
Distribution and Persistence in
the IK Platform:* Overview and
Evaluation

Pedro Sousa, Manuel Sequeira, André Z(tquete, Paulo

Ferreira, Cristina Lopes, José Pereira, Paulo Guedes, and

José Alves Marques IST-INESC, Portugal

ABSTRACT: IK is an object-oriented platform that sim-
plifies the construction of applications that handle per-
sistent and distributed data. A single programming
paradigm is used to manipulate volatile, persistent and

distributed objects uniformly. Object invocation is the
basic primitive of the system, embodying all the fea-

tures required for transparent handling of persistence

and distribution. Object references can be freely passèd

as parameters in remote invocations or stored persis-

tentlY.

Objects are initially created as volatile and are automat-

ically recycled when they are no longer referenced. Ob-
jects are promoted to persistent when they become
reachable from a persistent root. Persistent objects are

read from disk on demand when they are invoked and

are written back to disk when the application termi-
nates.

Applications are written in a language similar to C#,
but with some semantic differences. Classes are repre-
sented as special persistent objects. They are dynami-

*This work was partially supported by CEC under Espnlr contracts n" 20'll, COMANDOS, and

n'5279, HARNESS.

@Computing Systems, Vol. 6 ' No. 4 ' Falt 1993 391



cally linked when needed and can be updated at run-
time to install a newer version of the code.

This paper contains a technical description of IK and

an evaluation based on two years of experience in using

the system to build applications.

1. Introduction

A major source of complexity in distributed applications is their need

to handle distributed and persistent information. This task may require

three different programming paradigms and languages: one for in-
memory computation, another to access remote entities and a third to
manþlate persistent information.

Environments such as DCE [Ope91] provide an architecture and a

set of tools to build distributed applications based on the client-server

model. Entities specify their interfaces using an Interface Description
Language and communicate through remote procedure calls. Never-

theless, the client-server model does not provide a complete and uni-
form programming paradigm, as promised by object-oriented models.

Several approaches have been followed to extend the object-oriented

model to distributed environments. A line of research has been the di-
rect support of objects by the operating system [Liskov 87, Dasgupta

881. However, due to the cost of such objects, this approach is only
feasible for coarse-grained objects. Other projects chose to define new

object-orienled languages to support distributed objects [Black 86].
Persistence is an orthogonal attribute to distribution and has been

addressed in a number of ways. Distributed file systems offer a first
level of data sharing among several machines. Persistent languages

such as PS-Algol [Atkinson 83] provide transparent support for persis-

tence of language level objects.
Few have addressed distribution and persistence of fine-grained ob-

jects in a uniform model, where object references can be freely passed

in remote invocations and stored persistently. V/e believe that this sin-

392 P. Sousa, et al.



gle and uniform programming model for the manipulation of volatile,
persistent and distributed objects may have a positive impact on the

productivity of application development. The same model could be

used to program all building blocks of an application from the fine-
grained, language level, objects, to coarse-grained servers.

Our main objective in IK is to experiment with a uniform pro-

gramming paradigm for developing distributed and persistent applica-

tions. We want to provide system support for the fine-grained objects

manþlated by the programming language. These objects are accessed

and manipulated independently of their location, and references to

them can be passed freely as parameters in invocations and stored per-

sistently. Objects are persistent if they are reachable from an eternal

root. The platform reads the objects from secondary storage on de-

mand when an operation on them is invoked, and stores them back to

disk either under programmer's initiative or when the application

terminates.
IK is mainly targeted to cooperative applications executing in a

local network comprising a few tens of workstations under a common

administration policy. Applications are written in EC#, a language

similar to C# with some semantic extensions and restrictions. The

programming environment is based on a version of the ET# [Gamma
881 library ported to our platform, providing a framework for applica-

tion deveþment. Some of the applications built on top of IK are a co-
operative calendar manager that allows several users to schedule and

negotiate meetings, a cooperative graphical editor that supports multi-
ple users concurrently, a browser and an inspector for application de-

veþment and a tool for the analysis, design and implementation of
distributed applications using a uniform high-level description and se-

mantic replication.
The platform consists of the EC# compiler and a run-time li-

brary that handles local object creation, invocation and garbage collec-
tion. A set of system services handle remote object location, persistent

object storage and naming. IK runs on a network of Sun 3, SPARC

stations and Bull DP){? workstations over various versions of Unix. A
port to the Mach 3 operating system was recently completed taking ad-

vantage of the more advanced facilities for object identification, loca-

tion and communication lCastro 93].
The work started four years ago within the framework of the Co-

mandos [Marques 88] Esprit project. The overall goals of the project,

Distribution and Persistence ín the IK Plntþrm 393



the object model, architecture and different implementations were al-
ready presented in previous papers [Marques 89, Krakowiak 90]. In
this paper we review some of the more important decisions taken in
IK, provide an overview of the implementation and evaluate the main

design decisions. The structure of the paper is as follows: Section 2

describes the major decisions and guidelines in the design and imple-
mentation of IK. EC# is presente<i in Section 3. Section 4 is a tech-
nical description of IK, and in Section 5 we evaluate the platform
based on our experience using the system to program distributed appli-
cations. Section 6 presents the related work. Finally, we draw our

conclusions in Section 7.

2. Major Decisions in IK
The Model

In our model, objects are uniquely identified through long lived, con-
text independent references, called Low Level Identifiers (LLI). LLIs
are addresses in a global object space that can be used for equality
tests and to trigger invocations on objects. Objects are instances of
classes with an external interface exclusively composed of methods.

There may be several implementations of the same class, called imple-
mentation objects.

In IK persistence is orthogonal to the object's class and is a dy-

namic attribute of objects. IK has an eternal root, and objects are

maintained persistently while reachable (either directly or indirectly)
from the eternal root. Objects are discarded when no longer reachable

from the eternal root. The system provides primitives to insert and re-
move references into and from the eternal root. Thus, prograrnmers

can store object trees persistently just by naming their root object.

Computation is animated by special active objects: Activities and

Jobs. Activities are independent threads of control. A job may contain
one or many concurrent activities, executing in different nodes.

Object invocation is the basic primitive of the system, embodying

all of the features required for transparent handling of persistence and

distribution. We tried to make this primitive as general as possible,
providing:

Uniform access. All objects are accessed uniformly regardless of their
physical location. The platform detects object faults. Any access to

394 P. Sousa, et al.



an object not in local memory raises an object fault. When handling
an object fault, the platform may read the object from secondary
storage or may forward the invocation to the node where the object
is mapped.

Location independence. The programmer does not need to establish

the location of a target object explicitly. The invocation mechanism

is uniform for local and remote objects, handling distribution, het-

erogeneity in data representation, and communication protocols.

Transparent sharing of objects. Objects may be shared transparently
when invoked. The computational model provides basic synchroniza-

tion mechanisms upon which more complex mechanisms can be ex-

plicitly programmed.

The decision to handle persistence and distribution solely within
the invocation primitive is also justified by implementation issues. To

allow an object to access directly the instance data of another object

regardless of its physical location, IK would need a mechanism to de-

tect accesses on each pointer dereference. Using a software check on

each access was considered to be too inefûcient. A solution based on

virtual memory techniques to generate and catch an exception when

the instance data of a remote or persistent object was accessed would
be hard to implement in a efficient way given the low granularity of
our objects and the lack of specific operating system support. Thus, we

chose to detect object faults only through object invocation (see section

4), and impose strict encapsulation in the model.

The Language and the Run:Time Environment

The coupling between the programming language and the underlying
support mechanism is a fundamental issue given our global objectives.

An integrated approach in which a new language and its support are

deveþed together is a possible solution. This was the path followed
by Emerald [Black 86] and, within COMANDOS, by GUIDE [De-
couchant 881. Although this is an interesting line of work, acceptance

of a new language is not easy for the user community.
Another approach is the implementation of the model in a lan-

guage independent run-time support library. A major advantage of

Distribution and Persistence in the IK Platþrm 395



such a library is the possibility to support different languages. We
decided to implement a RunrTime Support (RTS) library, that client
languages should call to manipulate IK objects. We experimented with
the Objective-C [Cox 86] and CH programming languages, but C#
was our final clnice because of its wide availability and growing user
community. Although we wanted to provide maximum compatibility
with standard C#, complete support of its semantics would be too
costly. Therefore, we decided to impose some restrictions on the lan-
guage to achieve acceptable performance.

The Implementation

The first major decision was related with the implementation of the
global address space defined in the model. A virtual address space

shared by all applications could be used to implement such object
space, as in Amber [Chase 84]. However, we decided to keep both
spaces apart because the 32 bit architecture of existing machines is
clearly insufficient to implement a persistent object space. To improve
performance, we identify objects inside an application address space (a

contuct) with memory pointers. Pointers are not valid outside contexts
and LLIs are not valid pointers. Hence, conversion between the two
formats is required whenever a reference crosses context boundaries.

The second major decision was related with the implementation of
persistence. Although the model does not distinguish volatile objects
from persistent objects, volatile objects are expected to die young
while persistent objects are expected to live much longer. We decided
to exploit their different characteristics at implementation level; when
created, objects are volatile; objects are only promoted to persistent
when they become known outside a context. This way, we avoid pro-
moting objects that were temporally reachable from the eternal root
during the execution of the application.

We also took the pragmatic decision to use existing technology in
the implementation of the platform: thread packages to support activi-
ties within a process, distributed file systems to support persistent data,

and RPC packages to implement the communication mechanisms. We

also decided to rely on the traditional protection mechanisms provided
by the underþing operating system to enforce protection in the plat-

form.

396 P. Sousa, et al.



3 . An Overview of the EC ++
Language.

The EC# language [Sequeira 91] maps IK concepts onto C# con-
cepts. IK classes and methods are mapped onto C# classes and vir-
tual member functions, respectively. Implementation objects result
from the compilation of EC# classes. IK objects correspond to
C# instances of classes. Finally, IK object references are mapped
onto typed variables in C#, either pointers to classes or references
to classes.

When compiled with the EC# compiler, classes derived, at
some level, from the IK top class (eidai will call the IK run-time,
while classes not derived from Aida will be processed as standard
CJ+. The former benef,t from the extended functionality of the sys-
tem, but must conform to a set of restrictions.

Two major restrictions are imposed:

. Objects are not lvalues. Objects must always be accessed

through object references, they cannot be handled as values.
Therefore, objects cannot be returned as a result of a method
invocation or even be the value of automatic variables. In such
cases, object references should be used instead of objects.

This restriction avoids the promotion of objects allocated in
the stack (e.g. local variables, temporary objects created by the
compiler) to persistent objects. To allow such promotion, the
EC# compiler would have to intercept all the situations where
these objects are created, making the compiler overly complex.
V/e decided to keep it simpler and consider that Aida objects
must be explicitly created using the new operator.

. Strict Encapsulation. Only an invocation on an object can
access the object's instance variables. There are no pointers to
member instance variables. To read or write other object's
instance variables, the programmer must define specific
methods, hereafter known as get and set methods, and invoke
them explicitly.

Although the IK model prevents an object to access the
instance data of another object, we could allow instance data
accesses at the language level, by making the EC# compiler

Distribution and Persistence in the IK Platþrm 397



generate and invoke the get and set methods automatically.

However, we did not want to hide a potentially costly operation,

eventually a remote invocation, under a simple pointer

dereference in application source code.

Applications are organized as a collection of cooperating classes.

Different classes are compiled into different files that are registered in
the system as being the implementation objects of the classes. Classes

are fairly independent modules; adding or removing methods to or
from a class only requires the recompilation of that class. Obviously,
changing the interface of existing methods may certainly cause run-
time errors. Adding or removing instance variables to or from a class

also requires the recompilation of derived classes. A single binary
(ik) is used to launch all applications, and objects and implementa-

tion objects are mapped on demand.

To better illustrate the look-and-feel of the EC# language and

the impact of its restrictions, we present a very simple editor in which

multiple users can edit a single shared line of text concurrently. The

application consists of a class Line, which implements a fixed array of
characters, and a class Editor, which updates and displays a Line ob-

ject. The example uses the Activity and Lock library classes to express

concurrency and synchronization. It also uses the Name Service refer-

ence (NS) to associate user defined strings to object references. An
object registered in the Name Service becomes part of the eternal root

set.

Class Line (Figures L and 2) inserts characters and returns the

contents of the entire line. A Lock object is used to serialize concur-

rent insertions. The first ECI-I restriction forces us to declare and re-

turn the line-t type rather than a Line instance.

Class Edit is presented in Figures 3 and 4. The method createLine

instantiates a new Line oblect and assigns a name to it (which becomes

persistent). The edit method obtains a reference for the Line object

given its name, creates an activity to display its contents each second,

and then inserts the characters keyed in into the Line object. The sec-

ond EC# restriction prevents the editor of directly accessing the

contents of a Line object, regardless of the declaration scope of its in-
stance variables.

398 P. sousa, et al.



*i
nc

lu
de

 rr
A

id
a.

ht
r

*i
nc

lu
de

 rr
l.o

ck
,h

rr

co
ns

t 
in

t 
lE

iz
e 

=
 8

0¡
ty

pe
de

f 
st

ru
ct

 {
ch

aÌ
 c

tls
iz

el
;

) 
lin

e-
t 

;

cl
as

¡ 
Li

ne
: 

pu
bl

ic
lin

e-
t 

t6
xt

;
in

t 
in

de
x;

Lo
cl

 
*l

oc
t;

pu
bl

ic
:

Li
ne

()
;

vi
rt

ua
l 

vo
id

vi
rt

ua
l 

lin
e-

t
vi

rt
ua

l 
vo

id
vi

rt
ua

l 
vo

id
);

A
id

a 
{

in
se

rt
(c

ha
r 

c)
;

ge
tli

ne
O

;
af

te
rll

ap
()

;
be

fo
re

U
nm

ap
O

;

*i
nc

lu
de

 t
rl,

in
ê,

hr
r

Li
ne

: 
:L

in
eo

t
Io

ck
 =

 n
es

 L
oc

h;
in

de
x 

=
 0

;
) vo

id
 

Li
ne

: 
:in

se
rt

(c
ha

r 
c)

{
Io

ck
-)

lo
ck

O
;

if(
in

de
x<

ls
iz

e)
 

{
te

xt
.c

[in
de

x+
+

] 
=

 6
'

te
xt

.c
[in

de
x]

 
=

 O
;

); lo
ck

-)
un

l.o
ck

O
 ;

) lin
e-

t 
Li

ne
 : 

:g
et

lin
e(

)
{

re
tu

rn
 t

ex
t;

) vo
id

 L
in

e:
:a

fte
rt

la
po

.{
lo

ck
 =

 n
en

 L
oc

ki
) vo

id
 L

in
e 

: 
:b

ef
or

eU
nn

ap
o

t
Io

ck
 =

 0
;

1

// 
th

e 
us

e 
of

 t
h€

se
 t

so
// 

m
et

ho
ds

 i
s 

ex
pl

ai
ne

d
// 

in
 s

ec
tio

n 
5

il

U ì ù o t ß (È o x ! èb (, \o \o
F

ig
ur

e 
1:

 L
in

e.
h

F
ig

ur
e 

2:
Li

ne
.C



è O O p v) o Ë Ø (D Þ

lin
cl

ud
e 

"A
id

a.
h"

*i
nc

lu
de

 "
Li

ne
.h

'

cl
as

s 
E

di
t:p

ub
lic

 A
id

a 
{

Li
n€

 *
 l

in
ô;

pu
bl

ic
:

vi
rt

ua
l 

vo
id

 
cr

ea
te

lin
e(

ch
ar

 '
. 

nå
rû

e)
;

vi
rt

ua
l 

vo
id

 
ed

it(
ch

ar
 *

 n
am

e)
;

vi
rt

ua
l 

vo
id

 
di

ep
la

y0
;

);

lin
cl

ud
e 

"s
td

io
.h

"
*i

nc
lu

de
 "

E
di

t.h
"

lin
cl

ud
e 

"lc
tiv

ity
.h

"
tin

cl
ud

e 
"X

S
.h

"

ex
te

rn
 v

ol
d 

sl
ee

p(
in

t)
 ;

vo
id

 
E

di
t 

: 
:c

re
at

el
in

e(
ch

al
rn

a¡
¡e

)
{

fS
-)

bi
nd

fa
ne

(n
er

 L
in

e,
 n

am
e)

 ;
) vo

id
 

E
di

t: 
:e

di
t(

ch
a¡

 
*n

am
e)

{
A

ct
iv

ity
 *

 a
ct

 =
 n

er
 lc

tiv
ity

;
ch

ar
 c

;

Li
ne

 =
 (

Li
ne

 *
) 

Is
->

Lo
ok

üp
f,a

m
e(

na
m

e)
;

ll 
st

ar
t 

m
et

ho
d 

di
sp

la
y

ae
t-

>
st

ar
t(

th
is

, 
"d

is
pL

ay
",

 (
vo

id
,t)

0)
 ;

ch
ile

((
c 

=
 g

et
ch

ar
O

) 
!=

 E
O

F
)

lin
e-

)in
se

rt
 (

c)
 ;

) vo
id

 E
di

t::
dí

sp
t-

ay
o

{
rh

ilc
(1

) 
{

Iin
e-

t 
L 

=
 

Li
n€

->
ge

tli
ne

o;
pr

in
tf(

"%
s\

n"
, 

t.c
 

);
st

ee
p(

1)
;

)
)

F
ig

ur
e 

3:
 E

di
t.h

F
ig

ur
e 

4:
 E

di
t.C



To execute the "Edit: : createline" method, users issue the
command "ik -c Edit -m createline aName", creating a persis-
tent Line instance named o'aName". Then, several users may run the
edit method to access the Line object. The first editor to dereference
the line reference (either in line->insert or line->getline) will
map the object locally. In the other editors running in the same or dif-
ferent (possibly heterogeneous) machines, these invocations will be
forwarded to the editor mapping the line object. \ilhen the editor map-
ping the line object exits, the object is saved and remapped in the next
editor invoking it.

4 Architecture and Implementation of IK

The architecture is composed of a Run:Time Support (RTS) handling
objects within an application address space (a context), and an object
Kernel implementing the object address space based on LLIs. within
the RIS we can distinguish an invocation mechanism, a garbage col-
lector of volatile objects, a dynamic linker and an object clustering
mechanism. The object Kernel is internally composed of four compo-
nents: the Activity Manager is in charge of the active entities; the
storage system (SS) provides support for persistent objects; the Name
Service implements a single hierarchical name structure, similar to
that of the UNrx file system, spanning machine boundaries; and the
communication service offers a generic RPC interface independent of
the underlying protocol stacks. All these components cooperate to
support object identification, localization, naming, storage and remote
invocation.

Upon creation, objects are only known within the context of the
creating application, and are referenced by memory pointers. We call
these objects volatile because they can be recycled by the local
garbage collector. If a reference to a volatile object crosses context
boundaries, an LLI is assigned to the object and sent instead. The ob-
ject becomes known to the Object Kernel and reachable from any
other context in the network. we call these persistent objects, because
they are written back to the SS at application termination, together
with the ones they refer.

Distribution and Persistence in the IK Platform 40I



4.1 The Run Time Support

Object Structure

Objects are represented in a context by a Run:Time Header (RIH), to
which local references point to (see Figure 5). If the object is mapped

in the current context the RTH data field points to the instance data of
the object, and is zeroif the object is not mapped. This indirection in-
creases the cost of object data accesses, but simplifies object mobility.
Likewise, the cache field points to the class method cache if the class

is mapped or, otherwise, to an always invalid cache.

Objects support a default set of upcalls, allowing both default RTS

management and class specific management when required. The up-
calls are divided into two groups: those that allow the RTS to scan ref-
erences and convert objects between heterogeneous data representa-
tions; and those that allow the user to define specific actions to be

taken when objects are created, mapped, unmapped and deleted. A
default implementation of these methods is automatically generated by
the EC** compiler. The programmer may have to overwrite them to
tackle specific cases.

Object Reþrences

Object references are direct pointers to RfHs and are used in applica-
tions to invoke and refer to objects. As the Object Kernel identifies
objects through LLIs, the RIS must convert LLIs into local references

before the object is accessed. A common technique [Atkinson 83,
Kaehler 861 is to convert global identifiers to virtual addresses when
objects are brought into memory. Recently, this has become known as

pointer swizzling.

Class Methods Cache

Oblect Inslance Dala

Figure 5: In Memory Object Structure

local Objecl References

402 P. Sousa, et al.



Pointer swizzling can be implemented in two basic ways. Global
identifiers are converted to pointers just before being used by the ap-
plication (on demand) or immediately after being mapped (on map-
pinÐ.Conversion on demand has been used in several systems [Atkin-
son 83, Richardson 89, Black 861, where a software check precedes
each pointer dereference. If the pointer is a global identifier, the ob-
ject, or a surrogate, is mapped and the global identifier is replaced
with the local pointer. In contrast, conversion on mapping ensures that
only local pointers are seen by applications, avoiding the checks on
pointer dereference. A major disadvantage of conversion on mapping
is the need to follow pointers extensively during pointer swizzling.
This forces the complete mapping of object trees, leading to immediate
and unnecessary conversion of references. Such mapping and conver-
sion wave can be bounded to the size of pages [V/ilson 91], which may
still lead to a significant amount of unnecessary conversions, because
pages are much larger than the fine-grained objects we support.

We wanted both to hide global identifiers from application code

and to minimize unnecessary conversions between local and global ref-
erences. Therefore, we decided to convert references on a per object
basis, the first time an object is invoked in a context. The strict encap-
sulation enforced by the model ensures that object instance variables
are not seen by the application before the first invocation to the object.

Our RIHs are untyped surrogates that can be generated and reused
regarclless of the object type they represent. This makes pointer swiz-
zling a much faster operation than in systems that use proxies or typed
surrogates [Shapiro 89, Wilson 91, Cahill 90]. In fact, swizzling from
global references to pointers to typed proxies may be a very expensive
operation. It requires determining the type or class of the global refer-
ence, mapping the corresponding proxy class if necessary, and creat-
ing a new proxy for the object. All this work is wasted if the object is
not invoked.

Method Invocation

Object invocation is performed by searching the method in the class

hierarchy and jumping to its address, using a mechanism similar to
Objective-C [Cox 86]. Methods are identified by string names. To

speed up method lookup at run time, strings are converted to 32 bit

Distribution and Persistence in the IK Platþrm 403



identifiers when implementation objects are loaded. Method identifiers

are class independent values, unique within a context'

As recently invoked methods are more likely to be invoked again,

a standard technique to improve performance is to cache them in a

method. cache. Tladitional implementations of method caching use a

global cache, where methods of different class hierarchies are stored

iogether [Goldberg 83, Cox 86]. Tìo check if a given method is the

right one, the cache uses a key based on both the class and the method

identifier. We decided to use a cache per class, rather than a global

cache. The key to access the cache and the cache hit check only uses

the method identifier, rather than both the method and class

identifiers.
We use cache misses to detect object faults with almost no cost at

alt. As mentioned before, RIHs of objects that are not mapped in the

current context have a nil data field and a cache field which refers to

an empty cache. When such objects are invoked, there will be a cache

miss and only then the data field is tested to distinguish between a

normal cache miss (not nil) and an object fault (nil). The object fault

detection overhead is reduced to a single test per cache miss.

Local Garbage Collector

we implemented a generation scavenging algorithm [ungar 84], taking

into account the multi-threaded and persistent environment [Ferreira

etl.
For the purpose of local garbage collection, the roots of the object

graph consisì oi persistent objects and references found in the stacks of

ihe uariour threads, including the processor registers. The stacks are

scanned in a conservative way, as in [weiser 89], where 32 bits values

that match the address of object KIHs are considered to be local refer-

encgs.

In order to reduce pauses seen by applications, the garbage collec-

tor does not recycle the whole heap at a time. The heap is divided into

several regions, each corresponding to a given generation. The garbage

collection starts by recycling objects in the youngest region, and keeps

going to older regions until enough memory is recycled' To allow

young"t regions to be recycled without having to scan older regions,

ieferãnces from older objects to newer ones afe remembered. In as-

404 P. Sousa, et al.



signments to references stored in the object instance data, the EC+
compiler generates code to test a flag in the object header.

Dynamic Linking

Implementation objects are represented at run-time by extended RIHs
(see Figure 6), implementing a Smalltalk like super and meta class
hierarchy.

The RIS maintains a context wide symbol dictionary used to re-
solve undefined symbols during dynamic linking of implementation
objects. On the first attempt to lookup a method of a class, the name
of the class method table is searched in the symbol dictionary and, if
not found, the corresponding implementation object is mapped and
linked dynamically with the running application.

Implementation objects can be removed from an address space,
both freeing local resources and allowing newer versions to be
mapped. To unmap it, we mark the implementation object RTH and
prevent further accesses to its methods, which is achieved by invalidat-
ing the class method cache and also all the caches of the classes
derived from the updated class.

The new version of the implementation object will be mapped
when the next invocation to one of its instances occurs. The old ver-
sion is deleted when none of its methods are in execution. This is peri-
odically checked by the garbage collector, scanning the stacks of the
existing activities and looking for invocation frames with a return ad-
dress that fits within the limits of the implementation object.

Symbol collision is far more troublesome in systems with dynamic
linking, because instead of an error during the deveþment of an

Clas s
hods Cache

Class
RTH

SS

Methods Table

Figure 6: Extended RIH

RTH

Distribution and Persistence in the IK Ptatform 4O5



application, one may encounter unexpected errors at run-time' By

making all symbols defined in one implementation object invisible to

other objects, with the exception of the method table, we avoid the

problems caused by symbol collision, and greatly speed up linking and

unlinking.
To support existing libraries, the traditional scopes of symbols is

respected when archive files are loaded. However, libraries cannot be

updated or unmapped during application execution.

Object Clustering

The goals of object clustering are to reduce the number of objects han-

dled by the Object Kernel, and increase their granularity. If a persis-

tent object is about to be saved, and refers to a private sub-graph of
volatile objects, the RIS appends that graph to the persistent object,

and creates a cluster. The references in the cluster are st¡tizzled, and

the whole cluster is converted to the XDR [Sun86] machine indepen-

dent data format. Finally, the cluster is presented to the Object Kernel

as a single entity, identified with the LLI of the persistent object'

Within a cluster, objects are ordered based on a depth first analy-

sis of the object gráph. Volatile objects reachable from more than one

persistent object are promoted to persistent, and become roots of new

clusters. References between objects in the same cluster are simple off-
sets within the cluster. References to objects in other clusters are in-

dexes into an LLI table, kept at the beginning of the cluster.

We map a cluster when its root object is invoked. To map a clus-

ter, we allocate space for the whole cluster, using memory mapped

files, convert the instance data of the root object to the format of the

current machine, and swizzle its references. The other objects in the

clusters remain in the external data format and unswizzled until they

are invoked. This way we delay touching cluster pages until it is really
necessary (Figure 7).

Clusters can be unmapped automatically at application termination,

or flushed explicitly during the execution of the application. To unmap

a cluster, as the original graph of objects may change during the exe-

cution of the application, we may choose either to recreate the whole

cluster or simply to append new objects at the end of the original
cluster.

406 P. Sousa, et al.



Cluster on Disk

LU hbþ ßootob¡oct

asingle objætto the )bjæt Kemel

Voþtito ob¡oct

Root0bjætis lnvoked : AusW is Mapped

Figure 7: Mapping a Cluster

Recreating a cluster eliminates objects no longer reachable from
the cluster root, keeping clusters compact and increasing locality of
reference. Appending new objects to an existing cluster only requires
traversing the objects that are mapped, and therefore avoids loading
into memory the parts of the cluster that were not mapped" Currently,
we have both mechanisms but the decision is hard-wired in the code.
'We 

are experimenting a decision mechanism based on the proportion
of objects that are still in the XDR data format when the cluster is
saved. Objects in XDR format are those that were not invoked while
the cluster was mapped. Therefore, if most of the objects in the cluster
were not invoked yet, we extend the cluster with new objects, and
scanning the object graph stops whenever it reaches an object yet to be
invoked. New objects are appended to the cluster, and old ones are
saved in their original positions. on the other hand, if most of the ob-
jects were already invoked, we simply scan the whole graph, as if we
were creating a new cluster.

To maintain the application coherent, whenever an object is saved
all objects reachable from it must also be saved, even if they are
mapped in remote machines. To propagate the unmapping through the

' u lnd¡x ln the t.LI t¡bl., if lt r.fq. to ¡ p.rütút obj.ct, or
e off..t, lf lt rrf¡r¡ to e obJ.ct rältlr th. clútc,

Distribution and Persistence in the IK Platform 407



whole graph of objects, IK looks into the LLI table of the original
cluster and saves, if necessary, referenced clusters. The same process

is repeated in each of the referenced clusters. If the referenced cluster
is unmapped, its LLI table is brought into memory and graph traversal
continues until the complete graph is saved.

4.2 The Object Kernel

Object ldenffication.

As mentioned before, within the Object Kernel clusters are single ob-
jects identified by LLIs. The hierarchical structure of LLIs simplifies
its generation and object location algorithms (see Table 1).

Table l: Format of LLIs

To allow independent generation of LLIs, the RIS asks for a
unique tag (the SSid and,S,Sgn), and generates LLIs by incrementing
the remaining bits of the LLI (RTSgn). Once exhausted, another tag is
requested. An SS generates tags by appending the SSgn counter to its
SSid.

Object Storage.

Objects are stored as plain files in special directories, assigned to the
SSs. The names of the files are their LLIs in a textual (ascii) format,
and the directory names encode the SS identifier. We rely on the un-

derlying file system for the actual distribution and protection of persis-

tent data. Clusters are normally mapped in the invoking context. How-

ever, if the cluster is already mapped in another context, the SS

returns a method stub that is dynamically linked to the invoker, and

invocation can be forwarded to the appropriate context.

SS Identifier
SS Generation Number

RTS Generation Nwnber

SSid

^SSgz

RTSgn

16 bits
32 bits
16 bits

408 P. Sousa, et al.



Object Location.

In the absence of cached information, the location algorithm simply
asks the SS indicated by the LLI about the object's current position.
The reiationship between server identifiers and their communication
addresses is kept in files.

If the SS has no record of the object, it assumes the object is still
mapped in the creator's context, as indicated by the .S,Sgn field of the
LLI. The SS maintains the mapping of SSgn numbers to context ad-
dresses. If the context no longer exists (e.g. it has crashed), the SS as-
sumes the object is lost, and propagates the fault to the application.

To minimize communication with the SS, the RIS holds the ob-
ject's last known position as a location hint. These hints are passed

along with the LLIs during remote invocations. In the current imple-
mentation, if different hints exist for the same object, we merely
choose the last one received. We may improve hint quality by associat-
ing hints with counters as in [Fowler 85]. In the current version of IK,
the SS must be informed when an object moves from one context to
another. We are improving the location algorithm to allow migration
of distributed objects without involving the SS [Black 89].

Object Naming.

The Name Service associates human readable names with LLIs, allow-
ing objects to be accessed given their name. The implementation relies
on the underlying file system. To associate a name with an object, the
Name Service creates a symbolic link with that name to a file whose
name is the LLI of the object. To retrieve the object given its name,
the Name Service translates the symbolic link to obtain the LLI of the
object.

The use of links to hold the (LLI, name) pairs, rather than a small
database, allows users to see named objects as normal files. These
names may be stored under the user's home directory or in his work-
ing area and are searched according to the standard rules of Unix
shells. An path environment variable allows users to parametrize the
order of these lookups. This approach also makes the Name Service
stateless, both simplifying its implementation and increasing its robust-
ness. Note however that objects cannot be accessed from their names

Distribution and Persistence ín the IK Platþrm 409



using standard Unix commands, because the symbolic links created

by the Name Service do not name existing files (they name an LLI).
The object referred to by that LLI can only be accessed through the

SS interface.

5. Evaluation of the Platform

The evaluation of the IK platform is hard due to the multiple issues

addressed in its design and implementation. Performance of the basic

primitives is important since they support the computation in the

model. Another issue is the evaluation of EC# as a programming

language to express computation in a distributed and persistent envi-

ronment. Finally, since we built the IK platform to assess whether the

uniform programming model is effective, we discuss some of our expe-

rience regarding the IK programming model.

The evaluation is based on our current set of applications, which

are basically interactive applications. They use extensively the version

of the ET# [Gamma 88] library we ported to the platform. The ap-

plications and the ETl-f library all together comprise 452 classes and

6216 methods, a number we consider meaningful to draw some conclu-

sions. As an attempt to characterize the applications, the calls to RIS
primitives were traced during the execution of the applications. The

result is presented in Table 2. Due to the transparency provided at the

language level, the primitives numerically representative are object

creation, object invocation and accesses to objects instance variables.

In average, approximately 27o of the primitives called were for object

Relative Usage of RTS primitives

Object creation

Object invocation
Instance data accesses

27o

46Vo

527o

Objects

Class hierarchy level
Object Size

4.2
42 bytes

Table 2: Dynamic Metrics of Applications based on ET#

410 P. Sousa, et al.



creation; 46Vo for object invocation and 52Vo for accessing object in-
stance variables. We also measured that the average size of objects
is 42 bytes and, in average, objects are instances of a 4.2 deep class
hierarchy.

5.1 Perþrmance Evaluation

This section presents the performance figures of basic RIS main prim-
itives, implemented on SunOS 4.1.3. The measurements were made
using a SPARC station IO/30 with 32 Mbytes of memory for local
primitives. In the tests requiring two machines we also used a SPARC
station l0l20 with 32 Mbytes of memory, connected by a 10 Mbit
ethernet.

Object Creation and Invocation

In Thble 3 we compare the cost of the primitives for creating and
invoking objects in EC# and C#. The first test evaluates the cost
of object creation and deletion. In EC#, objects were simply created
in a loop, and deletion was done by the garbage collector. In C# the
loop also contained an explicit delete to simulate the garbage collector.
The figures include the cost of calling empty constructors. In EC#,
the creation cost increases with object size, because it increases the
garbage collector runs, and with the number of contained references,
since references are initialized at object creation time.

Overcoming Strict Encapsulation 
I

integer read through invocation of get methods I .SO

integer write through invocation of set methods I .S¡

Table 3: Performance of local object manþlation.

Function EC#
ú¿Ð

C#
(g#X¡rs)

Object creation and deletion
instance data: 2 ints
instance data: 48 ints * 16 refs

Empty method invocation:
Instance Data Accesses (integer read) through låis

13

70
.48

.08

t4
l6
.34
.03

Distribution and Persistence in the IK Platform 4ll



Object invocation is often used as a criterion to assess the quality

of an object oriented language or system implementation. Empty

EC# virtual method invocation is 4l%o slower than C#. The

EC# invocation figures represent the optimal case, where the

method is found in the cache. Currently, with a 32 entries cache we

achieve a 94Vo cache hit rate. The impact of the remaining 6Vo cache

misses in the overall invocation cost is largely dependent on the num-

ber of methods per class and on the number of super classes traversed

before the method is found. We measured an average of \Vo increase

relative to the optimal case.

The next item show the cost to the cost of an object writing an in-
teger value on its instance data through the this pointer. The extra cost

accounts for the indirection through the object's RIH. Whether the ex-

tra cost of IK object structure and primitives is significant in applica-

tion in-memory computation, it mostly depends on the application

characteristics. FurthermoÍe, the exact figure for a given application is

hard to measure because instance data accesses are expanded in line in
the application code. Nevertheless, in our applications we measured an

average of 1050 objects created per second of application execution.

Based on the application metrics (table 2), we compute a rate of 24125

invocations and 27300 instance variable accesses per second. By multi-
plying the operation rates with the corresponding costs, we estimate an

overall performance penalty of less than 9Vo1 . Such overhead is an ac-

ceptable price to pay for a language independent run-time, given the

flexibility it provides.

One may still argue the main performance loss results from the

strict encapsulation as it increases the number of invocations and the

corresponding overheads, such as parameter passing or return values.

The last figures presented in table 3 show the cost of reading and writ-
ing an attribute of another object through the invocation of its get and

set methods. The C# figures for invocation of get and set meth-

ods are not presented since Cl-f does not impose strict encapsulation.

The application traces also showed that only 9Vo of all invocations

were intended to read or write other object's instance data, through

, r,o - 
(1050*70 ps + 24125*0,5-1 ¡¿i + 27300*0'08 ¡¿s)*100 where 70 ¡rs is the cost

ûo create the largest object we have, Ö.51 ps is the average invocation cost including

cache misses.

412 P. Sousa, et al.



get and set methods. we think that strict encapsulation is not a
signiûcative source of performance loss in our applications.

Garbage Collection

The cost of garbage collection depends on object size, object death
rate and on the depth of the object tree. The cost of object creation
presented in Table 3 included a minimum garbage collection overhead,
because objects did not reference each other, causing a r\ovo death
rate. In practice, the cost of garbage collection is higher; death rates
are smaller and object graphs are more complex. An extreme case
happens during the creation of large object graphs, where death rates
become almost null. In such cases, the garbage colleetor will be called
without memory to reclaim, b'"rt will waste time copying created ob-
jects to older spaces.

To achieve acceptable performance, the garbage collector must be
carefully configured. The trade off is between a low memory usage,
and corresponding short application pauses, and better overall perfor-
mance but with longer pauses. An acceptable configuration for applica-
tions based on the ET# library uses 250Kb for creation space, which
typically produces 150 ms pauses every 6 seconds.

Remote Invocatíon

The cost of an empty ECI-+ invocation between a spARCstation
L0/20 and a sPARCstation 10/30 is 4.1 ms, almost twice the time of
a plain sun RPC. Thble 4 shows that the overhead in remote invoca-
tion is for: passing a 128 byte header with context dependent informa-
tion (0.3 ms); packing and unpacking the header in a universal format,
based on method templates (0.2 ms); and finally, delivering srcro sig-

Empty Sun RPC I Z.q 
^s

Remote Invocation Overhead:
Passing a 128 byte Header 0.3 ms
Header packing 0.2 ms
Signal delivering and

thread switches 1.2 ms

1.7 ms

Total 4.1 ms

Table 4: Invocation between two Remote Objects

Distribution and Persistence in the IK platform 413



nals used in our implementation of the non-blocking redefrnition of

system calls and the LWP thread switching (1.2 ms)'

Thread switching is responsible for most of the overhead. The use

of real threads reduces significantly this figure, as happened in the im-

plementation of IK in Mach lCastro 93].

Although the performance of our remote invocation primitive is far

from optimal, we could not improve it much further without changing

the RPC and thread packages. This would make IK much more depen-

dent on the operating system and machine architecture, which was not

the path we wanted to follow.

5.2 Programming in ECl*
Several C# programmers have been using the platform to build ap-

plications from scratch. They found the EC# restrictions forced a

ãifferent style of programming in Cl+. Nevertheless, they reported

the restrictions do not harm the expressiveness of the language. Pro-

grammers found different ways to write their programs' not necessarily

more verbose.

More experienced cl.1L prograÍlmefs found the style enforced by

the restrictions familiar since most of them already used a similar

approach. EC# strict object encapsulation is closer to pure object

oii"nt"¿ principles than the Cl+ class encapsulation, which might be

regarded as a compromise between abstraction and efficiency. Since

programmers only had to concentrate on higher level decisions and

ãlgorithms, leaving the low level details to the IK platform, they

reported that EC# language really helped in the deveþment of

the applications.
As mentioned in section 3, EC++ compiles both CJ-l- and IK

classes, allowing invocations between their instances. Thus, classes

whose instances are known to be always local can be freed from

EC++ restrictions, but the programmer must have in mind that they

are limited to a single address space. The existence of two semanti-

cally different pointers and objects contradicts, to some extent, our

goal of providing a uniform and coherent programming model. The

àecision to allow C# classes in the platform was pragmatic, justified

by the poor performance of earþ IK releases and by strong restrictions

derived from the first ECJ-+ implementation. with the improvements

4I4 P. Sousa, et al.



introduced in current IK and EC# releases, the support of pure C#
classes is now justified for reusability and performance of critical
sections.

Extending existing applications designed to run sequentially within
a address space, with persistence and distribution, is a different issue.

One must study the application and find out the objects that must per-

sist between application runs. These objects should only have instance

variables that remain meaningful outside the application context. The

accesses to persistent object graphs must be synchronized to prevent

against concurrent computation. Finally, one must eliminate the con-

structs not allowed in EC# from the application source code.

When early prototypes of IK were released, two Smalltalk pro-
grammers initiated the port of the ET# 1.0 library and correspond-

ing applications to our platform. It took them 5 months to port the 280

classes of ET++ library. In Table 5, we present an effort breakdown

of the work carried out. Most of the items are the characteristics of the

IK model that implied changes in the source code. The Other item ac-

counts for the problems found during the parallel development of the
platform and the library.

ltem Changes Effort

Objects are not
lvalues

replace by
references 13Vo

No instance data
addresses

replace direct accesses

by method invocation 32Vo

Garbage collection remove delete l.7o

Persistence remove flush and

storage code 77o

Concurrency insert locks l7o

Dynamic Linking no explicit class code loading,
no global variables

07o

187o

Others bug fixes in IK and ET# 28Vo

Thble 5: Breakdown of the ET# port.

Distribution and Persistence in the IK Platþrm 415



Concerning the restrictions imposed by our architecture, prohibit-
ing direct access to object instance variables is the most significant. In
most cases we simply replaced accesses to object instance variables by
invocations to get and set methods. Only a few, performance criti-
cal, methods had to be rewritten.

The second major restriction is related to dynamic linking. The
system does not allow direct access to global variables defined in other
classes, because they may not be mapped when the variable is ac-

cessed, and class mapping is only triggered by method invocation.
Nevertheless, despite of the initial cost to encapsulate global variables
in a single class, it proved to be helpful in both application organiza-
tion and debugging.

Most of the ET# classes are context dependent and their in-
stances are never stored persistently nor referenced from other con-
texts. In fact, only the 15 classes acting as data repository had to be

ported to get a persistent and distributed ET# library. The remaining
of ETI+ was ported only to fully test the platform. Since the ET#
experience, other applications were ported with significantly less ef-
fort, either by using ET# or by encapsulating existing C# classes

into a few EC# classes.

Debugging is a major component in a programming environment.
Initially, to debug a class, the programmer had to link it statically with
IK to make the symbols of the class appear in the ik binary. We then
implemented a solution similar to PCR [Weiser 89], in which the ik
symbol table is updated each time class code is loaded. Although this
approach allows the use of standard debuggers, it does not provide a

usual debugging environment, because class symbols remain unknown
until the class is really linked and mapped in the application virtual
space. This can be solved by changing the debugger to load classes

when their symbols are requested in the debugging session.

The advantages of a run-time binding mechanism can also be ex-

plored for debugging purposes. The reactiveness provided by the sys-

tem significantly reduces the compilation time and allows the replace-
ment of a class mapped in an executing application, on the fly, without
re-linking or even restarting the application. In practice, programmers
use "on the fly" update of classes to test and correct small changes,

and static linkage to introduce large modifications. After fixing prob-
lems in statically linked class code, there is no need to relink the

416 P. Sousa, et al.



whole application. Instead, a run-time option informs IK to ignore
the image of a statically linked class, and dynamically link a newer
version.

5.3 Tiansparency ín the Model

The design of the IK platform was heavily influenced by the desire to
provide a single uniform programming paradigm. Programming
volatile, persistent, and distributed objects should be transparent to the
deveþer. The concept of hiding from programmers all non relevant
details, thus leaving only high level abstractions, is widely used. The
question is to what extent this can be done without sacrificing other at-
tributes, particularþ performance.

Distributed applications based on client-server interaction expose
distribution by distinguishing clients from servers. our model does not
have this distinction; the programmer is induced to forget about distri-
bution. The performance of applications deveþed ignoring completely
distribution aspects is dramatically dependent of the location of fre-
quently used objects. If objects are on disk, they will be mapped in
the application context and the application runs fast. If objects are al-
ready mapped elsewhere, the application runs slowly due to the large
number of remote invocations. on the contrary, applications designed
with a global state and a local replica of most accessed objects are able
to compute with a reduced number of remote invocations. They run
with acceptable performance and are not dependent of the initial loca-
tion of the objects.

Distribution must be taken into account in the design phase of ap-
plications. However, we also learned the advantages of the IK uniform
programming paradigm. Firstly, it allows a much faster prototyping of
applications. Secondly, by keeping the code for object placement out-
side the applications, applications can be reconfigured to a wider spec-
trum of real life situations. Finally, combined with the object oriented
nature of applications, it also allows a later restructuring of the appli-
cations to improve performance or robustness with minor effort.

The experience concerning persistence transparency is similar to
distribution but less performance critical. Although performance can
be improved by a careful structuring of applications, it is normally ac-
ceptable when applications are well structured.

Distribution and Persistence in the IK Plntþrm 417



The major problems occur when a considerable amount of transient

data is saved to disk. This could happen when the instance data of
stored objects includes a significant percentage of transient variables'

However, we measured that even when applications were not designed

with persistence in mind, in average only 2Vo of the instance data vari-

ables of persistent objects were transient. We are thus induced to con-

clude that good application design and structuring tends to separate

persistent and transient data in different objects. Another situation

were transient data can be unnecessarily saved, occurs when transient

objects are referred to by persistent ones. In such cases, programmers

must implement the beforeUnmap/af terMap upcalls in the classes to

add or remove information from the graph2.

We use persistence to keep the applications state between runs in

data structures whose size is normally less that 0.4 Mbytes. Applica-

tions often flush their state to improve their robustness. However, they

are not disk intensive applications, and the conclusion that persistence

is not as criticBl as distribution during the application design phase

cannot be gerteralizedto other types of applications.

Persistence transparency is also supported by automatic object

clustering based on locality and usage criteria. However, prograrnmers

cannot delete unused clusters, as it would be possible in a programmer

defined clustering policy. A distributed garbage collector of clusters is

an essential component of the IK platform. we are working on a dis-

tributed garbage collector of clusters derived from a mark and sweep

algorithm with timing decision.

6. Related Work

Distributed operating system projects have progressed into object ori-

entation by maintaining the notion of object within the system and im-

plementing mechanisms for object invocation and object instantiation.

The computational model of Clouds [Dasgupta 88] is similar to the

model adopted in IK despite Clouds only provides support for coarse-

grained persistent objects. Clouds implements a kernel on top of bare

2For example, in ûgure 2 the beforeunmap method prevents the lock object to be
written 3o disk, and the af terMap method initializes the lock reference ûo a new lock
object.

418 P. Sousa, et al.



hardware, whereas the main stream of our project was focused on
providing a platform on top of existing UNIX systems.

Eden [Black 85] also deals with coarse-grained objects, but they
are active. Each object has a thread responsible for incoming invoca-
tions. In IK threads are not attached to objects. Capabilities were used
for object identification and protection, but required objects to have a
private hardware protected address space.

The previous systems, as well as some others (e.g. Argus [Liskov
871 and Hermes [Black 89]) do not provide a uniform object model,
because the objects they support are too large to be the building blocks
of applications. A different approach has been followed by other sys-

tems, providing a uniform object model, directly supporting fine-
grained objects.

The lessons from Emerald [Black 86] were particularly important
in the definition of our computational model, since Emerald also pro-
vides a uniform paradigm. A significant different is that, in Emerald,
types are classified at compile time and all objects of the same type
are either global or local. In IK objects are promoted individually to
global objects at run-time. Emerald exploits the call-by-move parame-
ter passing mode. However, much of the work is left to the Emerald
compiler as it must decide which objects are passed in the call-by-
move mode. We wanted to keep the EC# compiler simpler and, at

the same time, keep the decisions indepenClent of the language.
Like IK, Amadeus lCahill 90] was developed within the Coman-

dos project. Although sharing the same model and general architec-
ture, they differ at both the language and implementation level. New
keywords were added to the language in Amadeus to express persis-
tence and distribution, whereas we decided to use inheritance and
retain the original language syntax.

A different approach to distribution is to use objects to support the
client-server model. This was the path followed by Extended-C# [Se-
liger 901, by extending the C# to program client and servers. The
existence of remote objects is explicitly defined by the programmer,
using the keyword remotable in classes and pointers. The concept of
global reference is not supported, preventing objects to be passed by
reference and also the invocation of objects not registered in the Name
Server. There is no concept of persistence or automatic activation of
objects; if a remote object ends its execution permanently or temporar-
ily, all remote invocations to it will fail.

Distribution and Persistence in the IK Platþrm 4I9



The SOS [Shapiro 89] project developed an object kernel to handle

distribution and persistence based on the proxy mechanism. In SOS,

object invocation outside a context must be preceded by explicit im-
portation of a proxy from the server. The server may decide to export

itself, or to delegate part of its functionality to the client node. SOS

does not hide distribution and persistence from the programmer, mak-

ing proxy imports visible to clients, and exports visible to servers.

7. Conclusions

IK has become an exploitable platform upon which some experiences

can be conducted. We are now defining a large project for a business

integrated system where the technology of IK will be useful to deveþ
applications for distributed decision support, distributed document han-

dling and contextual communication between groups. However, we

still lack some mechanisms for exception handling and protection

which we hope to develop in parallel.
Clustering techniques have proven to be essential in reducing the

granularity mismatch between language level objects and the files ma-

nþlated by persistent storage. The persistence provided by the plat-

form does not offer the same level of functionality found in traditional

databases; there is no support for queries nor transactions. Neverthe-

less, we have substituted the use of databases by persistent objects in a

couple of applications were query processing is fairþ limited (Type

Manager and Browser) with significant performance improvements.

Another important objective, not easily quantifiable, is the easi-

ness of use of the platform. C# was a choice dictated by the indus-

trial weight on this language. However, the non object oriented fea-

tures in the language are extremely difficult to circumvent. Clearly

trying to be as compatible as possible with C# accounts for a large

part of our effort and, although the restrictions imposed are non intru-

sive for people developing new applications, they are a burden when

porting existing code. Eliminating the restrictions completely is com-

plex and can lead to situations where normal C# shortcuts perform

poorly. No obvious alternative exists as there are no other languages

with the acceptance of C++.

420 P. Sousa, et al.



The programming environment is now quite usable, although de-
bug still needs to be better integrated with distribution and dynamic
linking. rüy'e are also developing a simple cAsE tool to guide pro-
grammers in the design and structure of applications, taking into ac-
count distribution and persistence.

Acknowledgements

We would like to thank Helena Oliveira, David Matos, Ricardo Nunes,
António Rito and specially Joáo Pereira for bearing with early IK im-
plementations when developing their applications; and Nuno Neves,
Pedro Tiancoson Miguel Castro, Adriano Couto and Paulo Meneses for
their work on the IK platform. We also thank Peter Dickman, Roger
Lea, David Harper and Nuno Guimarães for their helpful suggestions
during the preparation of this document.

Distribution and Persistence in the IK Ptatform 421



References

[Atkinson 83] M. P. Atkinson, P. J. Cockshott, K. J. Chisholm, and R.
Morrison. An Approach to Persistent Programming. Com-
puter Jour nal, 26(4):360- 365, November/December 1 983.

[Black 85] Andrew P. Black. Supporting Distributed Applications: Ex-
perience with Eden. In L0th ACM Symposium on Operating
Systems Principles, pages 181-193, Orcas Island, V/ashing-
ton U.S.A., December 1985. SIGOPS and ACM.

lBlack 86] A. Black, N. Hutchinson, E. Jul, and H. Levy. Object
Structure in the Emerald System. In OOPSLA'86 Proceed-
ings, pages 78-86, Portland, Oregon, September 1986.

[Black 89] Andrew P. Black and Yueshayahu Artsy. Implementing Lo-
cation Independent Invocation. In Proceedings of the 9th In-
ternationa.l Conference on Distributed Computing Systems,
pages 550-558, 1989.

[Cahill90] Vinny Cahill, Chris Horn, Andre Kramer, Maurice Martin,
and Gradimir Starovic. C** and Eiffel**: Languages for
Distribution and Persistence. In OSF Microkernel Applica-
rtons Workshop, Grenoble, France, 1990.

[Castro 93] Miguel Castro, Nuno Neves, Pedro Tlancoso, and Pedro
Sousa. MIKE: a Distributed Object-oriented Programming
Platform on top of the Mach Micro-Kernel. ln Proceedings
of the USENIX Mach Conference, Santa Fé, April 1993.

[Chase 89] J. Chase, F. Amador, H. Levy, and R. Littlefield. The
Amber System: Parallel programming on a network of mul-
tiprocessors. ln Proc l2th ACM Symposium on Operating
Systems Principles, Litchfield Park, USA, December 1989.

[Cox 86] Brad Cox. Object-Oriented Programming: An Evolutionary
Approach. Addison-Wesley, 1986.

[Dasgupta 88] Partha Dasgupta, Richard Leblanc, and William Appelbe.
The Clouds Distributed Operating System: Functional De-
scription, Implementation Details and Related Work. In 8tlr
International Conference on Distributed Computing Sy stems,
pages 2-9, S. José CA (USA), June 1988. IEEE.

[Decouchant 88] D. Decouchant, A. Duda, A. Freyssinet, M. Riveill, X.
Rousset de Pina, R. Scioville, and G. Vandôme. GUIDE:
An Implementation of the COMANDOS Object-Oriented
Distributed Architecture on UNIX. In Proceedings of
EUUG Conference, Lisbon (Portugal), October 1988.

422 P. Sousa, et al.



[Ferreira 91]

[Fowler 85]

lGamma 881

lGoldberg 831

lKaehler 861

[Krakowiak 90]

[Liskov 87]

[Marques 88]

[Marques 89]

lOpegll

lRichardson 891

Paulo Ferreira. Reclaiming Storage in an Object Oriented
Platform Supporting Extended C# and Objective-C Appli-
cations. ln Proceedings of the Internntional Workshop on
Object Orientation in Operating Systems - IEEE Palo-Alto,
October 1991.

R. J. Fowler. Decentralized Object Finding Using Forward-
ing Addresses. PhD thesis, University of Washington,
Seattle, December 1985.

Erich Gamma, André Weinand, and Rudolf Marty. ET#-
An Object-Oriented Application Framework in C#. In
EUUG, Cascais, October 1988.

A. Goldberg and D. Robson. Smallnlk-&}: The Language
and it s Imp lementntion. Addison-Wesley, I 983.

Tþd Kaehler. Virtual Memory on a Narrow Machine for an
Object-Oriented Language.ln Proceedings of OOPSLA 86,
Portland, Oregon, September 1986.

S. Krakowiak, M. Meysemburg, H. Nguyen Van, M.
Riveill, C. Roisin, and X. Rousset de Pina. Design and Im-
plementation of an Object-Oriented, Strongly Typed Lan-
guage for Distributed Applications. JOOP, pages l1-21,
September/October 1990.

B. Liskov, D. Curtis, P. Johnson, and R. Scheifler. Imple-
mentation of Argus. Proceedings of the l lth ACM Sympo-
sium on Operating Systems Principles, November 1987.

José Alves Marques, Roland Balter, Vinny Cahill, Paulo
Guedes, Neville Harris, Chris Horn, Sacha Krakoviak, An-
dre Kramer, John Slattery, and Gerard Vandome. Imple-
menting the COMANDOS Architecture. In Proceedings of
Esprit Technical We ek, Brussels (Belgium), November I 988.
North-Holland.

José Alves Marques and Paulo Guedes. Extending the Oper-
ating System to Support an Object-Oriented Environment.
ln Proceedings of OOPSLA 89, New Orleans, 2-6th Octo-
ber 1989.

Open Software Foundation, Grenoble. DCE Applicøtion
Development Guide, March 1991.

Joel E. Richardson and Michael J. Carey. Persistence in the
E language: Issues and Implementation. Software - Practic e

and Experience, 19(12), December 1989.

Distribution and Persistence in the IK Platform 423



lseliger 90] Robert Seliger. Extending c# to support Remote Proce-

dure Call, Concurrency, Exception Handling and Garbage

Collection. ln USENIX C# Conference, pages 24L-263'
1990.

[Sequeira 91] Manuel Sequeira and José Alves Marques' Can C# be

Used for Piogramming Distributed and Persistent Objects?

InProceedingsofthelnterrntionalWorkshoponobjectori-
entation in Operating Systems-IEEE, Palo Alto, October

1991.

[shapiro 89] Marc Shapiro. Prototyping a Distributed object-oriented

Operating System on Unix. In Distibuted and Multþroces'

sor Systems Workshop, Fort Lauderdale, FL, October 5-6

1989.

Sun Microsystems. Exterrnl Data Representation Protocol

Specification, February 1986. Revision B'

David Ungar. Generation Scavenging: A Non-disruptive

High Perfomance Storage Reclamation Algorithm. ln ACM

Software Engineering Symposium on Practical Software De-

u"lop*"ntt Environmentr, pages 157 -167 , Pittsburgh, April
1984.

lSunS6l

[Ungar 84]

[weiser 89] Mark weiser, Alan Demers, and carl Hauser. The Portable

Common Runtime Approach to Interoperability' Technical

report, Xerox PARC, March 1989'

llililson 91] Paul R. Wilson. Operating System Support for Small Ob-

jects. In Proceedings of International Workshop on Obiect

Orientation in Operating Systems, October 17-18 1991'

[submitted Feb. 1, 1993; revised May t0,1993; accepted June 2, 1993]

Permission to copy without fee all or part of this-material is granted provided that the copies

"*iãï*ã¿" 
or ä'istributed for direct ãommercial advantage, tTrc Computing Sy-slfms copyright

noii"é un¿ its date appear, and notice is given that copying. i¡ by permission^of 
the, 

Re*entq 
^of

;'Ë'Ü;t;ity 
"f 

-cãifróini". 
to 

"opy 
otlierwise, or toiepublish, requires a fee and/or specifrc

permission. See inside front cover for details'

424 P. sousa, et al.


