argument is an integer. dbm-open returns an object of type dbm-file or *tf
(false) if the file could not be opened. dbm-close closes the database file associated

Elk: The Extension Innguage Kit 44I

#include <ndbm.h>

typedef struct {

char *dptrt
int dsize;

] datum;

DBM *dbm_open(char

void dbm_cl-ose (DBM

*fil-e, int fl-ags, int mode);

*db) ;

datum dbm_fetch(DBM *db, datum key);

int dbm_store(DBM *db, datum key, datum data, int flags);

Note: Fot simplicity, several functions have been omitted. The flags and mode arguments of dbm_open are that of
the open system call. The"¡logs argumentof dbm_store can be DBM_INSERT to insert a new entry into the database

or DBM_REPLACE to change an existing entry.

Figure 4. The UNIX ndbm library.

with its argument of type dbm-fihe. As this function is called for its side-effect
only, and for lack of a better result, it returns a non-printing object.

dbm-fetch expects a dbrn-file and a string argument (the key to be searched)

and returns a string (the data stored under the key) or #f if the key does not ex-
ist. Note that in Elk strings may contain arbitrary 8-bit characters, including the
null byte. dbm-store is called with a dbm-fihe, two strings (key and data) and one
of the symbols insert and replace.Its integer return value is the return value of
dbm-store).

These procedures and the new dbm-fiIe type can be used by application pro-
grammers to manipulate database ûles in those parts of their applications that are

written in Scheme. Figure 5 shows a small example.

A.2. The Anatomy of a Scheme Type

Figure 6 shows the part of the extension that deals with the new data type dbm-file
and the extension initialization function. The variable T-Dbm will hotd the unique

identifler of the newly defined type. The structure S-Dbm defines the C represen-

tation of the type; one such C structure is declared for each composite Scheme

type. Its main component is the handle of the database ûle that is contained in
each object of type dbm-fi\e.

442 Oliver Laumann and Carsten Bormann

(def ine expand-mai1-alias
(Ìambda (afias)

(1et 1 (d (dbm-open " /eEc/aliases" 'reader)))

(if (not d)

(error'expand-mail-alias "cannot open database"))

(unwind-protect
(dbm-fetch d afias)
(dbm-close d)))))

(define address-of-st.af f (expand-mail--afias "staff '))

Note: The unwind-protect and the error form are not present in standard Scheme.

Figure 5. Using the ndbm extension.

Scheme objects can usually live longer than their underlying C objects. In case

of the dbm-file type, a Scheme object of that type can obviously still be referenced
after its database handle has been closed by a call to dbm-clos¿. As Elk extensions
must not crash the application, we must prevent such stale objects from being used

in further calls to dbm-fetch, dbm-store, and dbm-clo,s¿. One way to achieve this
is to record in each Scheme object whether the underlying C object is still alive
or has been terminated. The boolean component alive in the dbm-file type serves

this purpose. It is initialized with true and is set to false in dbm-close. Further
operations on objects with alive being false are rejected.

The interpreter stores all Scheme objects in variables of type Object. An Ob-
ject is typically a 32-bit value; it is composed of a tag part and a pointer part. The
tag pafi indicates the type of the object, and the remaining bits hold the actual
memory address of the object (they point into the interpreter's heap). The macros
WPE and POINTER are provided to extract the fields of an Objecl. Each type
deûnition must define a macro to extract the object's memory address from an Ob-
ject (by means of POINTER) and then cast it into a pointer to the underlying C
structure (see #define DBMF in Figure 6).

Dbm-Equalfl implements both the eqv? and the equal? predicates for dbm-

file objects; it returns true if both objects being compared are alive and contain
identical DBM handles.

Dbm-Print0 is called by the interpreter each time an object of type dbm-file
is to be printed; it is invoked with the object and the Scheme port to which the

output is to be sent.

P-Is-Dbm0 implements the primitive procedure dbm-file? (the type predi-
cate). As with all primitives, it receives arguments of type Object and returns an

Object, and it has a name beginning with o'P-".

Elk: The Extension Innguage Kit 443

#include <scheme.h>

#include <ndbm-h>

int T_Ðbm;

struct S_Dbm {

DBM *dbm;

char alive; /* 0 or L */
t.

#define DBMF(obj) ((struet S_Dbm *)POINTER(obj)
)

int Dbm_Equal(a, b) Object a, b; {

return DBMF(a)->alive && DBMF(b)->ali-ve && ÐBMF(a)->dbm == DBMF(b)->dbmi

)

void Dbm_Print(d, port) object d, port; {

Printf (port, " * [Ctbm-file 81u] ' , DBMF (d) ->dbm) ;

]

object P-Is-Dbm(x) Objeci x; {

return TYPE(x) == T-Dbm ? True : False;
)

void init_dblm() {

Define_Primitive(P_Is_ubm,',db¡n-fíle?", 7, I, EVAL),

Define_Prímitive(P_Dbm_Open, "dbm-open", 2, 3, VARARGS) ;

Define prj-mitive(P_Dbm_C1ose,'dbm-c1ose., 1, 1, EVAL) t

Define_Primitive(P_Dbm_Store, .dbm-storer, 4, 4, EVAL) ;

Define_Primi¿ive(P_Dbm_FeEch,'dbm-fetch',, 2, 2, EVAL) ;

T_Dbm = Define_type("dbnt-file", sizeof (struct S_DbIr),

Dbm_Equa1, Dbrn_Equal, Dbm_Print, NOFITNC) t

]

Note: For simplicfy some details have been omitted in this listing, and the calling interface of some functions has

been simplified; the program would not compile in this form. Aworking gdbm (GNU dbm) extitnsion is includêd in
the Elk distribution.

Figure 6. Skeleton of the ndbm extension.

The definition of the initialization function init-dbmO is straightforward;
it invokes Define-Primitive) oRce for each primitive procedure and finally
Define-þpeQ to make the new type known to the interpreter.

The arguments that can be supplied to Define-Primitive) are a pointer to the
function implementing the primitive procedlre, the Scheme name of the primitive,

444 Oliver Laumann and Carsten Bormann

the minimum and maximum number of arguments, and a symbol indicating the

calling discipline of the primitive. For most of the functions in this example, the

calling discipline is EVAL, indicating a normal procedure with a fixed number

of arguments; such as car. Elk also supports procedures with variable argument

list, such as list (UARARGS); and NOEVAL for special forms (variable number of
unevaluated arguments).

Define-þpøQ is invoked with the Scheme name of the type, the size of the

type's representation in C or C++ (given as a constant or as a function), two

functions implementingtJlre eqv? and equal? predicates for objects of this type,

a function that is called by the interpreter to print an object of the new type (the

type's print function), and a function providing information about the type to the

garbage collector. The return value of Define-þpe) is a "handle" to the newly

defined type (a small, unique integer); its main uses are to check the type of argu-

ments supplied to primitive procedures and to instantiate objects of this type.

A.3. Primitive Procedures-The Details

Figure 7 gives the definitions of the primitives dbm-open and dbm-close.

dbm-open, as it has an optional argument, is a function with VARA.RG,S calling

discipline (not to be confused with the C language feature of the same name), as

indicated by the last argument to the Define-Primitive call. Primitives of this type

receive an array of Objects and a count.

The initial call to the macro Make-C-String checks if the frrst argument to

dbm-open is a string (or a symbol) and converts it to a C string. To obtain the sec-

ond argumentto dbm-open), the symbol passed to the Scheme primitive (reader,

writer, etc.) has to be mapped to a corresponding flags combination (O-RDONLY

O-RDWR, etc.). This is accomplished by the Elk function Symbols-To-Bits0;
it is invoked with a Scheme symbol, a flag indicating whether a single symbol

or a list of symbols (a mask) is to be converted, and a table of pairs of sym-

bol names and C integers. The third argument to dbm-open) is the file-mode;

Get-Integer(,) converts a Scheme number to a C integer. dbm-open ûnally allo-

cates a new Scheme object of type T-Dbm on the heap, initializes the components

of the object, and returns it.
The auxiliary function Check-Dbmf) is used by the remaining primitives to

check whether a given object is of type dbm-file and if so, whether it is stale. In
this case an error is signaled; Primitive-Enor} enters the error handler of Elk.

P-Dbm-CloseQ just marks the object as stale by setting alive to false and

closes the database file.

Elk: The Extension Language Kit 445

static SYMDESCR Flag-SYmstl = t
{ "reader", o-RDoNr,Y },
{ "writer', O-RDWR },
{ "create", O-RDV'IRIo-CREAT },
{ 0, o }

];

object P-Dbm-open(argc, argv) int. argc; object *argv; {

char *p;

DBM *dp;

Object d;

Make_c_string(arW[0], p) ;
dp = dbm-open(p, symbols-To-Bits(argv[1], 0, Flag-Syms)'

argc == 3 ? Get-Integer(argv[2]) : 0666) ;

1¡ 1¿p == 0)

return False;
d = A1loc-Object(sizeof(struct S-Dbm), t-Dbn. 0);
DBMF(d)->dbm = dP;

DBMF(d)->a1ive = l-;

return d;

i

void check-Dbm(d) objêcL d; {

Check-Type(d, T-Dbn);

if (!DBMF(d)->alive)
Prj-mitive-Error("invalid dbm-file: -s", d) ;

)

object P-Dbm-Close(d) Object d; {

Check_Dbrn(d) t

DBMF(d)->alive = 0;

dbm_c1ose (DBMF (d) ->dbm) ;

return Void;

Ì

Figure 7. ndbm extension-implementation of dbm-open and

dbm-close.

Figure 8 shows the implementation of dbm-slore and dbm-fetch. Make-Integer)
is the counterpartto Get-Intege4); it converts a C integer into a Scheme number.

Likewise, Make-StrtngQ converts a C string into a Scheme string.

446 Oliver Laumann and Carsten Bormann

static SYMDESCR Store_symstl = {

{ "insert", DBM_INSERT },
{ "replace", DBM_REPLACE },
{ 0, 0 }

\;

object P-Dbm_store(d, key. content, flag) Object d, key, conLent, flag; {

datum k, c;
int resuft;

check_Dbm(d);

Check-Type (key, T-String) ;

Check_Type (content, T_String) ;

k.dptr = STRTNG(key)->data; k.dsize = STRING(key)->size;
c.dptr = STRfNG(content)->data; c.dsize = STRING(content)->size;
result. = dbm_sLore(DBMF(d)->dbm, k, c,

S]4nbo1s_To-Bits (f1ag, 0, Store_Strms)) t

return Make_Integer (result) t

)

Object P_Dbm_Fetch(d. key) Object d, key; {

datum k, c;

Check-Dbm(d);

Check_T\pe (key, T_String) ;

k.dptr = STRING(key)->data; k.dsize = STRING(key)->size;
c = dbm_fetch(DBMF(d)->dbm, k);
ret.urn c.dptr ? Make_String(c.dptr, c.dsize) : False;

]

Figure 8. ndbm extension-implementation of dbm-store and
dbm-fetch.

Elk: The Extension Inngunge Kit M7

References

1. Harold Abelson and Gerald J. Sussman with Julie Sussman, Structure and Inter-
pretation of Computer Programs, MIT Press, Cambridge, Mass., 1985.

2. Personal communication with Jan Bastian, TELES.

3. Ute Bormann, Carsten Bormann, C. Bathe, SDE-A WYSIWYG Editing and
Formatting System for ODA and SGML Documents, ESPRIT '88, Proceedings of
the Sth Annual ESPRIT Conference, Brussels, November 14-17, L988.

4. Carsten Bormann, Open Document Processing and the ISOTEXT System, Doc-
toral Dissertation, TU-Berlin, 1991.

5. CAD Framework Initiative, CFI Extension Language Sub-Committee, CFI Exten-
sion Innguage Selection Document, CFI Document Number 87, CAD Framework
Initiative Inc., Austin, Texas, 1991.

6. CAD Framework Initiative, Extension Language Working Group: Architecture
Technical Sub-Committee, Extension Language: Core Language Selection,Draft
Proposal Version 0.7, CFI Document Number ARCH-91-G-1, CAD Framework
Initiative Inc., Austin, Texas, 1991.

7. V/illiam Clinger and Jonathan Rees (Editors), Revise& Report on
the Algorithmic Language Scheme, November 2, 199L. Available as

fç: //cs.indiana.edu/pub/scheme-repository f doc f r4rs.ps.Z.

8. CLX-Common LISP X Interface, 1991. (Part of the Xll Release 5 distribution
available from the MIT software distribution center.)

9. M. F. Cowlishaw, The REXX Innguage-A Practical Approøch to Progrømming,
Prentice Hall, Englewood Cliffs, NJ, 1985.

10. R. Kent Dybvig, The Scheme Progrømming lnnguage, Prentice Hall, Englewood
Cliffs, NJ, 1987.

11. rWilfred J. Hansen, Enhancing documents with embedded programs: How Ness

extends insets in the Andrew ToolKit, Proceedings of IEEE Computer Society
1990 International Conference on Computer lnnguages, March 12-15, 1990, New
Orleans.

12. IEEE Standard for the Scheme Programming Language, New York, May 28, 1991
(approved December 10, 1990).

13. Bill Joy, Changes in the VAX system in the Fourth Berkeley Distribution, Com-
puter Systems Research Group, University of Califomia, Berkeley, November
1980.

14. Bil Lewis, Dan Laliberte, the GNU Manual Group, GNU Emacs Lisp Reference
Manual, Edition 1.03, Free Software Foundation, Cambridge, Mass., December
1990.

15. MIT Scheme Manual, Seventh Edition, Department of Electrical Engineering and

Computer Science, Massachusetts Institute of Technology, Cambridge, Mass.,
September 1984.

16. J. F. Ossanna, Nroff/Troff User's Manual, UNIX Programmer's Manual, Seventh
Edition,. vol. 2, Bell Telephone Laboratories, Murray Hill, NJ, January 1979.

448 Oliver Laumann and Carsten Bormann

17. John K. Otrsterhout, Tcl: An Embeddable Command Language, Proceedings of the

USENIX 1990 Winter Conference, January 1990, pp. 133-146.

18. Robert \I/. Scheifler and Jim Gettys, The X Window System, ACM Transactions

on Graphics, vol. 5, no. 2, pp. 79-LW, 1986.

19. Robert Scheifler and James Gettys, X Window Systern, Third Edition, Digital Press,

t992.

20. George Springer and Daniel O. Friedman, Scheme and the Art of Programming,

MIT Press, Cambridge, Mass., 1989.

21. Richard M. Stallman, EMACS-The Extensible, Customizable, Self-documenting

Display Editor Production System, SIGPIAN Notice.s, vol. 16, no. 6, pp. 147-L56,
Association for Computing Machinery New York, 1981.

22. Das TELES.USION System-Philosophie und Technologie, TELES GmbH,

Berlin, 1991 (in German).

23. G. May Yip, Incremental, Generational Mostly-Copying Garbage Collection in
Uncooperative Environments,'WRL Research Report 91/8, DEC Vy'estern Research

Laboratory Palo Alto, California, 1991.

Elk: The Extension Languøge Kit 449

