
Distributed Indexing of
Autonomous Internet Services

Peter B. Danzig, Shih-Hao Li and Katia Obraczka

University of Southern California

ABSTRACT: This paper describes the architecture and
the design decisions behind a resource discovery tool
that we prototyped to knit together the Internet's re-
source discovery fabric. \ù/e call the architecture dis-
tributed indexing or Indie for short. Indie consists of a
directory of services and an unlimited number of bro-
ker databases that index their own data, data stored in
other brokers, and data available from other resource
discovery services. The indexing mechanism doubles as

alazily consistent data replication mechanism that can
replicate the directory of services or any other broker
at will.

An Indie broker automatically clusters references to re-
lated objects stored in other autonomous discovery and
database services. Since Indie brokers cluster related
information skimmed from thousands of scattered ser-
vices, efficient exhaustive search is possible. This cen-
tralization led to the success of the qrchie file location
service. In a way, Indie is a generalized archie that lo-
cates autonomously maintained data stored in different
discovery services.

We believe that other discovery tools can benefit from
the architectural principles that Indie illustrates and the

@ Computing Systems, Vol. 5 . No. 4 . Fall t992 433

ability to cluster related information that Indie pro-
vides.

1. Introduction

Roughly speaking, resource discovery tools either organize or search

information distributed across many repositories. Tools like the Inter-
net gopher [1], the World-Wide-Web [3], and Prospero [11] organize
information into a distributed hypertext. With these tools, people cre-
ate links between relevant information which may reside on different
servers. Tools like archie [7], Nomenclator [14], and netfind [15] build
indices from information scavenged from various repositories and

sources. This paper describes a discovery architecture that, similar to
this second set of tools, automatically clusters pointers to related infor-
mation obtained from other repositories and discovery services so that
it can be efficiently searched. We call our prototype of this architec-
ttxe distributed indexing or Indie for short [5].

LI Indie Architecture

Indie consists of a replicated directory of services and a collection of
servers or Indie brokers that index information available from other

brokers, repositories, and discovery services. Indie specializes in
efficiently locating information with minimal need to organize it manu-

allY.

A generator object describes each Indie broker. The generator con-
sists of a textual abstract, a boolean expression over an extensible set

of bibliographic fields which we call the generator rule, and certain
technical data about the broker. The appellation generator rule sums

up the idea that a broker's contents is generated by executing the
boolean query on lots of other discovery services and storing the
results. Essentially, the rule generates a broker's database. Figure 1

illustrates a generator object.

434 P. B. Danzig, Shih-Hao Li, and K. Obraczka

atlribate name atlribute ualue

genêrator rule

abstract

LoC-ranges

tyPe

location

obj ect jd

obj ect-type
size

replicates

(keywords - network*)

Everything you wanted to
know about networking but
were afraid to ask.

TK5100 - TK6000 |

QA76.6 - Q476.99

Indie broker I gateway

340308N1181434W

f host:berkeley.edu I
{ port:32001 t

I ;ii,i"'""' I
generator
i¿,505, entries

I host:caldera.usc.edu ì

t ::o',ï"oo' l
directory replica
created
statug

caldera.usc.edu :32002

l1:59:0i PI\{ June 1, 1992

creating I valid I deleting

Figure l: Generator object for a replica.

All brokers register their generator objects with the directory of
services. A broker can register itself with any replica of the directory
of services, but the particular replica with which a broker registers
must agree to perform certain services. Initially, it must return a list
of other generator objects pertinent to the new broker, but it must also

agree to report changes to this list. A broker stores its list of generator
objects inits registration table and refers to this table when choosing
the set of services it will index.

A broker's administrator, via the administrator's tool, chooses

which services listed in its registration table to index. The directory of
services sends updates to the registration table asynchronously, so from

Distributed Indexíng of Autonomous Internet Services 435

time to time the administrator must elect whether or not to index new
services. The administrator tool feels similar to network news reader
programs where instead of subscribing or unsubscribing to news
groups, you register or unregister with other brokers and gateways to
other discovery services.

When some broker A decides to index some broker B, the indexed
broker stores the generator object in B's trigger table (see Figure 3).
The name trigger table should evoke the sense of an active database

[17] in which specific rules are triggered and evaluated when the data-

base changes in particular ways. When one broker registers its genera-

tor object with another broker, the indexed broker executes the gener-

ator rule and reliably forwards the retrieved set of object descriptors to
the indexing broker. Afterwards, adding or deleting objects from the
indexed broker's database may trigger the evaluation of generator rules
in its trigger table, and some of these rules may forward these changes

to their corresponding brokers.
The directory of services is just a specialized broker. When a bro-

ker registers itself with a replica of the directory of services, the bro-
ker's generator object is stored in that replica's trigger table. Only the
updates to the directory of services that trigger this rule are forwarded
to the broker.

Lazily consistent server replication is a side effect of Indie's index-

ing mechanism. To replicate a server, we create an Indie broker to
serve as the replica, assign the replica the same generator rule as the
server to be replicated, and have the replica index the server or some

number of replicas of it. Since the replica shares the same generator
rule as the primary copy, it fills with the same data. The replica need

not directly index the primary copy, but instead can index another
replica. Section 2 discusses replication and consistency issues in the
context of replicating the directory of services.

Non-Indie servers attach to Indie through a gateway broker. Indie
provides a gateway library consisting of a set of routines which non-
Indie servers can call to communicate with their gateway broker. The
gateway broker itself is just a normal Indie broker modified as neces-
sary to communicate with the non-Indie server. It manages a trigger
table, registration table, the interface to the directory of services, and
the data consistency mechanism. A non-Indie server can cooperate di-
rectly and efûciently with Indie by making appropriate calls to the
gateway library. If a non-Indie server does not cooperate directly, its

436 P. B. Danzig, Shih-Hao Li, and K. Obraczka

gateway broker must communicate with it in its native protocol and
poll it for updates by brute force. Section 4 describes the gateway
library and discusses how to index other discovery services.

I.I.I Atomicity, Consistency, and Recovery

Indie addresses database consistency and recovery with a timestamped
augmented flooding algorithm which works as follows. An object, re-
gardless of where it resides, is labeled with the object identifier or oid
of the database which created it, and all trigger table entries, registra-
tion table entries, and objects stored in a broker's database are times-
tamped. Objects are stamped with the time at which they were first
added to the broker's database. Tiigger and registration table entry
timestamps are updated by the consistency algorithm, described here.

Figure 2 illustrates an Indie object descriptor. An object descriptor
can contain an arbitrary number of attribute-value pairs. In the figure,
the last few attribute-value pairs are used by the broker's consistency
algorithm. Notice that the object descriptors need not include the ob-
ject itself. This lets a service advertise an object but retain control of
access to it.

When an object is added to or deleted from a broker, the change

causes the broker to evaluate certain rules stored in its trigger table.
For each rule so triggered, the broker tries to establish a communica-
tion connection with its peer. Brokers are peers if either or both bro-
kers index the other. Once communication is established, the broker
evaluates the generator rule against updates with timestamps younger
than the trigger table entry, forwards changes to the remote peer, and
finally advances the trigger table timestamp to the timestamp of the
latest update. It then transmits this timestamp to its peer, which
records it in the appropriate registration table entry. If it cannot estab-

lish communication with its peer, it marks the trigger table entry as

out of date. Timestamps of rules neither triggered nor marked as out
of date are advanced to the current time. Finally, peers occasionally
poll one another in an attempt to maintain consistency.

We describe the algorithm by example. Figure 3 shows three bro-
kers named A, B, and C. A indexes B and C and B indexes C. The
second field of the registration table indicates whether the broker is
subscribed (S) or unsubscribed (U) to its peer. The second field of the
trigger table indicates w'hether the rule is out of date (O) or not (Z).

Distributed Indexíng of Autonomous Internet Services 437

øllribute nø¡ne atlribule aalue

author
title
nonth
y€ar
abstract
keyrords
LoC-nunber
journal
volu¡ne
nunber
Pages
note
pts-to

obj ectid

obj ect-type
consistency

Peter Danzig
Distributed Indexing of ...
September
1992
Internet resource discovery tool...
Indie
QA76.9.D3
Submitted to Computing Systems
5
3

175-188
to be published
ftp warthog.usc.edu pub/jcs.ps

object descriptor
hard I soft

I host:caldera.usc.edu ì
J nort:32004 l,

I ::î,?"i,, I

tinestanp
stat€

eho-re-told

¡¡ho-to1d-us
object-resides-locally
cs. berkeley.edu :32004
expresso.cc.mcgill. ca: 32004

3:45:01 AtrI June 15, 1992
present I locked I deleting

1 cs.wisconsin.edu:32004 \
f expresso.cc.mcgill.ca:32004 J

Figure 2: An Indie object descriptor.

The timestamp mechanism permits convenient recovery from net-
work partition, operating system crashes, and media failure of the bro-
ker's database. It also facilitates creating new replicas. If media failure
destroys the broker's database but not its registration and trigger ta-
bles, then recovery simply involves setting the timestamps on all en-
tries of these tables to zero. The normal polling process will recover
the broker's database.

438 P. B. Danzig, Shih-Hao Li, and K. Obraczka

0
A
Á
tt
¡{

É
0
rl
{,
a
tt
¡¡
T
t{
út
!
d

(
tt
e
J.
0
¡t
il

,;
Lr
o)j1
kp
o
c)
È
c)s
Ø

cl
Øo

F
cî
C)lr
=Þ0

frr

Distributed Indexing of Aúonomous Internet Services 439

If media failure destroys everything, then partial broker recovery
starts when the broker retrieves its generator object from the directory
of services and requests that the timestamp of the directory of ser-
vice's trigger table entry be set to zeÍo. This forces the directory
replica to reinform the broker of services relevant to its generator rule.
The broker's peers, as they poll the broker, will find that the peer re-
lationship has been broken and will toggle the registration table entry
into the recommended state. The broker administrator can use this as a
hint to re-register with its peer. As the broker re-registers with its
peers, it will refill with data. Brokers indexing the recovering broker,
during polling, discover that the trigger table entry is missing, and are
forced to re-register with the recovering broker. While a recovering
broker may send objects to its peers that they have already received,
these objects get discarded because of their duplicate oids.

I .l .2 Indexing Topology

Indie's rules can only delete and add objects to a broker's database.
Thinking of Indie brokers as nodes and subscribed generators as

edges, how do concerns for stability and object consistency limit the
topology of the resulting graph?

In databases with triggered rules, a pernicious set of rules can
trigger each other in an endless cycle. As an example, consider two
databases that register the following rule with one another: "Upon up-
dating your database, send me a new object that records the time of
the update." Once either database is updated, the two rules trigger
each other endlessly. Indie generator rules cannot do this because they
do not create new objects, but only cause existing objects to be repli-
cated on or deleted from the peer broker. A broker, other than in-
creasing the object's reference count, ignores attempts to add an ob-
ject already in its database; it also ignores attempts to delete an object
that is not in the database. Ignored updates cannot trigger additional
rules. Hence, concerns for stability do not limit the indexing topology.

As Figure 2 illustrates, Indie uses field who_told_us, in addition
to the reference count just mentioned. This ûeld lists all the brokers
that forwarded a particular object descriptor to a broker. Field
who_we_told is not actually stored; rather, when needed, this field is
regenerated by applying the object descriptor against the generators in
the trigger table.

44O P. B. Danzig, Shih-Hao Li, and K. Obraczka

Indie's sense of strong consistency requires that brokers delete ob-
ject descriptors that are not reachable through the current indexing to-
pology. A weaker notion of consistency based on deleting an object
when a cached time_to_live value expires is not currently imple-
mented. Strong consistency requires that when a broker unregisters
its generator object with its peer, that it removes the peer's
who_to1d_us entry from all object descriptors which the peer pro-
vided, and delete those objects whose reference count reaches zero.
When a peer instructs a broker to delete an object, the broker removes
the appropriate who_told_us entry and decrements the object's refer-
ence count. When an object's reference count reaches zero, the broker
marks the item as deleted and tries to forward the deletion to peers in
its who_we_toId list (which it recreates by evaluating the rules).

Figure 4 shows the reference count of an object provided by bro-
ker A. On the left hand diagram, broker B hears about object OID
from both A and F. So its reference count is two. On the right hand
diagram, B still retains a copy of OID even though A deleted it be-
cause B thinks that F can still provide it. If, on account of some re-
quest, F tries to fetch object OID, A will inform F that the object no
longer exists.

Indie partially solves this consistency problem with a strong dele-
tion operation. Strong deletion ignores reference counts and forces
deletion. When a broker deletes one of its own objects or when a bro-
ker discovers a consistency problem, it invokes strong deletion. How-
ever, this only partially solves the consistency problem. If broker A
had actually gotten OID from some other broker and broker B unsub-
scribed from broker A, it would not be able to delete OID because it
would still believe that OID was reachable from broker F. However,
when an Indie broker attempts to fetch an object, and the originating
broker says that the object no longer exists, the Indie broker invokes
strong deletion.

Deletion consistency is easily achieved if the indexing topology is

restricted to a directed acyclic graph. Indie can enforce a DAG topol-
ogy by restricting indexing to be hierarchical, but we believe this is a
heavy price to pay for data consistency.

1.1.3 Update Rate Restriction

Indie restricts the rate at which a broker can forward updates to its
peers to reduce performance degradation. For example, if a broker

Distributed Indexing of Autonomous Internet Services 441

Þ À l..
) v : Ê

9 N qq U
) = I Þ o - Þ À r o d ä Þ a) N ,r Þ

In
d€

xô
d

+

In
de

xl
,n

g
B

ro
kê

r
-

B
ro

ke
r

F
ig

ur
e

4:
 T

op
ol

og
y,

 r
ef

er
en

ce
 c

ou
nt

s,
 a

nd
 d

el
et

io
n

co
ns

is
te

nc
y.

B
ef

or
s

D
êl

€t
io

n

R
êf

er
en

c€

R
ef

€r
ên

cê
C

ou
nt

=
2

C
êu

r¡
t=

1

R
ef

ôr
en

cê
C

ou
¡¡

t
=

 1
R

ef
sr

en
ce

C
ou

r¡
C

 =
 1

R
ef

er
ea

ce
C

ou
r¡

t
=

 2

À
f,t

er
 D

el
êt

lo
n

R
ef

sr
en

ce

R
êt

er
ên

c€
C

ou
nt

=
2

C
ou

r¡
t=

1

R
ef

cr
en

ce
C

ou
nt

=

 1
R

ef
êr

ên
ce

C
ou

nt
 =

 1

fê
rê

r¡
ce

C
ou

r¡
t
=

 1

changes its generator object, it does not forward updates to its peers

for several days. This restriction attempts to short circuit transients
caused by broker tuning and experimentation. Although an Indie bro-
ker can change its generator object as frequently as it wants, the direc-
tory of services limits the rate at which it will register the new genera-

tor. For stability, objects added to an Indie database must meet a

particular residency time before they can trigger the evaluation of gen-
erator rules.

1.2 Outline

The remainder of this paper describes the interface to Indie's directory
of services, contrasts Indie with other discovery services and explains
how Indie can index them, and reviews our Indie prototype.

2. Directory of Services

This section describes Indie's directory of services, from issues of
replication, consistency, and recovery, to the programming library
primitives that interface to it.

2.1 Replication and Consístency

All replicas of the directory of services are created equal, and "none

are more equal than others." This means there is no primary copy of
the directory of services. Instead, clients register or unregister them-
selves with the replica of their choice. Indie's update and recovery al-
gorithm guarantees that all replicas eventually learn of the update.

Viewing the replicas of the directory of services as nodes and reg-

istered rules as directed edges, this graph must be connected and every
edge in one direction must be paired with an edge in the other direc-
tion. Figure 5 illustrates this topology. Any update satisfies the trigger
registered between replicas. All said, this implements a simple
flooding based replication algorithm.

Consistency demands that the graph be connected and care be

taken when changing a replica's peers. Consider what happens when a

replica drops out of the graph, and then reattaches itself somewhere

Distributed Indexing of Autonomous Internet Services 443

Þ À 5 : - Þ N oa (/
t

I rJ
r

Þ o li Þ ã F o d ã s ?) N 7f Ê
0

F
ig

ur
e

5:
 T

op
ol

og
y

of
re

pl
ic

as
 o

f
th

e
di

re
ct

or
y

of
 s

er
vi

ce
s.

else. Suppose that replica R7 disconnects itself from R5 and recon-

nects with R3. If some object is deleted while R7 is disconnected, R7

may reinject and reincarnate this object when it is reconnected.

Notice that reincarnation does not occur if the topology remains

fixed, even if a replica is unreachable for a long time. The problem

occurs when a replica that has disconnected itself from its peers recon-

nects and exchanges data with a new peer. The right hand side of Fig-

ure 5 illustrates this problem. If topology changes disconnect and later

reconnect the graph, the two partitions exchange updates, but can also

reincarnate objects deleted from the other partition.
Indie brokers (and directory of service replicas) avoid inconsis-

tency through reincarnation by keeping a cache of deleted objects. If a
peer broker tries to reinject an object in its peer's deletion cache, its

peer responds by injecting a strong deletion. If a peer tries to insert an

update with timestamp beyond the oldest timestamp in the deletion

cache, the peer first verifies that the object exists by trying to retrieve

it from the object's home broker. If the object is invalid, the peer in-
jects a strong deletion.

The directory of services, like all Indie brokers, can add and

delete objects. To simplify maintaining consistency between brokers,

if you modify an object stored in an Indie database, Indie assigns it a

new object identifier and deletes the old one. If desired, Indie can

compose the new object identifier by incrementing the version number

of the old object identifier. However, Indie treats different versions as

different objects.

2.2 Interface

Indie brokers and gateways communicate with replicas of the directory
of services with the following (principle) primitives:

Register (replica, generator) An Indie broker registers its Senerator
with this particular replica of the directory of services. Neighbor repli-

cas of the directory of services invoke this primitive symmetrically so

either replica can update the other. Because register0 is idempotent,

a broker can invoke it at any time.

Distributed Indexing of Autonomous Internet Services 445

Unregister (replica, generator) Removes a broker's generator from
the directory of services. Neighbor replicas use unregisterO to change
the flooding topology of the directory of services.

Generator [] =Lookup (query) Returns a list of generator objects
that match the query.

2.3 Dealing with Replicas

The directory of services has a distinguished object identifier (host: o
port:0 oid: o), which generator objects of all replicas of the direc-
tory of services record in field replicates. To help find physically
close replicas, generator objects can contain the service's latitude and
longitude in field f ocation and the boolean generator rule permits
distance queries such as (Distance < 500 mites) . Client programs
can use this field, if present, to select a geographically close replica.

3 . Contrast with Other Tools

This section briefly overviews resource discovery tools currently avail-
able on the Internet, contrasts them with Indie, and discusses how In-
die can cooperate with them.

3.1 Archie

Archie servers [7] index names of files available from hundreds of
FTP archive sites. Users can query an archie server for file names that
match specified patterns, a complete list of the FTP archive sites, or a
list of the files available from specific sites.

Archie is a great success partially from its simplicity and use of
available mechanisms, and because it centralizes searchable informa-
tion. According to its developers, archie needs a more efficient consis-
tency maintenance protocol so that topics can be distributed across dif-
ferent servers. This will make archie more scalable and resilient.
Archie's developers also plan to build more elaborate indices and en-
able attribute-based searches.

446 P. B. Danzig, Shih-Hao Li, and K. Obraczka

3.2 The Wide Area Information Server

WAIS [9] is a full text information retrieval architecture whose clients

and servers communicate through an extension of the 239-50 standard

[10]. One server is distinguished as the directory of services, but it is
manually maintained.

WAIS clients can query the WAIS directory for relevant servers,

and query a subset of these for pertinent documents. WAIS servers

keep complete inverted indices of the documents they store, and exe-

cute full-text searches on them. In response to a query, a WAIS server

returns a list of relevant document descriptors which the client dis-
plays. WAIS clients support relevance feedback to help users refine

their queries. The client retrieves documents from the appropriate

servers and displays them for the user.

3.3 Gopher

The Internet gopher [1] both organizes and searches clistributed infor-
mation. Gopher organizes information hierarchicallyl, where interme-
diate nodes are directories or indices, and leaf nodes are documents.

The root of Gopher's hierarchy is stored on host rawBits.micro.-
umn.edu at the University of Minnesota. This is the default directory
retrieved by the gopher client when f,rst invoked.

Gopher objects are identified by their type, user-visible name,

server's host name and port number, and the object's absolute path

name within the server's file system. The user selects an object based

on its user-visible name, and the client retrieves it by constructing a
handle from the server's host name and port number and the object's
path name. Gopher's 'osearch servers" maintain full-text inverted in-
dices of subsets of the documents stored in a gopher server. They re-
turn to the client handles to documents that match a Boolean search

pattern. Gopher clients can retrieve objects from archie and WAIS.

3.4 World-Wide Web

The World-Wide Web, or WWW l4l, organizes data into a distributed

hypertext, where nodes are full-text objects, directory objects called

l. Actually, the gopher information space is a directed graph, since it allows cycles.

Distributed Indexing of Autonomous Internet Services 441

cover pages, and indices. WWW also supports full text search over
documents stored at a particular WWW server.

The WWW client provides users with a hypertext browsing inter-
face. Besides its native Hypeflext Transfer Protocol, WWW clients un-
derstand FTP archives, gopher servers, archie, and the network news
transfer protocol NNTP. HTTP allows document retrieval and full-text
searches. HTTP objects are identified by their protocol type, the cor-
responding server's name, and the path name of the file where the di-
rectory or full-text object is stored.

3.5 Prospero

The Prospero File System [12] lets users build customized views, or
virtual systems, of directories available throughout the Internet.

Views are essentially directories composed from various sources
including a user's own views and imported views from other users. A
user organizes his information space hierarchically, just like traditional
file systems. When a user finds an interesting object, the user can in-
clude it in his view by linking to it. The object may be a simple file or
a view. One special type of view is an index, which returns a direc-
tory of objects that satisfy some query. A view can be composed by
applying a filter against an existing view. Filters customize the target
view by reorganizing or extracting parts of it. Listing a Prospero view
requires a computation distributed across all of the nodes reachable by
transitive closure of all of the view's links, indices and f,lters.

Users advertise information by registering their virtual system with
the Prospero server administrator. The administrator creates a link to
the new virtual system in the master view of virtual systems, where
other users can see and navigate through it.

3.6 Other Discovery Tools

Besides the services described above, other prototyped discovery tools
include netfind, Semantic File Systems, and Nomenclator.2

Netfind [16] is a white-pages directory tool, which, given an Inter-
net user's name and organization, tries to locate available information

2. We would like suggestions from the editor on whether we should delete or shorten this
section.

448 P. B. Danzig, Shih-Hao Li, and K. Obraczka

about the user. A successful netfind query returns information like the
user's e-mail address and phone number. Netfind builds its indexing
database based on data scattered across a number of sources, such as

netnews messages, the Domain Name System, the Simple Mail Thans-

fer Protocol, and the finger utility. Among its advantages, we should
point out that netfind relies only on already available information and
mechanisms. However, netfind generates an average of 133 packets
per second.

The Semantic File System [6] integrates associative access into a
traditional tree-structured file system. Associative access is achieved
by providing file systems with an attribute extraction and query inter-
face. Attribute extraction is performed by filters called transducers.

Queries consist of boolean combinations of the desired attribute-value
pairs. Transducers and queries produce customized views of the file
system hierarchy called virtual directories, which help locate and orga-
nize information. A semantic file system research prototype has been
implemented on top of Sun NFS.

Nomenclator [4] implements attribute-based or yellow-page nam-
ing on top of hierarchical, white-page naming systems. A Nomenclator
access function is, in essence, a server that periodically traverses other
access functions and appropriate parts of the white-page name space,

and constructs an index of the objects encountered that satisfy certain
properties. The Nomenclator client uses a directory of services called
the active catalog to identify access functions pertinent to a user's
query.

4. Indexing Other Services

Indie can index the contents of non-Indie servers in two ways, depend-
ing on whether or not they actively cooperate. Non-Indie servers ac-

tively cooperate by calling the appropriate routines from Indie's gate-

way library. If they do not cooperate, Indie can index them by brute
force. We explore these approaches below.

As Figure 6 illustrates, both approaches require an Indie broker
modified to communicate with the non-Indie server. This broker
serves as a gateway for the non-Indie server. Gateways register them-
selves with Indie's directory of services to be visible to Indie brokers.
To the rest of Indie, a gateway broker is indistinguishable from an In-

Dístributed Indexing of Autonomous Internet Services 449

5 (/¡ o p F N gq (/
)

I Þ o l- Þ
) ã r ã Þ Õ N tf

F
ig

ur
e

6:
 T

lv
o

A
pp

ro
ac

he
s

to
 I

nt
er

op
er

ab
ili

ty
.

die broker. They forward additions and deletions, accept generator ob-
jects in their trigger table, and register themselves with the directory
of services.

Indie tries to preserve the autonomy of information providers by
not giving ownership of their data away. Consequently, gateways to
non-Indie servers describe the contents of objects available from the

underlying servers, but do not contain the actual document.

4.1 Cooperative Interoperabílity

Cooperative non-Indie servers call the gateway library routines to reg-

ister themselves with their gateway, create Indie object descriptors for
each of their objects, and forward these to their gateway. They main-
tain consistency by informing their gateway of new, modified, and

deleted objects.
Gateways periodically poll their non-Indie servers for updates.

Non-Indie servers create and timestamp Indie object descriptors for
their objects, and return changes to these object descriptors when their
gateway polls them. The consistency maintenance mechanism between
gateways and non-Indie servers is similar to the one between brokers.
When polling a non-Indie server, the gateway sends the timestamp

from its registration table entry associated with that server as part of
the poll request. The server returns a list of Indie descriptors of ob-
jects whose timestamps arp more recent. The gateway updates its reg-

istration table with the timestamp of the latest update. Recovery from
failure or partition also relies on timestamps, and is similar to the me-

dia recovery mechanism executed between peer brokers.
When a client requests the contents of a specific object stored in a

non-Indie server, the corresponding gateway retrieves the object from
the server and forwards it to the client.

4.1.1 Gateway Library Primitives

The gateway library consists of the following (principle) primitives:

Register (gateway, server) Registers a non-Indie server with its gate-

way. This call is issued by server, and causes its description to be in-
cluded in the gateway's registration table.

Distributed Indexing of Autonomous Internet Services 451

Unregister (gateway, server) Removes server from the gateway's
registration table. This call also causes the corresponding object de-
scriptors to be deleted from the gateway's database.

Oid [] =Poll (gateway, seryer' timestamp) Used by the gateway to
poll a non-Indie server for updates more recent than timestamp. Sew-
ers respond with a sequence of Add0 and DeleteQ calls.

Add (gateway, object descriptor) &

Delete (gateway, object descriptor) Adds or deletes obiect descriptor
from the gateway's database.

Get_Contents (gateway, server, object) Used by the gatewøy to ask

server for the contents of a particular object.

Send_Contents (gateway, object, contents) Sends the actual contents

of an objecr to its gateway.

4.1.2 FTP Archives-A Special Case

Indie's interfaces to FTP archives is a special case of a cooperative ap-

proach. FTP site administrators construct a file of object descriptors
for the directories or files they want to be visible to Indie (The de-

scriptor file looks like a Ldlex bib file). The FTP site administrator
sends the gateway's administrator the host name of the FTP archive

and the name of the descriptor file. The gateway's administrator enters

this information in the gateway's registration table (This procedure is

equivalent to the register O primitive mentioned above).

The gateway periodically spawns a process that polls the FTP
archives listed in its registration table, retrieves each site's descriptor
file, and compares it to a corresponding shadow version kept locally.
It detects additions, deletions, and modifications to object descriptors
in the descriptor files, and calls the gateway library to update the gate-

way accordingly. The gateway propagates appropriate changes to Indie
brokers registered with it (once residency times of new objects are

satisfied).
Indie brokers use this technique to load local data into their data-

bases (see the object_residesJocally value of the who_told_us field
in Figure 2).

452 P. B. Danzig, Shih-Hao Li, and K. Obraczka

4.2 Indexing by Brute Force

If a non-Indie Server does not cooperate, the Indie gateway must peri-
odically extract indexing information from the server using the server's
own protocols. Depending on the service, they do this by either query-
ing the server for new objects, querying the server for objects that
match keywords, or essentially performing a depth first search of the
server's information space. The gateway must assign Indie object de-
scriptors to these objects, identify additions, deletions, and changes to
the objects retrieved since the last poll, and apply the differences to its
database. Besides this brute force work, the gateway looks like any
other Indie broker.

Brute force interoperability is less efficient than active cooperation,
but requires no modiûcations from existing servers. We believe that
services like WAIS and archie can be indexed by brute force, and go-
pher and WWW servers can cooperate by implementing root level
'osearch servers". Of course, brute force polling should be infrequent
enough that the server and the communication network are not over-
loaded.

5. Implementation Details

This section overviews our implementation of Indie, identifies incom-
plete components of the system, and describes support for the direc-
tory of service's ranking function.

We built Indie atop a real memory database and set of communica-
tion primitives called DHT that were designed for an ongoing dis-
tributed hypertext project here at USC [13]. We chose DHT because

its creator agreed to support it rather than for reasons of design or
functionality. However, because Indie's database and interprocess
communication calls go through less than twenty DHT primitives, we
can easily incorporate a different storage manager and communication
library in future versions of Indie.

Indie's client user interface and broker administrator tool feel simi-
lar to goph¿r's terminal interface. Both tools are implemented with
the UNIX Curses library. The client tool displays both text and
Postscript, and understands UNIX directory listings and tar and com-
pressed file formats. The client tool looks to the user's environment

Distributed Indexing of Autonomous Internet Services 453

variables when selecting the pager program, text editor, and Postscript
previewer. The client includes a special mode for displaying hierarchi-
cal directory listings conveniently (This mode is similar to Apple Mac-
intosh's System 7's directory listing).

5.1 Ranking Functíon

Indie brokers and the directory of services currently employ a simple
tagged, inverted index of attribute values of object descriptors when
determining the set of objects and generators that'hit'. We also incor-
porated a subject index that we believe may help rank these hits.

Librarians classify books with the Dewey Decimal System, the Li-
brary of Congress Classification System, and the ACM's category and

subject descriptors. All of these schemes are hierarchically structured.
Figure 7 illustrates how we exploit the Library of Congress (or any
other) classification system when ranking brokers relevant to a user's
query.

A broker's generator object can contain a list of Library of Con-
gress ranges that describe the broker's desired contents. Figure 7 illus-
trates the Library of Congress ranges of three generators Gl, G2, and

G3. Gl, a generator for a gateway to a university library, has range

from A to Z. G2, a generator for a broker of math and astronomy
books, ranges from QA to QC. G3, a generator for a broker on com-
puter networks, has the two ranges Q476.6-Q477 and TK5000-
TK8000. The directory of services orders hits by the degree of over-
lap between the query and the broker's Library of Congress ranges.

For example, the query for Q476.64 returns the ordered list G3, G2,
Gl. Brokers that do not list their ranges are ranked last.

Indie employs a data structure called a segment tree [2] to imple-
ment this index. Using the subject index requires that the creators of
Indie brokers and gateways attach Library of Congress ranges to their
generators, and requires that users or their client programs tag their
queries with example Library of Congress numbers.

5.2 Future Work

At the time this was written, we are implementing a cooperative gate-

way to IVAIS, but currently use the gateway to FTP archives as the
principle mechanism to load Indie with data. The gateway to WAIS

454 P. B. Danzig, Shih-Hao Li, and K. Obraczka

Q
À

?6
.6

G
3

À L,
I

U
r

rK
80

00

ot
H

R
an

k
by

 R
el

ev
an

ce
 t

o
04

76
.6

4

F
þr

e
7:

 R
an

ki
ng

 f
un

ct
io

n
ba

se
d

on
 o

ve
rla

p
in

 c
la

ss
ifi

ca
tio

n.

uses the gateway library primitives, described above. Constructing the
gateway requires creating an Indie broker and carefully modifying the
WAIS server to call the gateway library in the appropriate place.

We have yet to test high degrees of replication for the directory of
services, stress Indie's DHT database with tens of thousands of items,
or gain sufficient experience with the gateway library. We have imme-
diate plans to build brute foce gateways to gopher, WWW, and the
USC library system. Given the gateway to the USC library, we will be
able to evaluate the usefulness of Indie's subject index. In the long
term, we would like to modify some existing X-window client into our
client and administrator tools.

6. Conclusions

Indie exploits the database notion of triggers and rules to build an ar-
chitecture that automatically clusters pointers to related information.
Similar to the way that network news reading programs and Gifford's
news clþing service [8] subscribe to particular data sources, the man-
ager of an Indie broker registers its interest with other applicable bro-
kers and gateways. Indie further exploits its rules and timestamped
based consistency algorithm to replicate data.

The Internet community widely uses half a dozen resource discov-
ery tools. V/hy do we need yet another? Indie offers functionality that
exists no where else. No one has yet addressed building a directory of
(discovery) services that all tools can use. Except for university re-
search prototypes, no tool automatically clusters or indexes related in-
formation from distributed repositories, and none do it as efficiently as

Indie. Users of distributed hypertext tools like WWW, Prospero, and
gopher need a service like Indie to identify documents to which they
should potentially link.

It is our hope that the concepts that motivated Indie will find their
way into other discovery systems.

Glossary

. Indie Broker: A database of references to objects stored

elsewhere.

456 P. B. Danzig, Shih-Hao Li, and K. Obraczka

. Directory of Services: The replicated database that stores the

generator objects of all Indie brokers and gateways.
. Generator Object: The description of an Indie broker or

gateway.
. Registration Table: Maintained by each Indie broker. Each entry

describes an Indie broker or gateway to which this broker may

subscribe.
. Trigger Table: Maintained by each Indie broker and gateway.

Contains the generator object of brokers that index this service.
. Non-Indie Service: Refers to any discovery service or primary

source of data such as a file, an FTP archive, a CD/ROM
database, or a library catalogue.

. DHT Distributed Hypertext Protocol used between system

components.
. Gateways: Indie brokers dedicated to interface to non-Indie

servers.
. Peer: If a broker indexes another broker, both are peers.

Distributed Indexing of Autonomous Internet Services 457

References

t1l R. Alberti, F. Anklesaria, P. Lindner, M. McCahill, and D. Torrey. The
Internet Gopher protocol: a distributed document search and retrieval
protocol. On-line documentation, Spring 1992.

[2] Jon Louis Bentley and Derick Wood. An optimal worst case algorithm
for reporting intersections of rectangles . IEEE Transactions on Com-
puters, 29(7):57 l-577, July, 1980.

[3] T. Berners-Lee, R. Cailliau, J-F. Groff, and B. Pollermann. World-Wide
rJ/eb: An information infrastructure for high-energy physics. Proceed-
ings of the Workshop on Software Engineering, Artificial Intelligence
and Expert Systems for High Energy and Nuclear Physics, January
1992.

[4] T. Berners-Lee, R. Cailliau, J-F. Groff, and B. Pollermann. World-Wide
Web: The information universe. Electronic Networking: Research, Ap-
plications and Policy, l(2), Spring 1992.

[5] Peter B. Danzig, Jong Suk Ahn, John Noll, and Katia Obraczka. Dis-
tributed indexing: A technique for scalable, distributed information re-
trieval systems. ACM SIGIR 91, pages 220-229, March, 1991.

[6] Mark A. Sheldon, David K. Gifford, Pierre Jouvelot and James W
O'Tolle Jr. Semantic file systems. Proceedings of the l3th ACM Sym-
posium on Operating Systems Principles, pages 16-25, October 1991.

[7] Alan Emtage and Peter Deutsch. archie: An electronic directory service
for the internet. Proceedings of the Winter 1992 Usenix Conference,
Ianuary 1992.

[8] David K. Gifford, Robert W. Baldwin, Stephen T. Berlin, and John M.
Lucassen. An architecture for large scale information systems. Pro-
ceedings of the l)th ACM Symposium on Operating Systems Principles,
19(5):161-171, December 1985.

[9] Brewster Khale and Art Medlar. An information system for corporate
users: Wide area information servers. ConneXions-Ihe Interoperabil-
ity Report,5(11), November 1991.

[10] Clifford A. Lynch. The 239-50 information retrieval protocol: An
overview and status report. ACM Computer Communication Review,
2l(l):58-70, 1991.

tlll B. Clifford Neuman. The virtual system model: A scalable approach to
organizing large systems: A thesis proposal. Technical Report TR-90-
05-01, University of Washington, Seattle, May 1990.

458 P. B. Danzig, Shih-Hao Li, and K. Obraczka

[I2] B. Clifford Neuman. Prospero: A tool for organizing internet resources.
Ele ct ronic Ne t w orkin g : Re s e qrc h, A pplic ations and Policy, 2(l),
Spring 1992.

[3] John Noll and Walt Scacchi. Integrating diverse information repositories:
A distributed hypertext approach. IEEE Computer,24(12):38-45, De-
cember 1991.

[4] Joan J. Ordille and Barton P. Miller. Nomenclator descriptive query op-
timization for large X.500 environments. ACM SIGCOMM 9l Confer-
ence, pages 185-196, September 1991.

[15] M. F. Schwartz, D. R. Hardy, V/. K. Heinzman, and G. Hirschowitz.
Supporting resource discovery among public internet archives using a
spectrum of information quality. Technical Report Technical Report
CU-CS-487-90, Department of Computer Science, University of Col-
orado, Boulder, Colorado, September 1990.

[16] Michael F. Schwartz. Experience with a semantically cognizant internet
white pages directory tool. Journal of Internetworking Research and
Experience, 1(2), December 1990.

[17] Michael Stonebraker and Lawrence A. Rowe et al. The postgres papers.
Technical report, UC Berkeley, June 25, 1987.

[submitted Jlune 25, 1992; accepted Aug. 6, 1992]

Permission to copy without fee all or part of this material is granted provided that the copies
are not made or distributed for direct commercial advantage, the Computing Systems copyright
notice and its date appear, and notice is given that copying is by permission of the Regents of
the University of California. To copy otherwise, or to republish, requires a fee and/or specific
permission. See inside front cover for details.

Distributed Indexíng ofAutonomous Internet Services 459

