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ABSTRACT Services provided on wide-area networks
like the Internet present several challenges. The reli-
ability, performance, and scalability expected of such

services often requires they be implemented using mul-
tiple, replicated servers. One possible architecture im-
plements the replicas as a weak-consistency process
group. This architecture provides good scalability and

availability, handles portable computer systems, and

minimizes the effect of users upon each other. The key
principles in this architecture are component indepen-
dence, a process group protocol that provides small
summaries of database contents, caching database

slices, and the quorum multicast client-to-server com-
munication protocol. A distributed bibliographic data-

base system servss as an example.
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1. Introduction

Several information services have recently been, or will soon be, made
available on the Internet. These services provide access to specialized
information from any Internet host. The bulk of these systems central-
ize some parts of their service-either by centralizing the entire sys-
tem, or by breaking the service into several pieces and implementing
each piece as a centralized application.

The ref dbms bibliographic database system has been built using a
new architecture for distributed information services. This architecture
emphasizes scalability and fault tolerance, so the application can re-
spond gracefully to changes in demand and to site and network failure.
It uses weak-consistency replication techniques to build a flexible dis-
tributed service. I will start by defining the environment in which this
architecture is to operate, its goals, and provide an overview of
ref dbrns and the architecture. Following sections detail three compo-
nents: weak-consistency distributed process groups, quorum multicast
protocols, and mechanisms to cache predefrned slices or subsets of the
database.

I.I Environment

The Internet has behaviors that must be accounted for when designing
an information service. These include the latency required to send
messages, which can affect the response time of an application, and
communication unreliability, which may require robust communication
protocols. Two hosts on an Ethernet can exchange a pair of datagram
packets in a few milliseconds, while two hosts on the same continent
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may require 50-200 milliseconds. Hosts on different continents can
require even longer. Packet loss rates of 40Vo are common, and can go
much higher [Golding9lb]. There are many points in the Internet that
can fail and partition the network; indeed it is usually partitioned into
several non-communicating networks. This is a difficult environment
for building distributed applications.

The application architecture must also handle the vast number of
users that can access a widely-available service. The Internet includes
more than a million hosts as of July 1992'] the potential user base is
in the millions, and these numbers are increasing rapidly. The archie
anonymous FTP location service reported on the order of 10,000
queries per day (0.12 queries per second) using two servers in Novem-
ber 1991 [Emtage92]. Anecdotal evidence points to some traditional
information services used by the general public, such as newspapers
and library card catalogues, with nearly 100 queries per second.

Despite this environment, users expect a service to behave as if it
were being provided on a local system. Several studies have shown
that people work best if response time is under one second for queries
presenting new information, and much less for queries that provide
additional details [SchatzgO]. Furthermore, users expect to be able to
make use of the service as long as their local systems are functioning.
This is an especially difficult expectation to meet on portable systems,
where the system may be disconnected from the network for a long
time or may be "semi-connected" by an expensive low-bandwidth con-
nection. Several researchers are investigating ûle systems that can tol-
erate disconnection [Kistler9l, Alonso90a].

Throughout this paper the term process refers to a process, run-
ning at some sit¿. Sites are processor nodes on the network such as a
workstation or file server. Server processes have access to pseudo-

stable storage such as disk that will not be affected by a system crash.
Sites also have loosely synchronized clocks. Sites and processes fail by
crashing; that is, when they fail they do not send invalid messages to
other processes and they do not corrupt stable storage. Processes can

l. This value was provided by Darrell Long, who has been tracking the Internet population
as part of a longitudinal reliability study [Long 91, Lang 92].
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temporarily fail and recover. Sites have two failure modes: temporary
recoverable failures, and permanent removal from service. The net-
work is sufficiently reliable that any two processes can eventually
exchange messages, but it need never be free of partitions. Semi-
partitions are possible, where only a low-bandwidth connection is
available between one or more sites and the rest of the network.

1.2 The Archítecture

There are some general principles guiding the solutions presented
here. Service replication is the general mechanism for meeting
availability demands and enabling scalability. The replication is dy-
namic in that new servers can be added or removed to accommodate
demand changes. The system is asynchronous, and servers are as inde-
pendent as possible; it never requires synchronous cooperation of large
numbers of sites. This improves communication- and site-failure toler-
ance. Local communication is almost always faster than long-distance
communication, and should be used whenever possible. The solutions
use prefetching and cachíng where possible to improve response time.
The service should be secure to the degree appropriate and possible,
so that client processes can trust the information provided by the ser-
vice and service providers can accurately charge for their service if
needed. Finally, the architecture should minimize the effect of one
user on another.

A set of replicated servers cooperate to provide the service, as

shown in Figure 1. Client processes use the service by contacting
some server process. Server processes in turn communicate amongst
themselves to propagate update information.

Some local-area networks will have a nearby server, while others
must communicate with more distant servers. Portable systems may
include a slice server that maintains a copy of part of the database.ps/
arch.ps.

The use of multiple servers can improve communication locality.
If all clients must communicate with the same server, some of them
will have to use long-distance communication. If there several servers,
clients can communicate with the one closest to them. This both re-
duces communication latency and decreases the load each communica-
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Figure 1: Overall system architecture. Some local-area networks
will have a nearby server, while others must communicate with
more distant servers. Portable systems may include a slice server
that maintains a copy of part of the database.

tion imposes on the Internet. One approach is to place one server in
each geographic region or organization. Of course, clients must be able
to identify nearby servers ancl maintain performance when nearby sites
fail; this problem is discussed in Section 3.

Replicated servers also help meet the goal of a highly available and
reliable service. The service is available as long as clients remain con-
nected to at least one server, and that server is functioning. A recent
study of workstation reliability [Long91] shows that most hosts are
available better than 90Vo of the time lGoldingglb], with a mean
time-to-failure (MTTF) between two and three weeks. Another study
has found that hosts within North America respond when polled about
90 of the time, indicating that long-term network failure is probably
uncommon. This same study showed that communications were more
reliable the closer two sites were. This architecture can therefore be

expected to provide nearþ complete availability.
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1.3 The ref dbms System

The weak-consistency architecture is being used to implement a dis-
tributed bibliographic database system, refdbms. This project aims to
evaluate this architecture for convenience and performance. The
ref dbrns system is derived from a system developed at Hewlett-
Packard Laboratories over several years [V/ilkes9l]. That system em-
phasized sharing bibliography information within a research group.

Users could search a database by keywords, use references in TpX,
and enter new or changed references.

Refdbms is being extended to handle multiple databases distributed
to widely dispersed sites. Databases can be specialized to particular
topics, such as operating systems or an organization's technical re-
ports. Each database can be replicated at several sites on the Internet,
and users can create their own copy of interesting parts of the data-
base. V/hen a user enters a new reference in one copy, the reference is
propagated to all other copies. The system also includes a simple
mechanism for notifying users when interesting papers are entered
into the database.

o/oz TechReport ßhe rype)
%K Golding9âl (the tag)
%A Richard A. Golding
%A Kim Taylor

"/J Group membership in the epidemic style
%R UCSC-CRL-92-13
%p CISBD., UCSC.
%D22Apr. 1992
o/"1 Ff P postscript f rom f tp.cse. ucsc. ed u pub/trlucsc-crl-92- 1 3. ps.Z
%x We present a new lightweight group membership
o/ox mechanism that allows temporary inconsistencies in membership
o/ox views. This mechanism uses epidemic communication techniques to
o/oX êrìsuro that all group members eventually converge to a consistent
o/ox view of the membership. Members can join or leave groups, and we
o/ox Show that the mechanism is resilient to À < n - 2 members
%x failing by crashing, where n is the number of members in the group.
%k distributed systems, weak-consistency replication
%k lightweight group membership, process groups

Figure 2: An example reference.
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Refdbrns stores references in a format similar to that used by
ref er, as shown in Figure 2. Every reference has a type, and a

unique, mnemonic ng llke LamportzSa. Since these tags are deter-
mined by users and can potentially collide, the system internally uses

a unique identifier consisting of a timestamp plus the address of the
site that created the reference. References are stored in hashed files,
and are indexed both by tag and by keyword. Using location informa-
tion in the database and an inference engine, the system will deter-
mine the best way to provide the user with a copy.

1.4 Implementing the Architecture

The servers are organízed into a distributed process group: a set of
processes running on different hosts and cooperating to provide a ser-
vice. The server processes use a group communication protocol to
multicast a message to the group when they need to perform a data-
base operation. Client processes send request messages to just one
server, which forwards the request if needed to other servers in a mul-
ticast. When servers are added or removed, they follow a group mem-
bership protocol to inform other servers and to obtain a copy of the
database.

Each server maintains a copy of the database. For simplicity, ev-

ery database entry is assumed to have a unique key. Some servers will
maintain a copy of the full database. Others will maintain caches or
slices of the information, as discussed in Section 4. A cache is an ar-
bitrary collection of recently-used database entries, while a slice is a
subset of the database defined by a query, similar to a relational data-

base view. In ref dbms, for example, a slice might maintain a copy of
all entries on marsupials.

The servers must coordinate their operation so they provide consis-
tent service: the answers provided by one server should not contradict
those provided by another. Consistency is controlled by the group

communication protocol, since the state of a server is determined by
the messages it has received. This topic is discussed further in Sec-

tion 2.1.
Eventually or weakly consistent communication protocols do not

perform synchronous updates. Instead, messages are first delivered to
one site, then propagated asynchronously to others. The answer a
server gives to a client query depends on whether that server has
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observed the update yet. Eventually, every server will observe the
update. Many existing information systems, such as Usenet [Quarter-
man86l and the Xerox Grapevine system [SchroederS4], use similar
techniques. Users of a bibliographic database are unlikely to be wor-
ried if an update takes a few hours to propagate to every server, as

long as their updates are available right away at their server.

Delayed propagation means that clients do not wait for distant sites

to be updated, and the fault-tolerance of the service does not depend

on client behavior. It also allows messages to be transferred using bulk
communication protocols, which provide the best efficiency on high-
bandwidth high-latency networks. These transfers can occur at off-
peak times. Servers can be disconnected from the network for a period
of time, and will be updated after they are reconnected. On the other
hand, clients must be able to tolerate inconsistency, and the service

may need to provide a mechanism for reconciling conflicting opera-

tions. In ref dbms, updates take the form of differences to the text of
a reference, and all updates are applied in the same order at every
site. One update may occasionally be superseded by another, but colli-
sions are unlikely and are resolved by performing updates in a univer-
sal order.

The group of processes communicating this way can be organized

into a weak-consistency distibuted process group. Propagating updates

from one server to another form a logical, asynchronous group multi-
cast operation that is immune to temporary crashes. I have developed

protocols for weak-consistency group communication and for adding

and removing servers from the group. These are detailed in Section 2.

2. Weak-Consistency Process Groups

Replicated services can be implemented as a process group. Members
of the group use group communication protocols to communicate
amongst themselves, and group membership protocols to determine
what processes are in the group. The membership and communication
protocols are closely related: the membership protocol usually uses

some form of the communication protocol to send membership infor-
mation to processes, and the communication protocol uses membership
information to identify what processes should receive messages.
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Weak consistency protocols guarantee that messages are delivered
to all rnembers but do not guarantee when. In this section I will dis-
cuss how weak consistency compares to other kinds of consistency,
and detail protocols for weak-consistency group communication and
menrbership. Another paper [Golding 1992b] contains a fuller expla-
nation of these protocois and how they can be used.

2.1 Kinds of Consistency

The service provided by a process depends on the messages it has re-
ceived, so application-level consistency depends on communication
consistency. Communication protocols can provide guarantees on:

1. Message delivery. Messages can either be delivered reliably, in
which case they are guaranteed to arrive, or with best effort,
meaning the system will make an attempt to deliver the message
but it is not guaranteed.

2. Delivery ordering. Messages will be delivered to processes in
some order, perhaps different from the order in which they are
received. A tonl ordering means that all processes will see the
same messages in the same order, though that order will not
necessarily be the order messages were sent. Causal ordering
implies that any messages with a potential causal relation will
be delivered in the same order at all replicas [Lamport78,
Ladin9l]. Messages with no causal relation, however, can be
delivered in different orclers at different processes. Messages
can also be delivered so that the database at one site never
differs from the correct global value by more than a constant

[Pu91, Barbará90]. Weaker orderings include aper-process oÍ
FIFO channel orderinig, where the messages from any particular
process are delivered in order, but the streams of messages from
different processes may be interleaved arbitrarily. Finally, there
is the possibility of guaranteeing no particular order.

3. Time of delivery. The communication protocol can deliver
messages synchronously, within a bounded time, or eventually
in a finite but unbounded time.

ln general, strong guarantees require multiphase synchronous protocols
while weaker guarantees allow efficient asynchronous protocols.
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The weak consistency used in this architecture provides reliable
delivery, and can be modified to produce several delivery orderings,
but it only guarantees eventual message delivery. In particular, there
is a non-zero probability that two processes have received all the same

messages, and all processes are guaranteed to agree in finite but un-
bounded time if no further messages are sent.

Grapevine [SchroederS4] was one of the first wide-area systems to
use weak consistency. In that system, replicated data was updated first
at one site, then the results were propagated to other sites in the back-
ground. Updates were propagated three ways. A site might first use di-
rect mail, an unreliable multicast, to get the update to as many sites as

possible. Then it would use rumor mongery to propagate recent up-
dates from one site to another. Finally, pairs of sites would periodi-
cally exchange all known updates in an anti-entropy session until they
were mutually consistent. Of the three methods, only anti-entropy
guaranteed delivery to all sites.

The tattler lLong92l is another system that uses weak-consistency
groups. It uses group communication to coordinate a gfoup of pro-
cesses that periodically retrieve uptime statistics from Internet hosts.
The list of hosts to be polled and the experimental results are propa-
gated using the group communication protocols outlined in the next
section.

2.2 Group Communication

I have developed a new group communication protocol that provides
reliable, eventual delivery, called timestamped anti-entropy [Gold-
ing9lal. Since the protocol is fault tolerant, messages will be deliv-
ered to every process in the group even if processes temporarily fail or
are disconnected from the network.

To send a message to the group, a process appends some time-
stamp information and writes it to a log on stable storage.2 From time
to time each site selects a partner site, and the two exchange logs in
an anti-entropy session. If update information can be retrieved from
database contents a log is not technically necessary. Grapevine used

2. This paper is written in terms of a log. However, if update information can be retrieved
from database contents a log is not technically necessary. Grapevine used this technique.
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this technique. In addition, processes maintain a summary of the
timestamps on messages they have received. These summaries are ex-
changed as the first step of anti-entropy sessions, and allow each pro-
cess to send only those messages the other has not yet received. An
unreliable multicast can be used to propagate a message quickly while
anti-entropy sessions ensure the message is delivered to sites that miss
the multicast.

This protocol meets many architectural goals. It provides an asyn-
chronous communication mechanism that allows replicas to be mostly
independent. Anti-entropy sessions only involve two replicas, so the
mechanism can scale to large, dynamically changing groups. Sites can
tend to select nearby partners for anti-entropy, minimizing long-
distance communication. The protocol also handles disconnected and
failed sites well. While a replica is unavailable, messages accumulate
in other replicas' logs, and are transmitted to the replica when it be-
comes available again. Summaries provide a compact way for portable
systems to measure how far out of date their information has become;
this measure can be used to prompt the user to plug their machine into
the network for fresher information.

The tradeoffs are that the protocol is blocking, that replicas must
maintain fault-tolerant logs, and that timestamps must be appended to
every message. If an operation must be coordinated with the entire
group, perhaps so total consistency is preserved, it must be delayed
until the request message can be received and acknowledged by every
process in the group. Until that time, the request message must be

stored on disk so it is not affected by failure and recovery.
The timestamps appended to each message can be used to generate

a variety of different message delivery orderings, including total (but
not causal), per-process, or no ordering. Causal orderings are possible
if process clocks meet Lamport's happens-before condition [Lam-
port78l.

To execute the protocol, each process must maintain three data

structures: a message log andtwo timestamp vectors [MatternSS].
These must all be maintained on stable storage, so they are not cor-
rupted when the site or process crashes. Each site must also maintain a

clock that is loosely synchronized with other processes. I have also de-
veloped a similar protocol that requires O(n2) state per process rather
than O(n), but allows unsynchronized clocks. This alternate protocol
was discovered independently by Agrawal and Malpani [Agrawal9l].
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The message log contains messages that have been received by a
process:

Log J"ist of (sender id, timestamp, message).

Timestamped messages are entered into the log upon receipt, and re-
moved when all other processes have also received it. The sender
identification and timestamp can both be on the order of four bytes
each. Messages are eventually delivered from the log and applied to
the database.

Processes maintain a summory timestamp vector to record what up-
dates they have observed:

Sunmary vector : list of (process id, timestanp).

Process A records a timestamp r for process B, if A has received all
messages generated at B up to time t . Each process maintains one such

timestamp in its timestamp vector for every process in the group. The
vector provides a fast mechanism for transmitting summary informa-
tion about the state of a process.

Each process also maintains an acknowledgment timestamp vector
to record what messages have been acknowledged by other processes:

Acknowledgment vector : list of (process id, timestanp).

If process A holds a timestamp r for process B, A knows that B has re-
ceived every message from any sender with timestamp less than or
equal to f . Process B periodically sets its entry in its acknowledgment
vector to the minimum timestamp recorded in its summary vector.
This mechanism makes progress as long as process clocks are loosely
synchronized and the acknowledgment vector is updated regularþ. A
process can determine that every other group member process has ob-
served a particular message by looking at its local acknowledgment
vector.

From time to time, a process A will select a partner process B and
start an anfi-entropy session. A session begins with the two processes

allocating a session timestamp, then exchanging their summary and
acknowledgment vectors. Each process determines if it has messages

the other has perhaps not yet observed, when some of its summary
timestamps are greater than the corresponding ones of its partner.
These messages are retrieved from the log and sent to the other pro-
cess using a reliable stream protocol. If any step of the exchange fails,
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either process can abort the session. The session ends with an ex-
change of acknowledgment messages.

At the end of a successful session, both processes have received
the same set of messages. Processes A and B set their summary and
acknowledgment vectors to the elementwise maximum of their current
vector and the one received from the other process.

After anti-entropy sessions have completed, update messages can
be delivered from the log to the database, and unneeded log entries
can be purged. If the system guarantees that all processes will observe
messages in the same order, messages whose timestamp is less than
the minimum timestamp in the summary vector can be delivered. If
per-process or weaker orderings are allowed, messages can be deliv-
ered immediately upon receipt. A log entry can be purged when every
other process has observed it. This is true when the minimum time-
stamp in the acknowledgment vector is greater than the timestamp on
the log entry.

The reliable delivery guarantee is not met in one important case:
when a process permanently fails and loses data. No weak consistency
communication scheme can be free from this, since a window of vul-
nerability must exist while the data is being sent to other processes. In
practice the duration can often be reduced by disseminating the new
updates rapidly, but real networks do not allow complete certainty.

2.3 Group Membership

The group membership protocol provides mechanisms for listing group
membership, creating a new group, joining and leaving a group, and
recovering from member failure. The group communication protocol
uses this information to identify what sites should receive multicast
messages. This section sketches a weak-consistency group membership
protocol; details and proofs of correctness are reported elsewhere

[Golding92c].
Each process maintains an eventually-consistent view of the mem-

bership, indicating the status of each member:

View : list of (process id, status, timestamp).

Views are updated during anti-entropy sessions, and eventually all
processes can reach agreement if the membership stops changing.

Inconsistent group views can make a system vulnerable to failure.
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Since a process can only contact processes in its view, the transitive
closure of all views must be kept equal to the group membership. The

knows-about graph formed by membership views can become incor-
rect if the only process to know about another fails. To ensure the
knows-about graph stays correct after up to k failures, the graph con-

nectivity must be k + I or greater.

To initialize a new group, a process p creates a new view with
only itself. To join a group, p finds k + I sponsor processes in the
group. These processes insert p into their views, and send the result-

ing view back to p. To leave agroup, p marks its status as leaving,
then waits for every other process to observe the status change. While
waiting it performs anti-entropy sessions but does not originate any

messages. 'When p fails, some outside mechanism will inform a func-
tioning member process. This process marks p as f ailed in its view.
This information propagates to other processes, re-establishing k + l-
connectivity along the way.

In contrast to this system, previous group membership mechanisms

ensure greater consistency of group views at the expense of latency

and communication overhead. Both the Isis system [Birman87, Bir-
man9ll and a group membership mechanism by Cristian [CristianS9]
are built on top of synchronous atomic broadcast protocols, and hence

provide each process with the same sequence of group views. The Ar-
juna system [Little90] maintains a logically centralized group view via
atomic transactions.

2.4 Performance

Three disadvantages of weak-consistency process groups were pointed

out in the last section: some operations must be delayed until request

messages have been observed throughout the group; they require on-

disk message logs; and messages can be lost when many sites fail
simultaneously.

The magnitude of each of these problems depends on how fast

messages are propagated through the group, which can be determined

by simulation. A system of n server processes can be modeled as a

Markov system of O(n2) states, where each state is labeled with the

number of processes available and the number that have observed the

update.
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Figure 3: Time required to propagate a message to all processes.

Data loss due to permanent site failure appears to be negligible in
systems like the Internet, where sites stay in service for several years.
The probability of losing a message depends on the ratio p of the rate
at which sites perform anti-entropy to the rate of permanent site fail-
ure. If sites perform anti-entropy hourly and sites remain in service
for a few years, p is more than 10,000 and the probability of failure is
less than 1 in 10,000. The usual approximations to stable storage, such
as delayed writeback from volatile storage, also have negligible effect.

The size of logs is a function of the time required to propagate a
message to every group member. The time required increases approxi-
mately as the log of the number of processes, and under reasonable
update and read rates information is likely to propagate to most sites
before it is needed. Figure 3 shows the distribution of time required to
reach consistency for different numbers of processes.

2.5 Presenting Inconsistent Information
to Users

lnconsistent information can be confusing to users. If one ref dbms
user finds a newly-added reference, then sends a message to another
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user discussing the reference, the second user may not be able to find
the reference because it has not propagated to the right servers. This
problem can be remedied by only making information available to
users after it has propagated everywhere, although this may make the

information unavailable for quite some time.
The ref dbms system provides a hybrid solution that allows users

immediate access to new information. It maintains a pending copy of
inconsistent database entries. Users can access the pending copies by
appending a . pending suffix to reference tags. The consistent copy is
available using the unmodified tag. Each server attempts to apply

changes to the pending copy as they are received, but the changes may

be applied in an order different from the order they are applied to the

final consistent copy, particularþ if multiple conflicting updates have

been submitted.

3. Using Nearby Servers

If a replicated service is to make communications local, clients must

be able to locate and use the closest servers. Servers can use a similar
mechanism to bias their partner selection to favor other nearby serv-

ers. I have investigated quorum multicast protocols that will use pre-

ferred sites lGolding9lb, Golding92b]. These protocols use an

ordering on ø sites, and attempt to communicate with the best n of
them. Sites can be ordered using predictions of communication la-

tency, failure, and bandwidth.

3.1 Using Quorum Multicast to Select Sítes

Quorum multicast protocols allow clients to generally communicate

with nearby sites, falling back to more distant sites when the nearby

ones have failed. While these protocols were originally developed for
implementing majority voting replication protocols, they provide ex-

actly the communication locality and fault tolerance needed for com-
munication with a single server.

The semantics of quorum multicast define the interface:

quorum-multicast (message, sites, reply count)->replies
Exceptions: reply count not met.
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The message is sent to at least a reply count of the sites. If at

least that many responses are received, the operation succeeds; other-
wise, it fails. Either way it returns the set of responses received. Quo-
rum multicasts can be used for client-server communication by setting
the sites to the list of servers and the reply count to one. If the
servers are ordered from nearest to farthest, the protocol will select
nearby servers over distant ones.

There are several variations on the protocol, each of which uses a
different policy to handle site and communication failure. Most can be
tuned to declare possible failure of a nearby site early, improving
communication latency when the site is down at the expense of extra
messages. Other variations provide different policies for retrying com-
munication with nearby sites that may have failed.

3.2 The Perþrmance Predictíon Problem

A client site must be able to rank servers by expected communication
performance if quorum multicast is to work. Expected performance is
based on a prediction of communication latency, failure, and band-
width. If an operation requires that only a small amount of informa-
tion be moved between sites, message and processing latency will
dominate performance. If large amounts of information must be trans-
ferred, then bandwidth will dominate. The prediction should be biased
by the probability that the client can communicate with the server. A
detailed examination of this problem is available [Golding92a].

Predictions can be derived statically from the topology of the net-
work, or dynamically using performance samples. The topology of the
Internet is quite complex, and no detailed topological models are avail-
able. Approximations of topological information, such as hop counts,
have been shown to be poor performance predictors [Golden9lb].
Dynamic prediction is generally more accurate.

Communication latency is often predicted by a moving average of
recent samples. The moving average at time r of a sequencê d¡ is
defined as at : we, * (l - w)d=, with 6 : O. The estimator can
be biased to weight recent or older samples more heavily by adjusting
the parameter w. This method is used in most implementations of TCp
[Jacobson8S]. That work assumes that latency is normally distributed,
and computes an estimate of the variance to determine failure time-
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outs. The actual distribution is generally similar to that in Figure 4.

V/hile it is not normally distributed, it is predictable.

Latency predictions should be biased by the probability that a site

will respond. A site may not respond either because a message did not
get through, or because it has crashed. A moving average of the prob-

ability of message faihxe f,, 0 = f, < 1, can be combined with the

packet timeout h and expected latency /' to give an overall expecta-

tion o,:

o,:lp,+0-f)I
Figure 5 shows how this estimation responds to a sequence of sam-
ples. Experience has shown this is a good overall estimator.

Sometimes bandwidth must be considered to rank ss1'vs¡s-fs¡ s¡-
ample, when the ref dbms system is selecting a site to retrieve a copy

of a paper. Unfortunately bandwidth is not as predictable as latency.

Latency (millixcottds)

Figure 4: Distribution of communication latency. Measured between
maple.ucsc.edu and cana.sci.kun.nl; average latency 938
milliseconds.

25{)

200

396 Richard A. Golding



futttplznumbø

Figure 5: Overall communication latency.100 samples from a longer
trace, measured between maple.ucsc.edu and cana.sci.kun.nl. The
packet timeout is reported for failed messages. The graph includes two
estimation curves, showing the effect of different weights on the
moving average estimator.

Figure 6 shows a typical bandwidth distribution. The distribution is
nearly uniform and consequently has a high variance. I have evaluated
a number of prediction methods for bandwidth, and a moving average
prediction appears to work well.

Prediction methods using moving averages must have several re-
cent samples to be accurate. Every time a site communicates with a
server it can log communication statistics to a database, and the sites
on a local-area network can pool their results to increase the number
of samples. However, quorum multicast techniques will cause most of
the samples to come from nearby sites. Periodically dropping sites
from the database will ensure accurate prediction for all potential serv-
ers, as well as keep the database size small. If a database of samples
is available at every local organization, portable systems can find a
database wherever they connect to the Internet.
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Figure 6: Typical bandwidth distribution. Measured between
beowulf.ucsd.edu and lcs.mit.edu.

4. Caching and Preþtching

While multiple servers bring information closer to clients, they do not

necessarily make the information local. Most clients, particularly

portable systems, will not have the disk space to store the entire data-

base. However, clients on disconnected portable systems can only op-

erate if the information is local. Other systems perform better when

information is local or on the same network. Caching and prefetching

information to personal or organization-wide servers can meet this

need.
Cache and slice servers play different roles. Cache servers main-

tain copies of recently-accessed database entries, which can improve
performance if one site or organization repeatedly accesses a small set

of database entries. Slice servers prefetch database entries that are

likely to be used in the near future according to user-specified inter-
ests. Slices provide a way to group information that has not yet been
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accessed with entries that have. caches and slices differ in their han-
dling of new database entries: slice servers will store a copy of a new
entry if it matches some predicate; cache servers will not.

Alonso, Barbarâ, and Garcia-Molina have researched these issues
for systems that use bounded inconsistency [AlonsogOb]. They point
out that slices (which they call quasi-copies) are similar to materialized
views in a relational database. As with views, the entries in a slice are
determined by evaluating an expression that has the same form as a
query on the database. In their system, each slice also has a coherency
condition that specif,es how far out of date the entries in a slice
can be.

A weak-consistency cache server stores a random subset of data-
base entries. It is similar to servers that store a full database copy, in
that it maintains a message log and summary and acknowledgment
vectors. It periodically performs anti-entropy sessions with full serv-
ers, propagating any updates it originated to other servers and receiv-
ing updates to the entries it has cached. The cache server will be un-
able to answer some client queries, such as keyword searches in the
reference database, because it does not have a full database copy.
These queries must be performed at a full or slice server.

slice servers in a weak-consistency architecture also act much like
ordinary servers, except that they store the selection condition in addi-
tion to the database, log, and timestamp vectors. The selection condi-
tion is a predicate on database entries. For simplicity assume the
predicate is in disjunctive normal form; that is, it has the form

(pr A pz) V (p, A pùV @ò.

When a client queries the slice server, the server can determine
whether it can satisfy the query if the query is equivalent to a sub-
set of the slice predicates. For example, a ref dbms slice server
could answer a query on marsupials if it stored references on
marsupials ! australian animals. If the server cannot satisfy
the query, the query must be processed by some other server. As in
the Domain Name service, the forwarding can be recursive, where the
server forwards the query to another sever, or iterative, where it in-
forms the client of other servers that might answer the query. Recur-
sive forwarding makes for simple clients, but increases the dependence
of clients on server correctness.
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The slice server conducts anti-entropy sessions to maintain its in-
formation. These sessions are similar to ordinary ones, except that the

selection predicate is passed to the partner and less information flows

between the two. The slice server can only perform sessions with full
servers. The full Server sends updates for entries of interest to the slice

server, while the slice server only sends updates it has originated.

Several users on a local network may share a common slice server.

The combined selection condition is the union of individual users'

conditions; the union can be computed in 0(n log n) time if the predi-

cates are in disjunctive normal form.
The selection predicates will need to be changed from time to time

to reflect changing user interest. W'hen a slice server needs to add to

its slice predicate, it potentially increases the information it maintains.

The server computes the difference between the old and new predi-

cates, then performs a special anti-entropy session to both become

consistent with another server and retrieve database entries matching

the difference predicate. To remove something from its predicate,

potentially narrowing the server's scope, the server can discard con-

sistent database entries without communicating with other servers.

The slicing mechanism is particularþ useful for portable comput-

ing systems. These systems may be disconnected from the network, or
connected only by a low-bandwidth wireless link. A user can create a

small slice server on their system to keep important information local.

The volume of updates to the slice may then be small enough to send

over the wireless link. A slice server can also obtain a summary

timestamp vector from a full server to determine how many updates

the slice lacks. When the difference exceeds some bound, the slice

server can prompt the user to connect their machine to a higher band-

width network-perhaps a telephone connection-to get the new

information.

4.1 Usíng Slices for Resource Díscovery

Many information services split their information into several separate

databases, so users can have private copies and to reflect different

administrative domains. V/hen multiple databases exist, there is the

separate problem of finding out about databases as they are added.

The usual solution is to have a metadatabase or database location

service. This can be built using this architecture as well. A user can
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specify what databases they want to use by specifying a selection con-
dition on the metadatabase entries. This condition can be used to build
a slice of the metadatabase, and user queries can be routed to those
databases. As new databases become available, they will be added to
the slice and thus become available to the user. The user can install an
agent to automatically create a slice of each new database using the
user's selection condition.

5. Conclusions

In the Introduction, several principles were put forward as good ideas.
The weak-consistency architecture adheres to them.

The architecture uses weak-consistency distributed process groups
for replication. Having multiple servers provides fault tolerance and
allows the service to scale to very large user populations. The weak
consistency protocols are expressly designed to allow servers to be
added or removed without disturbing normal operation, meeting the
goal of a dynamic server group. The protocols also allow servers to
operate asynchronously and independently. They ensure that servers
can continue to function after several other servers have failed.

The quorum multicast mechanism enables local communica-
tion. Clients using quorum multicast protocols will make use of
dynamically-determined performance predictions to communicate with
nearby servers. The performance prediction information can be pack-
aged so that portable systems can find an accurate prediction database
no matter where they are connected to the Internet.

Slicing allows local sites to store a small, often-used subset of the
larger database. A slice server will prefetch information based on
user's interests. Portable systems can use a local slice server when
they are disconnected from the Internet.

5.1 Continuing Work

Several parts of the weak-consistency architecture presented here rep-
resent work in progress. At the time of writing, the ref dbms system
uses the basic weak-consistency group communication and member-
ship protocols, but it does not provide slice or cache servers. The
metadatabase mechanism has not yet been finalized.
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The performance prediction mechanisms are another subject of on-
going research. I will be conducting a long-term performance study of
the Internet to improve the analysis of prediction methods. There has

been some discussion of a performance prediction service, but this has

not yet been implemented.
Refdbns servers can take on different roles to control access to

the databases. Some servers will allow both queries and updates, while
others allow only queries. This paper has not addressed security and

authentication problems, but they have not been ignored in the actual

implementation. It appears that a new model of authentication is re-
quired for weak-consistency systems, so that a central authentication

or key server does not become a bottleneck.
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