
A uwtx Toolkit for Disîributed
Sy nc hronous C ollab orativ e

Applications

Dorab Patel and Scott D. Kalter Twin Sun, Inc.

ABSTRACT: There are many low-level problems, such
as resource discovery and rendezvous, faced by devel-
opers of distributed synchronous collaborative applica-
tions. This paper systematically explores these problems
and discusses their solutions under uNIx. These solu-
tions are collected into a toolkit that provides a high-
level abstract interface to deveþers for a variety of
different application classes. The toolkit supports ren-
dezvous via a file, rather than via a user or application.
This allows clients to join a session without additional
user specification. An evaluation of the toolkit, and
comparison with alternatives, indicates the class of ap-
plications most suited to this approach. Experience us-
ing the toolkit with various applications demonstrates
the usefulness of the provided primitives for rapidly de-
veþing collaborative applications.

@ Computing Systems, Vol. 6 ' No. 2 ' Spring 1993 105



1. Introduction

"Groupware" means different things to different people. These days,
any software not specifically meant for use by a single user seems to
be covered under that term. One reasonable definition is provided by
Ellis et al. in [1].

. . . computer-based systems that support groups of people engaged in a
common nsk and that provide an interface to a shared environmenl .

Even under this definition, there are many kinds of groupware, rang-
ing from asynchronous systems like email and databases, to highly
synchronous systems like shared editors and conferencing systems.

This paper concentrates on the class of groupware called synchronous
distributed groupware.

Many common low-level problems, like resource discovery and
rendezvous, must be solved by groupware implementors on each im-
plementation platform before the collaborative functionality of the ap-
plication can be developed. Developers must work around the limita-
tions of the operating system to implement solutions to these problems.
Each developer usually builds this functionality from scratch and goes

through the same learning process. We have abstracted our solutions
into a flexible, robust, and application-independent toolkit for building
collaborative applications.

The paper starts off by defining synchronous distributed groupware
and its tradeoffs. This is followed by a section describing our require-
ments. The next section describes a series of collaborative issues that
must be addressed by developers of synchronous groupware and the
challenges faced in implementing solutions under uNrx. The following
sections gather these solutions into a framework and describe the high-
level abstract interface provided to the toolkit users. A subsequent sec-
tion describes experiences with the toolkit which highlights the appli-

106 Dorab Patel and Scott D. Kalter



cability of the coex primitives to a variety of application domains. A
comparison with alternative approaches and a summary conclude the
paper.

2. Distributed Groupware Architectures

Groupware architectures [2] can be divided into those with centralized
state and those with distributed state (Figure 1). Centralized state sys-

tems (e.g., XTV [3]) store the shared state at a single location, but
allow participants to have multiple views of this shared state. All
modifications to the state occur at the central server host. This eases

the synchronization and state consistency problems that occur when
multiple users modify the state simultaneously. However, the central
location becomes a bottleneck for traffic and causes a higher latency
for operations because of the round trip time between the central site

and the host requesting the operation. Distributed state architectures
avoid the latency, robustness, and bottleneck problems of the central-
ized state approach but introduce other problems. Distributed state ar-
chitectures (e.g., MMConf [4]) typically consist of replicated applica-
tion instances that each store a local representation of the shared state.

Each instance of the application may be running on different hardware
platforms under different operating systems. Changes in state values

are distributed to the other instances of the application by user action.

Centralized State Distributed State

Figure 1: Centralized versus distributed state

Commun¡calion Network

A uutx Toolkit for Distributed Synchronous Collaborative Applications 107



Thus, the "state" of the shared data is replicated across the buffers of
the application instances. The challenge is to make sure that all these
replicated buffers are consistent with each other. This is usually done
by serializing updates to the state or using a consistency control
algorithm [5, 6].

Just as the state can be either centralized or distributed, so can
views. Having all users share the same view results in a WYSIWIS
(What You See Is What I See) view architecture [7, 8]. This approach
is simple to implement and can provide a focus for group interaction
since the whole group shares the same view. This can be especially
useful in a teaching or demonstration environment. On the other hand,
being forced to share the same view can be rigid and limiting in situa-
tions where browsing the data is more important. A strict WYSIWIS
system can be relaxed across different dimensions. An extreme relax-
ing leads to a system in which each user has an independent view of
the shared data. These approaches can be combined to form hybrid ar-
chitectures. Suite [9] is a system which allows a dynamically variable
amount of coupling among views and data.

Asynchronous groupware deals with qystems facilitating collabora-
tion among users who are interacting over a period of time. Synchro-
nous groupware supports real-time collaboration among users who are
operating simultaneously on their shared data. Our paper focuses on
synchronous collaboration situations using a replicated state architec-
ture providing independent views.

3. Requirements

In addition to providing a toolkit for building synchronous distributed
collaborative applications, we wanted to support the following require-
ments:

. Provide support for sharing application data, not necessarily the
views provided to each client. This makes the toolkit
independent of the window system and user interface toolkits
used by the application.

. Cover a wide variety of applications, including text and graphics.

. In order to ease the transition from single-user applications to
collaborative ones, a collaborative application in single-user
mode must behave the same as a single-user application.

108 Dorab Patel and Scott D. Kalter



Provide high-level support for sharing application-level objects.

Each client must be able to modify parts of the application data

concurrently. This implies that floor-passing is not an adequate

sharing policy.
Provide communication and sharing mechanisms, while
minimizing policies imposed on the developer.

The toolkit must be compatible with applications written in
different languages and function across various uNIx platforms.

4. Issues

There are many issues faced by deveþers of collaborative applica-

tions. Their discussion is ordered chronologically according to their

occurrence in the sharing process.

4.1 Resource Discovery Models

The first problem in collaboration is resource discovery-finding out

what resources are available for sharing, and how to control that

availability. For our purposes, the shared resources are UNIX files that

can be edited simultaneously.
Some collaboration systems are based on a teleconferencing model

of sharing. They allow users to initiate a new conference or join an ex-

isting one. A conference consists of one or more users editing a docu-

ment. There are two drawbacks to this approach. One is that users

have to start or join a conference if they want to share a document.

This forces an explicit transition between their individual and shared

work. Second, users have to scan a list of conferences before they can

decide to join an existing one or start a new one. Again, this process

creates a discontinuity. Such systems usually force the user to start an

application afresh when a conference is initiated. Thus making it im-
possible to initiate a conference using an application that has already

been started. This leads to a high cognitive overhead for initiating a

shared session. Moreover, users typically must decide before starting

an application whether they will use it for individual work or for col-

laboration.
One of our goals was to deveþ a system in which there is no cog-

nitive overhead to a user who is not collaborating. This requirement

a

a

A uNtx Toolkit for Distributed Synchronous Collaborative Applications 109



implied that users should be able to start their applications as they
would do normally, because they cannot know ahead of time whether
they are going to use the application collaboratively. Therefore we de-
cided that all files (remote or local), for which a user had read and
write access, were potential candidates for sharing. In this model, a

user can open any accessible file just as in a single-user application,
and does not have to go through a list of conferences before starting.

This approach is adequate for situations in which the uxrx permis-
sions can be used to control access to the sharing. However, the uux
permissions model does not provide the flexibility and control over file
access that may be necessary in certain environments. Therefore, an-
other solution would be to provide the conference model for resource
discovery mentioned before. In this model, users must put the file they
want to share into a shared space. They must also specify who is to
access the f,le. From the user's point of view, this solution provides
finer grained control at the expense of having to specify sharing and
access explicitly. Providers of such a system would have to implement
their own security and remote file mechanisms rather than reuse those
provided by uNrx.

Our proposed system considers sharable resources to be network
accessible files with security and group control available via file per-
missions. We consider all files that the user can read and write, to be
sharable. Therefore, uNrx with a networked file system solves our
resource discovery problems.

4.2 Rendezvous

After deciding on a resource (file) to open, a process must now deter-
mine whether or not it is already in use. If it is, the process must ren-
dezvous with the other processes using the resource. This is also
known as 'Joining a session".

Owing to the unreliability of NFS [10] and lockd, the file system
can not be used to rendezvous. Instead, the rendezvous must be han-
dled by a separate manager process. In general, the manager will not
have access to the same files as the clients. Hence, each client must
obtain a specification of the file and pass that on to the manager. The
file specification must be network unique so that the manager need

only compare specifications to determine whether clients are accessing

l.10 Dorab Patel and Scott D. Kalter



the same file. Unfortunately, it is impossible to determine a unique file
specification across all currently available versions of uNx.

Full path names for files are inadequate unique specifications be-
cause paths can be aliased and may be ambiguous across hosts. For in-
stance, on a single host, the path /tnp/foo and /tmp/bar may refer
to the same file via either hard or soft links. Across a network,
/tnp/f oo could refer to a different file on each physical host. There-
fore, paths reveal little about the actual identity of a file in a net-
worked environment. An obvious solution would be to use the NFS
file handle which is an opaque type. However, the handle for the same
file can be different on different NFS clients. An alternative is to use a

(host, device, inode) triple to identify a file uniquely. Unfortunately,
UNIX does not provide enough facilities for a client to determine this
triple reliably.

The first problem is that it is impossible to identify a remote physi-
cal host unambiguously. Multiple network interfaces can provide a

single host with multiple Internet addresses. The physical network to
which the client of a file server is connected will determine the Inter-
net address that the client has for the server. The best we can do is to
use this Internet address, or host name used in a remote mount, to de-
termine the canonical name of the server host. This, however, depends
on the system administrator having set up the NIS or DNS [11] data-
base correctly. Application level software cannot solve this problem
completely without the support of the operating system.

The next problem is that of identifying the device on the host that
stores the file. Surprisingly, stat'ingr the file from a remote host is
not documented to provide this information over NFS. Some platforms
put the storage site's device number in the raw device field, but this is
neither documented nor required, and many platforms put other infor-
mation in its place. By contacting the mount daemon directly on the
storage site, it is possible to get this information. However, some
mount daemons refuse to divulge this information to non-root pro-
cesses on the NFS client.

Fortunately, there seems to be no problem finding out the inode of
a remote file as the stat call returns this information.

l. stat is a uNtx system call that returns information about the named file including its
size, access rights, and device number.

A uNtx Toolkit for Distributed Synchronous Collaborative Applications 111



To summarize, our current solution for obtaining a network-unique
file specification is to use the canonical host name of the host that
stores the file, coupled with the device number of the device contain-
ing the file and the inode number of the f,le on the storage host. V/hen
the device number is unobtainable, the exported mount point is used
in its place. This unique file specification is sent by each collaborating
client to the manager. The manager compares these specifications to
determine which clients should rendezvous with each other.

4.3 Session Management

In addition to joining a session, several other tasks must be performed
to manage a session correctly. V/hen new processes join or leave a

session, all the other members must be consistently informed of those
changes in session membership. A new process must be supplied with
the latest shared state that may not have been saved to stable storage.
This must be reliable in spite of other processes simultaneously joining
or leaving the session. Since u¡¡tx does not provide any standard
mechanism to support these requirements, we built our own protocol
for reliable session management on top of TCP/IP [2].

When one or more new processes try to join a session (see Figure
2), one of the existing processes is chosen and asked to provide the
current state. From that time until the state is sent, all messages to ex-

isting session members are saved. These saved messages are forwarded

Figure 2: Joining a Session

ll2 Dorab Patel and Scott D. Kalter

Request for state State + queued messages



to the new processes after they are sent the state. The new processes

synchronize to the current session state by applying the messages to

the provided state.

When clients leave the session voluntarily, they send a message to

the other session members indicating that they are leaving the session.

Clients may also leave a session on an involuntary basis. If the client
process crashes, the other session members will be informed that the

crashed client has left the session. However, a client host crash is not

easily distinguishable from the network being temporarily unavailable.

If the host crashed, the situation can be detected when the host comes

back up. A temporary network partitioning will not cause any prob-

lems when it becomes reconnected.
Unfortunately, during the time between either a host crash and re-

boot, or a network disconnect and reconnection, denial of service may

be experienced by the other clients. We did not consider the use of
keep-alives to be an appropriate solution as it increases network
traffic and choosing timeouts appropriately is problematical. The prob-

lem is fundamental. When the host crashes, we want the connection to
break. V/hen there is a temporary network outage, we want the con-

nection to suspend and return when the network resumes normal oper-

ation. A library cannot have a single solution to both these situations.

An application can provide an appropriate timeout if necessary.

4.4 Communication

Once a session is formed, members have to communicate with each

other. Ideally they should address all the session members or any sub-

set of them with a single message. This implies some form of multi-
casting, which is not widely or consistently available on uNIx plat-

forms. Low level IP multicasting [13] is just becoming available on

some uNIX variants, but most routers still do not support it. What is

required is a multicast transport protocol [14], which no UNIX vendor

currently supports. Therefore, an application desiring this functionality
is forced to mimic multicasting with multiple individually addressed

messages.

We provide a multicast transport facility by having each client send

a message over TCP to a seryer, which then sends out individual mes-

sages over a TCP connection to every member of the session. This is

portable across all existing uNIx platforms and is simple to implement.

A uxtx Toolkit for Distributed Synchronous Colløborative Applicatíons I 13



Another benefit of this scheme for groupware applications, is that the
server provides a convenient point for the serialization of messages, so

we can easily guarantee that all messages are delivered in the same or-
der to all processes in the same session. The disadvantages are that
network traffic is significantly increased, and the fact that the messages
go via the server limits the total number of clients that can be commu-
nicating at a time. Since delivery order is guaranteed to be the same
for all session members, sending clients must wait and execute their
message only when it is received. Therefore there is a round-trip la-
tency from the time a client sends out a message to the time it re-
ceives the message and can execute it.

Session members must communicate various kinds of data to each

other, even though the session may consist of processes running on
heterogeneous platforms. Therefore, one client cannot send its raw
data to another arbitrary client and expect the data to get through cor-
rectly. The solution is to translate the internal representation of the
sender to a network data representation on the way out, and translate
from that representation to the internal representation of the receiver
on the way in. We currently use text as the external representation, but
XDR [15] and ASN.1 [16] are suitable alternatives. To assist in these
conversions, wrapper functions for marshaling and unmarshaling argu-
ments are provided.

5. Toolkit Architecture

The problems and solutions mentioned above are low-level details that
every developer of synchronous distributed collaborative applications
has to implement. These problems are common to all such groupware
applications. Ideally these solutions should be bundled together into a
library or toolkit so that they can be re-used by several collaborative
applications. This requires the toolkit to be application independent.
Moreover, the solutions presented are at the networking and operating
system level. It would be useful to provide higher-level capabilities that
are closer to the abstractions that developers use. However, care must
be taken to allow for the flexibility required by a wide variety of
applications.

The next sections describe a toolkit, called coeX, that provides a
high-level abstract interface to the communication and sharing mecha-

ll4 Dorab Patel and Scott D. Kalter



nisms required of collaborative applications, without unduly restricting
developers' policy decisions. It strikes a balance between the need to
be application-independent and to provide support for higher-level
concurrency control mechanisms suited to the application class.

The coex toolkit (see Figure 3) consists of a library and a server.
The library consists of a kernel and an application-specific module
(ASM). The kernel is application-independent and provides basic com-
munication and sharing facilities. The server is also application-inde-
pendent and provides synchronization and serialization facilities. The
ASM provides sharing management functions that are useful for a

class of applications like spreadsheets or text editors. The client appli-
cation interfaces to the ASM.

Client Process

Application

TCP/IP Client
Process

Application
Specif ic
Module

Server
Ptocess Kernel

t.¡...¡...¡..¡.rrrr.

Figure 3: Toolkit Architecture

The next sections divide the coex toolkit interface into three parts:
a system level interface for initializing the toolkit and setting up the
connection with the server; a file level interface for accessing file re-
sources and joining sessions; and an application interface for operating
on f,le resources.

6. System Level Operations

This section explains how the toolkit communicates with the lowest
level of the application. After initialization, the toolkit library opens a
connection to a Coex server at a predetermined location. The commu-

Toolkit
Library

A uutx Toolkit for Distributed Synchronous Collaborative Applications 115



nication between the application and the server occurs via a socket

frle descriptor. The application uses this file descriptor to detect when

there is data available from the server and when the library is able to

write data to the server. The application may have many different in-
put sources and will have to use its own mechanisms to select among

them. Since a message may be split into fragments by the network, a
client may require multiple calls to write and read to communicate

complete messages to and from the network.

6.1 Asynchronous Client InputlOutput

When data can be read from the server, the application calls the
toolkit library to read as much data as it can. If a complete message

is received, the library dispatches that message. The execution of
that message may involve callbacks into the application.

Similarly, when the toolkit library wants to write data to the
server, it queues the data and informs the application that it wants to
be notified when it is permissible to write. \ilhen the library is notified
of that event, it writes out as much data as it can. If this results in all
the data being written, the application is informed that the library is

temporarily disinterested in writing data on that descriptor. This di-
rectly supports the use of select or pol1.2

6.2 Termination

The application can shut down the toolkit at any time by calling the
appropriate library function. This function informs the server that this
client is shutting down and then frees any system resources associated

with the toolkit services. During the shutdown phase, the library will
callback into the application for each ûle resource that has been opened

via the toolkit. This allows the application to perform concluding oper-
ations on state associated with each file resource.

2. r]ne select or poll UNIX system calls are used to determine which of the supplied flle
descriptors are ready for reading or writing.

116 Dorab Patel and Scott D. Kalter



7. File Level Operations

This section describes toolkit operations for accessing file resources,

determining the group of clients sharing a file, and generating

notifications of membership changes. The toolkit allows an application
to access multiple files simultaneously.

7.1 Joining a File's Session

When a client application wants to join a file resource session, it
should inform the toolkit library, after making sure that the file exists

and is accessible. After making a request to join a file's session, there
are two alternatives. Either this is the only application requesting the
file, or other applications already have this file open.

In the former case, the application will be notified that it is the
only application accessing the file. At that point, the application should
create its internal data structures by reading the file from disk.

In the latter case, other applications may have a modified version

of the document internally in their buffers. The server chooses one of
these applications as the "master" and requests it to send the latest

version of the document. The master gets a callback asking it to ap-

pend the current state of the document to a message. This message is

then sent to the new application. When that application receives this
message, it realizes that it is not the first to open the file and retrieves

the document from the message instead of from the file system.

7.2 Leaving a File's Session

When the application is done with a buffer, it should call the toolkit
to leave its session and then clean up its resources. The toolkit then

informs the rest of the applications sharing that file that the client is
no longer interested in the file.

7.3 Determination of Sharing Group

The application only has to specify the name of the file as it appears

on its site-even though the file might be physically resident on an-

other site and accessed via a remote file system. The toolkit figures out

A uutx Tootkit for Distributed Synchronous Collaborative Applications lIl



whether two different names, on two different sites, correspond to the

same file or not. If two application instances refer to the same file, it
is assumed that they are sharing that file. However, sometimes more

control is required. If two different applications (not two different ap-

plication instances) have opened the same file, then they should not
share the file. For this reason, the concept of an application identif,er
is used. coex assumes that the file is being shared only if the applica-
tion identifiers of the two application clients match. A similar situation
occurs when there are demo versions of applications coexisting with
non-demo versions. Usually, demo versions of applications disable the

functionality of saving a document to a file. If a demo version and a

non-demo version of an application could share a file, the inhibition of
the document save feature could be thwarted by having the non-demo

version perform the save. To prevent this abuse, the application clients

sharing a file must either all be demo versions or all be non-demo

versions of the application.
Because the server is a central point of contact for rendezvous, it

can be extended to include the functions of a license server. The cur-
rent coex protocol allows for the possibility that a client's request to
join a session may be denied. The server could check the client's cre-

dentials sent with the join request, and could deny the request if the

credentials were inadequate. Each client must be able to handle denials

gracefully and inform their users of alternatives. Since all connections

and messages go via the server, it can implement pay-per-use, pay-

per-copy, time-limited, and other licensing schemes.

7.4 Multiple Buffers

The toolkit works with applications that can operate on multiple docu-

ments in multiple buffers. If the application supports multiple buffers

on the same document, the toolkit treats those buffers as a single

buffer.

7.5 Failures and Notifications

All applications sharing a file are notified of any change in the mem-

bership of the sharing group.

The coex protocol is robust in the face of application or server fail-
ure. If applications fail while they or others are in the process of join-

118 Dorab Patel and Scott D. Kalter



ing a sharing session, the protocol handles the situation correctly. It
also correctly handles circumstances when more than one application
requests to join a session. Race conditions between joining and leaving
applications do not affect the operation of the server. If the server
should fail, all client applications are notified and their libraries will
shut down gracefully. The applications can choose to continue, but
they will lack the protection from inconsistencies that CoeX provides.

8. Application Level Operations

The operations described in this section fall in the domain of the ASM
and hence the details of each operation will be different from one

application class to another. However, the general principles are the
same.

8.1 Messages

Messages are the unit of communication between application in-
stances. From the application-writer's point of view, messages are

opaque types with a limited interface. coex currently supports the
adding and removing of several different kinds of items from a

message. These items include integers, floating point numbers, null-
terminated strings and blocks of arbitrary data. The order of adding
items to a message should be the same as the removal order. The
items are not typed. Therefore, the application must be aware of the
type and order of the items in a message. In addition to zero or more
items, each message has a resource identifier and an operation code.

The resource identifier is passed back explicitly to any callback in-
voked as a result of receiving the message. The application can use

this identifier to distinguish messages destined for different buffers.
The operation code is used internally by the library. Typically, the
first item of an application message will be an application-specified
operation code.

8.2 Maíntaining a Consistent Distributed State

The supported model of sharing is that of a consistent replicated dis-
tributed state. The server is not a database and does not store any

A unu Toolkit for Distributed Synchronous Collaboratìve Applications 119



application data. Each application instance stores a copy of the current
state of the document in its buffers. coex provides mechanisms by
which the application instances can coordinate accesses such that each

instance has a consistent copy of the shared state. The data model can

be thought of as a replicated distributed cache.

At the lowest level, the kernel can send messages to all instances

of an application sharing a document. The qystem guarantees that
such messages will be received by the applications in the same order.
Hence, if each application instance carries out the requisite operation
on the receipt of a message, each of the instances will have a consis-
tent state. Such messages are called operations, or Ops for short.

In practice, there can be problems. For example, certain operations
may be allowable only if some preconditions are satisfied. For exam-
ple, a user might be restricted to locking regions that have not already
been locked by someone else. The sending application can check to
see if the preconditions are satisfied before initiating the operation.
However, in the time between the sending of the operation and its re-
ceipt, applications may receive other operations that might cause the
preconditions to be invalidated. For example, another application
might have locked a subrange of the requested region. This results in
two operations that might conflict with each other.

There are two approaches to solving this problem: optimistic and
pessimistic. The optimistic approach involves sending out the opera-
tion, but having each application instance independently check the
action's precondition on receipt before performing the action. The
pessimistic approach involves the initiating application sending the
operation only when it is sure that there will be no other operations
between the sending and the receipt of the operation. On receipt of the
operation all application instances can immediately execute the opera-
tion without any additional checking. Since the system guarantees that
there are no intervening operations, pessimistic approaches can reduce
concurrency. The library provides the mechanisms to support both the
optimistic and pessimistic solutions. Application designers can choose
the approach most suitable to their environment.

Our toolkit provides a special operation, called a clnshing opera-
tion, or ClashOp for short. A ClashOp will either succeed and be sent,
or it will fail. If it succeeds, the system guarantees that no other
ClashOp intervenes between the sending and receipt of that ClashOp.
If it fails, the application is notified and can retry the ClashOp later.

I20 Dorab Patel and Scott D. Kalter



The application can use ClashOps to distribute operations that might
potentially conflict with each other and thus guarantee that only one

ClashOp can occur at a time. ClashOps can be used to implement a

pessimistic solution to the consistency problem. However, since

ClashOps inhibit concurrency, they should be used sparingly and
judiciously.

8.3 Network Trffic

A simplistic approach for maintaining a consistent state would have ap-

plications send an Op or ClashOp every time the state was modified. If
individual views of the data have to be shared as well, then operations

will have to be sent whenever any individual view is changed. This
approach has the benefit that all changes made to any part of the state

will be reflected immediately in the state of all the collaborating appli-
cations. However, if every change is propagated, it may be distracting

to the other collaborators, and will cause excessive network traffic.
An alternate approach is to have users reserve parts of the docu-

ment for their exclusive use. Owners of the reserved parts can make

any local changes that they want without sending any messages. When

they are satisfied with the results, they can release their reservations

causing the changes to be propagated to the others. This scheme has

the advantage of reducing network traffic significantly, at the expense

of not showing the changes to others immediately.
coex provides the mechanisms for both these approaches. Applica-

tion designers can choose the most appropriate one for their applica-

tions. Shared graphical editors may prefer to use the first approach

since it is very useful to immediately notice changes made by others in
this environment. Spreadsheet users, on the other hand, often experi-
ment with cell values and hence would benefit from using the second

method.

8.4 Regions

The smallest object in the document that can be reserved, or locked, is

called a granule. A collection of granules locked by the same user is

called a region. A user may lock multiple regions in a single docu-

ment. One way of characterizing regions is by the dimensions of their
extent. For example:

A uutx Toolkit for Distributed Synchronous Collaborative Applications l2l



0-dimensional: Each object in a structured graphic editor could be a

granule. In this case, each region consists of exactly one granule.

The extent of the region can be represented by a point and hence

is without a dimension.
l-dimensional: In a text editor, a single character could be a granule.

Regions consist of a linear string of contiguous characters. The

extent of a region is represented by a one dimensional line.

2-dimensional: Each cell in a spreadsheet could be a granule. A two-

dimensional area of contiguous cells forms a region.

The ASM provides operations, appropriate to the application class,

for manipulating regions. There are three basic operations: lock, up-

date and unlock. A lock operation reserves the specified region for the

exclusive use of the application requesting the lock. Updat¿ transmits

the current contents of the specified region to all the sharers of the

document. This makes the latest changes available to the others. In
addition to updating the contents of the locked region, an unlock re-
moves the reservation on the region, making it lockable by others. A
pessimistic (Section 8.2) implementation will typically use ClashOps to

implement the lock and unlock operations, and use Ops to implement
updates.

The update and unlock operations denote a region by a unique

identifier returned by a lock operation. The requested region in a lock

operation is specified by offsets from the preceding region or the be-

ginning of the buffer. This allows the specification of the requested re-
gion to be independent of any concurrent update operations. There-

fore, the update operation does not conflict with a lock or unlock

operation.
In addition to these basic operations, the ASM provides operations

to keep the region information current when changes are made to

locked regions. For example, adding characters to a locked text region

will change the boundaries of the region and the location of subse-

quent regions. The toolkit has to be notified of this change so that it
can keep its internal data structures consistent with the application's

structures. The library also provides predicates that the application can

call to decide whether a particular operation is allowed or not. V/hen

any lock information changes, the application is called with informa-
tion on the changes. This should be used by the application to update

the views of locked regions provided to the user.

122 Dorab Patel and Scott D. Kalter



8.5 Other Application-Specffic Operations

The operations relating to regions and locking are provided by most
ASMs. There are other operations, like "save the document", that may
also be provided. The application should use this operation to make
sure that only one of the application instances performs a save at any
given time. This will avoid inconsistent copies being stored on stable
storage. Each application class may have other application-dependent
operations (e.g., the insert row operation in a spreadsheet).

9. Operating System Dependencies

This paper has described some of the impediments to the construction
of robust collaborative applications, and demonstrated solutions to
these problems under uNx. However, the ideas behind these solutions
are applicable to other systems, though implementation details will be
different.

Our toolkit is mostly independent of the operating system. There
are three aspects that are system specific and have been isolated
to a few files. They are: access to remote files, generating unique
identifiers for remote files, and a reliable network transport protocol.

uNIx provides NFS for access to remote f,les. It should be possible
to support other remote file systems like DFS, RFS, and Netware
with minimal changes. The current method for generating unique file
identifiers depends on NFS. Appropriate algorithms for generating
unique file identifiers would have to be created for other remote file
systems. TCP/IP provides a reliable network transport protocol and is
widely available. Any communication protocol that supports reliable
sequenced messages is adequate for implementing coex.

10. Evaluation

The coex system is relatively small, weighing in at approximately
10,000 lines of C. The stripped server (Sparc under SUnOS 4.I.2)
occupies about 50k on disk. The library for a text-based application
(Sparc under SUnOS 4.1.2) is approximately 40k (text * data * bss).
The amount of memory used in practice is application-dependent.

A uwtx Toolkit for Distributed Synchronous Collaboratíve Applicctions 123



Application data (in bytes)
1 I 1k I 2k I 3k I 4000 I 4k I 8k

Multisite Op
Multisite ClashOp
Singlesite Op
Singlesite ClashOp

5

9

5

8

9

12
7

11

\2
I6
10
1.4

15

19
12

16

T7
21.

13

16

na
na
!7
21.

na
na
30

34

Iable l: Round-trip latency in ms

Table 1 gives an idea of the round-trip latency of messages using

SparcStation ls running SunOS 4.I.2 connected by a 10Mb UTP Eth-

ernet. The timings include the overhead in the coex library, and for
message creation, destruction, and dispatch. The server and two clients

were each run on different hosts for the "Multisite" data collection.

For the "singlesite" results, all three processes were run on the same

site, thus not sending any data across the network. We measured both

Ops and ClashOps, each with different amounts of application data'

For application data above 4096 bytes in the "Multisite" case, our

timing results contained a lot of variation and so are not included.

We rounded the timings to the nearest milli-second.
From the table, the overhead of a ClashOp over an Op is approxi-

mately 4ms, and each extra 1024 bytes of application data increases

the latency by approximately 3ms.

11 . Experiences with the Toolkit

Our original prototype was built in 1990. We enhanced GNU Emacs

[17] to share text files among multiple editor instances. All modifica-

tions were made entirely in Emacs Lisp. The architecture used a cen-

ftalized server that maintained the shared state. We rcalized that the

communication and sharing issues we dealt with were common to all
groupware applications and our solutions could be abstracted into a

toolkit. In early 1991 we started work on the first version of the

toolkit. It supported a distributed state architecture and was written in
C. The toolkit was integrated into an existing Motif-based commercial

spreadsheet. This enhanced multi-user spreadsheet has been on the

market since late 1991. In early 1992 we started work on the second

version of our toolkit. This version added support for multiple buffer

I24 Dorab Patel and Scott D. Kalter



applications and involved a total rewrite of the library code as a result
of our experience with the first version. We also built ASMs for text
editors and structured graphics editors. This version was completed in
mid 1992,

In addition to the commercial spreadsheet, we used our toolkit in
four other applications: a text editor, a structured graphics editor, a

puzzle game, and a brainstorming tool. The group text and graphics

editors were modifications of the sted and idraw applications that are

a part of the rnterviews [18] distribution. In addition to making
sted into a group editor, we added facilities for one-shot synchroniza-

tion of views and selections. We also added history visualization fea-

tures that provide a graphical representation of the collaborative events

on the file over time. Each user can lock regions of the buffer and can

modify the data. Their changes are made available to the other mem-
bers of their sharing session on update or unlock. Since idraw follows
a select-then-operate metaphor, we lock the selected objects implicitly.
Therefore, there is no change in user gestures between the single-user
and group-aware versions. To demonstrate the ability of our toolkit to
support multiple policies, we provided for two update modes. In the
first mode, the other session members see changes only on deselection.
In the second mode, the changes are reflected immediateþ to all ses-

sion members. Users can dynamically select between these modes via
a menu item. In single-user mode (i.e., when there is only one user

sharing a file), there are no user-observable differences between the

original and enhanced applications.
The puzzle game is a modified version of the puzzle demo from

the X distribution. We added a file argument to the program to provide
a rendezvous point. All the previous examples were modifications of
already existing applications. The brainstorming tool was written ex-

plicitly as a multi-user application. Each user has a private area where

they can edit a string. On typing a carriage return, their private string
is sent to all the session members and appears in a global, read-only,
scrolling list of items. The last two applications did not require any

high-level application-specific support and hence use a null ASM.
Our experience with these applications indicates that the primitives

supplied by the toolkit are appropriate for collaborative applications

and are adequate for a variety of different application classes. Use of
the toolkit greatly reduces the amount of time required to build a col-
laborative application. For example, it took us approximately 2 hours

A uNtx Toolkit for Distibuted Synchronous Co:llaborative Applications I25



to build a simple single-user brainstorming application. It took another

2 hours to integrate it with our toolkit and have it work in multi-user
mode. It then took another 4 hours to clean up the user interface and

add user interface features. In the case of modifying already existing
applications, our experience suggests that most of the time is spent in
understanding the code structure and determining where the modifica-
tions are to be made, For the case of idraw, which is a fairly complex

application, the total modification process took a week. It is our expe-

rience that the basic integration takes on the order of a few days.

However, to ensure perfect coverage, and to make sure the changes

are robust under all situations, can take considerably more time.
Our integration architecture and philosophy is similar to that of

DistEdit [19]. The application's original modification functions are re-
placed by glue function stubs that call our primitives. When messages

are received, our toolkit calls back to glue functions that then call the

application's original functions. Table 2 gives an idea of the amount of
modifications required to existing applications. The glue code is more

or less the same for all applications, except for function names and

application - specifi c checks.

Application Oriqinal Modified Glue
Spreadsheet
Text editor
Graphics editor

119K
500
19K

1K
100

700

2K
300
800

Table 2: Lines of code for modified applications

Our experience shows that applications that have a clean separation

between data and views, are event-driven, and validate all operations

before execution, are easier to make collaborative. Not surprisingly,
applications that are well-structured and those that follow good soft-

ware engineering practices are easier to convert.

12. Related Work

Like other toolkits, coeX abstracts common features from a variety of
potential applications and provides a general interface to that function-
ality. This general interface insulates the application from platform

variations. Performance and reliability enhancements to the toolkit are

126 Dorab Patel and Scott D. Kalter



transferred to the applications simply by relinking. Thus, code reuse is
a major benefit of toolkits. A good toolkit implements flexible mecha-
nisms on which application programmers can impose their own poli-
cies.

COex provides communication and concurrency control to share
data among replicated instances of an application. It is independent of
any particular user interface toolkit. It uses a f,le as the rendezvous
point for the session. High-level support for various application classes
is provided along with the ability to modify parts of the shared data
concurrently.

Other toolkits, like Sun's ToolThlk [20] and HP's SoftBench [21],
also offer communication among applications by providing a "software
backplane" to which applications can connect. However, both are ori-
ented towards dissimilar applications using loosely-coupled communi-
cations, and hence tend to rendezvous via the common user of the
applications rather than a common file. ToolTälk does provide for file-
based rendezvous, but requires a server on every NFS site to support
this feature. Since these architectures expect the communication be-
tween applications to be infrequent, they are not suitable for real-time
data exchange.

The ISIS toolkit [22] provides communication mechanisms for
fault-tolerant distributed computing with large numbers of processes. It
requires a central server for session management, though not for nor-
mal communications. On the other hand, CoeX is tailored towards
supporting a small number of tightly-coupled distributed applications
working together on a shared state. Additionally, the ASMs provide
high-level sharing and consistency support for a wide range of applica-
tion classes. While ISIS solves similar low level communication and
session management problems as our toolkit, it is over ân order of
magnitude larger, involves greater complexity, and provides compara-
ble latencies (see Täble III in [23]) for small sized groups. However,
it scales better than coex-in terms of large messages, large groups,
and a large number of groups. Since our application domain contains
sharing groups that are small, size and complexity outweigh
scalability.

DistEdit [19] is an independently developed toolkit that provides
high-level support for building collaborative text editors and uses ISIS
for its low level communications. It allows sharing among different
text editors and provides integral support for undoing actions in a

A uutx Toolkit for Distributed Synchronous Collaborative Applications 127



collaborative environmentl24l. Like coex, it empþs a distributed

architecture and is independent of the user interface. Unlike COgX it
only supports text editors, but provides undo support.

Groupware toolkits like Rendezvous [25], LIZA [26], and Suite [9]
use a hybrid architecture with a central site for data storage, but repli-

cate the user interface which may contain replicated cached copies of
the central data objects. The central Storage site provides a convenient

synchronization point for access to the shared state. The replicated user

interfaces allow user interface tasks to be performed locally, thereby

increasing responsiveness. Each of these systems provides a framework

for building collaborative applications, but deveþers are restricted to

using the provided user interface components. All these frameworks

rendezvous via the central application. Suite additionally provides ex-

tremely flexible, dynamically modifiable coupling among the user in-

terface objects, including the ability to share uncommitted values or

partial results. The default concurrency control scheme used by Suite is

to implicitly lock the data object when a user modif,es the correspond-

ing user interface object, and to unlock when its value is committed.

GroupKit [27] is a toolkit for building collaborative applications

using the InterViews user interface toolkit. It provides InterViews
users with extremely convenient mechanisms to add collaborative user

interface features such as telepointers and annotations using overlays.

GroupKit uses a conferencing model for distributed state collaboration

and provides flexible support for implementing various conference and

floor passing policies. It does not provide any concurrency control

mechanisms, but supports application-specif,c functionality via sub-

classing.
MMConf [4] is a framework for constructing collaborative applica-

tions with distributed state. Applications built with MMConf have to

use the provided user interface objects. MMConf provides a variety of
floor-control mechanisms for regulating access to the application. No

concurrency control is provided in the free-for-all mode.

13. Summary and Future Work

This paper highlights some of the issues faced by deveþers of syn-

chronous distributed collaborative applications. We show how these is-

sues can be addressed in the context of a uNIx implementation. These

128 Dorab Patel and Scott D. Kalter



solutions are collected into a toolkit that provides a higher-level ab-
straction for the collaborative application developer.

The toolkit provides support for sharing application-level objects
rather than user interface objects. This makes it possible to use Coex
with applications written for any windowing system or with any user
interface toolkit. Since individual views are not necessarily shared,
each user can have immediate feedback for user interface operations
like scrolling. The replicated architecture also provides performance
benefits since each client has a full copy of the application data and
can operate on it locally. Each client can make concurrent changes to
parts of the shared state. Developers can use Ops, ClashOps, and the
locking mechanisms provided by ASMs to implement a concurrency
control policy that is appropriate for their application.

coeX does not interpret application data and hence can be used for
any type of application, including text or graphics. The ASMs provide
high-level support for sharing application-level objects within various
application classes. Our experience building five different applications
with the toolkit suggests that the functionality provided by the ASMs
is appropriate. Four of the five were existing single-user applications.
We found that using CoeX allowed us to quickly convert these applica-
tions for collaborative use. Most of the conversion time was spent in
understanding the application's structure, deciding where to make
modifications, and making sure that we had complete coverage of the
application. Integrating CoeX into a new application was even
quicker-usually on the order of a few hours to obtain a minimally
functioning system.

Users are attached to their comfortable everyday single-user tools
and are loath to make any new changes. This poses a significant obsta-
cle for the acceptance of multi-user collaborative tools. One method of
surmounting this obstacle is to provide enough extra functionality to
make it beneficial for users to change. Another method is to make the
transition from single-user tools to multi-user tools as smooth as possi-

ble. coex supports this transition in two ways. First, by providing
packaged solutions to common communication and sharing problems,
our toolkit facilitates the conversion of popular single-user tools to
group-aware ones. This allows users to continue utilizing their favorite
familiar tools. Second, by providing file-based rendezvous, coex sup-
ports the construction of collaborative applications that behave the
same in single-user mode as their single-user counterparts. This is in

A uutx Toolkit for Distributed Synchronous Collaborative Applications 129



contrast to other frameworks which use a user name, application name,

or conference name to rendezvous. Since most single-user tools operate

on files, our approach is appropriate.

COex uses a central server for all communication, which may be a
bottleneck when scaling up the system. In our application domain, the
number of clients per session typically is small. For example, it is un-
likely that hundreds of users want to edit the same memo. However, it
is likely that there are a large number of sessions. In this situation, the
single server can be a significant bottleneck for traffic. A simple load
balancing scheme can alleviate the situation. Assuming a fixed number
of independent servers, the unique file identifier can be hashed in such

a way that each file is deterministically associated with a particular
server. Thus, each server serves a particular group of files. While this
scheme works for uniform file accesses, it is a static solution, and

could result in unbalanced server loads for certain file usage patterns.
A more dynamic, though significantly more complex, scheme would
be to use a multiple server architecture. Each client can connect to any
server, and the servers exchange data among themselves. This is a
topic for future work.

A related issue is that of latency. So far, our experience has been

limited to low latency local area networks. In a high latency situation,
over a wide area network or over dialup lines, the round trip delay to
the server could be prohibitive. It is likely that different protocols and

different notions of consistency will be required.
coeX is appropriate for static media. Its applicability to continuous

media like audio and video are open questions.

In conclusion, our work provides a first-cut at solving many com-
mon problems faced by developers of collaborative applications. In
particular, we provide the ability to rendezvous via files. However,
there is still more work to be done in handling scaling, latency and

continuous media.

130 Dorab Patel and Scott D. Kalter



References

[1] Clarence A. Ellis, Simon J. Gibbs, and Gail L. Rein. Groupware: Some

issues and experiences. Communications of the ACM, 34(l):38-58,
January 1991.

[2] Keith A. Lantz. An experiment in integrated multimedia conferencing. In
CSCW'86: Proceedings of the Conference on Computer-Supported Co'
operative Work, pages 267-275, Austin, Texas, December 3-5 1986.

Also published in [28], pages 533-552.

[3] Hussein M. Abdel-V/ahab and Mark A. Feit. XTV: a framework for
sharing X window clients in remote qynchronous collaboration. In
Proceedings of the IEEE TriComm'91: Communications for Distributed
Applications and Systems, pages 159-167 , Chapel Hill, North Caro-
lina, April 1991.

[4] Terrence Crowley, Paul Milazzo, Ellie Baker, Harry Forsdick, and Ray-
mond Tomlinson. MMConf: An infrastructure for building shared mul-
timedia applications. In CSCW9): Proceedings of the Conference on

Computer-Supported Cooperative Work, pages 329-342, Los Angeles,
California, October 7-10 1990.

15] Clarence A. Ellis and Simon J. Gibbs. Concurrency control in groupware

systems. In Proceedings of the 1989 ACM SIGMOD International Con-

ference on the Management of Data, pages 399-407, Portland, Ore-
gon, May 3l-June 21989.

[6] Alain Karsenty and Michel Beaudouin-Lafon. An Algorithm for dis-
tributed groupware applications. Rapport LRI No. 785, Laboratoire de

Recherche en Informatique, Université de Paris-Sud, Orsay Cedex,
France, October 1992.

[7] D. Garfinkel, P. Gust, M. Lemon, and S. Lowder. The SharedX multi-
user interface user's guide, version 2.0. Technical Report STL-TM-89-
07, Hewlett Packard Laboratories, Palo Alto, California, March 1989.

[8] Mark Stefik, Gregg Foster, Daniel G. Bobrow, Kenneth Kahn, Stan Lan-
ning, and Lucy Suchman. Beyond the chalkboard: Computer support
for collaboration and problem solving in meetings. Communcations of
the ACM,30(l):32-4'1, January 1987. Also published in [28], pages

335-366.

[9] Prasun Dewan and Rajiv Choudhary. A high-level and flexible framework
for implementing multiuser user interfaces. ACM Transactions on Infor-
mation Systems, 10(4):345-380, October 1992.

[10] Sun Microsystems, Inc. NFS: Network file system protocol specification.
RFC 1094, DARPA, March 1989.

A uutx Toolkit for Distributed Synchronous Collaborative Applications 131



[1 I ] P. V. Mockapetris. Domain names-implementation and specification.
RFC 1035, DARPA, November 1987.

[12] J.B. Postel. Tþansmission control protocol. RFC 793, DARPA,
September 1981.

[13] S.E. Deering. Host extensions for IP multicasting. RFC 1112,
DARPA, August 1989.

[14] S.M. Armstrong, A.O. Freier, and K.A. Marzullo. Multicast
transport protocol. RFC 1301, DARPA, February 1992.

[15] Sun Microsystems, Inc. XDR: External data representation stan-
dard. RFC 1014, DARPA, June 1987.

[16] CCITT. Specification of Abstract Syntax Notation One (ASN.1).
Recommendation X.208, CCITT, 1988.

[17] Richard Stallman. GNU Emacs Manual. Free Software Founda-
tion, Cambridge, Massachusetts, sixth edition, March 1987.

[18] Mark A. Linton and Paul R. Calder. The design and implementa-
tion of InterViews. In Proceedings of the C*'* Workshop, pages
256-267, Santa Fe, New Mexico, September 9-IO 1987 . Usenix
Association.

[19] Michael J. Knister and Atul Prakash. DistEdit: A distributed
toolkit for supporting multiple group editors. In CSCW90: Pro-
ceedings of the Conference on Computer-Supported Cooperative
Work, pages 343-355, Los Angeles, California, October 7-10
1990.

[20] SunSoft, Mountain View, California. ToolTalk I .0 Programmer's
Guide, September 1991.

[21] Martin R. Cagan. The HP SoftBench environment: An architec-
ture for a new generation of software. Hewlett-Packard Journal,
4I(3):36-47, June 1990.

122)Kenneth P. Birman. ISIS: A system for fault-tolerant distributed
computing. Technical Report TR-86-744, Computer Science De-
partment, Cornell University, Ithaca, NY, April 1986.

[23] Kenneth Birman, André Schiper, and Pat Stephenson.
Lightweight causal and atomic group multicast. ACM Transac-
tions on Computer Systems, 9(3):272-314, August 1991.

[24] Atul Prakash and Michael J. Knister. Undoing actions in collabo-
rative work. ln CSCW92: Proceedings of the Conference on
C omput e r - S upp or t e d C o op e rativ e Work, pages 27 3 -280,
Toronto, Canada, October 31-November 4 1992.

132 Dorab Patel and Scott D. Kalter



[25] John F. Patterson, Raþh D. Hill, Steven L. Rohall, and W Scott
Meeks. Rendezvous: An architecture for synchronous multi-user
applications.In CSCW9): Proceedings of the Conference on
Computer-Supported Cooperative Work, pages 317-328, Los
Angeles, California, October 7-lO 1990.

[26] S.J. Gibbs. LIZA: An extensible groupware toolkit. In CHI'89:
Proceedings of the Conference on Human Factors in Computing
Systems, pages 29-35, Austin, TÞxas, April 30-May 41989.
ACM, Addison rù/esley.

127)Mark Roseman and Saul Greenberg. GroupKit: A groupware
toolkit for building real-time conferencing applications. In
CSCW92: Proceedings of the Conference on Computer-Sup-
ported Cooperative Work, pages 43-50, Toronto, Canada, Octo-
ber 31-November 41992.

[28] Irene Greif, editor. Computer-Supported Cooperative Work: A
Book of Readings. Morgan Kaufmann Publishers, [nc., San Ma-
teo, CA, 1988.

Permission to copy without fee all or part of this material is granted provided that the copies
are not made or distributed for direct commercial advantage, the Computing Systems copyright
notice and its date appear, and notice is given that copying is by permission of the Regents of
the University of California. To copy otherwise, or to republish, requires a fee and/or specific
permission. See inside front cover for details.

A wtx Toolkit for Distributed Synchronous Collaborative Applications 133


