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ABSTRACT: The ION Data Engine is a multþocessor
tasking system that provides data manipulation services
for collections of workstations or other conventional
computers. It is a back-end system, connecting to a
workstation via the Small Computer Systems Interface
(SCSÐ disk interface. ION appears to the workstation
as a large, high speed disk device, but with user
extensible characteristics. By mapping an application's
functionality into simple disk read and write accesses,
ION achieves a high degree of application portability,
while providing enhanced performance via dedicated
processors closely positioned to I/O devices and a
streamlined tasking system for device control.

The programming model for ION supports the
notion of separation of control function from data
transmission. Typically, a small list of data manþ-
lation directives is transmitted from the workstation to
the ION node, where data filtering or other forms of
processing occur. Only results, as opposed to all data,
need be returned to the workstation. In the extreme
case, the ION system can acquire all input data and
generate all output data, without any processing
occurring in the workstation. An example application
uses a simple set of directives to capture and digitize
high quality stereo audio, mix it to monaural, rate
adjust the digitized samples to ISDN rates, convert
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from binary to mulaw encoding, and transmit the result
to a workstation.

ION is being used as an experimental platform for
voice mail services in a userprogrammable telephone
switch prototype, and as a tool for measuring the I/O
performance of computer-disk interfaces. Applications
under development include an automated camera
positioning system and an object repository.

l. Introduction

The workstations that exploit the rapidly advancing state-of-the-art in
processor technology can often be a bane to developers of applications

that utilize dedicated special purpose hardware or that impose strict ac-

cess requirements on conventional hardware. Such evolving systems

can suffer from:

' Constantly porting hardware dependent components to new

hardware.
. Being locked into a particular vendor to avoid major hardware

disruptions.
. Forcing the use of high-end stations because entry-level stations

are not easily expandable.
. Constantly upgrading local workstation based device drivers to

coexist with operating system releases.
. Rding upon an operating system that is not appropriate for the

system's functionality.
. Insufûcient workstation capacity to support the hardware re-

quirements of the application.

Applications tied to obsolete processor technology will soon suffer

from comparative performance problems as newer workstation technol-
ogy passes it by. However, interfacing new workstations to an existing
hardware base is not simple. Initial workstation offerings often possess
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meager expansion characteristics, typically just a disk and network

connection, so achieving even the electrical connection can be

difficult.
Ideally, utilizing a new workstation should entail only simple re-

compilation of the application code; however, machine dependencies

that result from the use of special purpose hardware complicate a code

port. Workstation hardware may not be portable to different manufac-

turer's stations or even across a line of workstations from the same

vendor. This can lead to the loss of a significant hardware investment

as working components must be redesigned. Supporting multiple ver-
sions of hardware in order to preserve customer satisfaction with older
configurations can also be expensive. Even hardware common to mul-

tiple stations, which is currently possible since many stations now offer
VME bus interfaces, may still require device driver changes and must

also track operating system variations from release to release.

An additional problem of using special purpose hardware on a

conventional workstation is that the internal structure of the host oper-

ating system may not be conducive to the requirements of the hard-

ware. It may be preferable to model an application into subtasks, each

with its own flow of control; however, the relatively expensive context
switch time for a general purpose operating system may make such an

implementation infeasible for performance reasons. Also, the data

rates generated by some hardware may have a detrimental effect on

other functions in the workstation. In general, it is best to place com-
pute power as close as possible to the source of data, passing only re-

sults or preprocessed information on to higher levels in the system. In
this manner, devices requiring rapid response need not interfere with
time-sharing operations.

ION addresses these problems by partitioning an application into
hardware dependent and independent components, and providing a

vendor independent interface between the two. The hardware indepen-

dent components reside in the workstation, and are therefore easily

ported to new architectures. The hardware dependent components are

situated within a separate backplane-based environment, which is
portable in its entirety across workstation changes. The low level con-

nection between these components is the Small Computer Systems In-
terface (SCSD disk interface, ANSI X3.131. Since each workstation
accesses ION using its local disk system, which is a stable, well-
defined interface, there is no need to change vendor supplied host sys-
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Figure 1. An ION system. Multiple workstations connect to an ION node,
which contains single board computers and other peripheral interfaces and

devices. Each workstation views its ION connection as though it were a large

conventional disk drive.

tem software. Current SCSI perfofrnance capabilities also provide a

respectable (5 megabyte per second) data access rate.

ION configurations are expandable and sharable as needs dictate.

Additional single board computers (SBC's) in a backplane can connect

multiple workstations to the same set of hardware resources' or

provide extra CPU cycles for I/O devices or applications that require

it. Further expansion is possible by using bus repeaters and local area

networks to interconnect multiple ION nodes together. The basic

structure of an ION system is shown in Figure 1'

2. The ION Interface

A workstation sees ION as though it were physically a local disk drive
(an ION drive) with a data capacity of 2 terabytes (the SCSI limit).
Software running within the ION system mimics the behavior of a
conventional device, providing the workstation with a peripheral that
it knows how to deal with. The "data" contained in this pseudo-disk
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device can be random read/write data, traditional file system data, or
more complex objects for a variety of applications managed by tasks

running within the ION qystem. The latter is implemented by def,ning
application specific functions, called actions, that are enabled by read-

ing or writing specific disk block addresses within the ION drive.
For example, ION supports an analog to digital (A-to-D) conver-

sion application that provides voice messaging service for a prototype

telephone switch. The bulk of the application resides in a conventional
workstation, while the peripheral devices are located within ION. The

application's interface to the A-to-D converters is implemented as an

action defined on a set of 5 disk block addresses, each corresponding

to 1 of the 5 analog channels. The controlling program within the

workstation merely reads from one of these designated disk block ad-

dresses to obtain the converted data (lseek0 followed by read0 in the

Unix domain). By defining such interactions in terms of standard disk
read and write accesses, the application remains portable across work-
station changes, operating system releases, and to a large degree, com-
plete operating system changes (e.g., Unix to VMS), while preserving

any existing special purpose hardware investments.
A further advantage of the disk-like interface of ION is its robust-

ness in the face of application failure. Since ION mimics a local disk
drive, the worst case scenario for failure merely results in the apparent

symptom that the ION drive has gone into an offline condition equiv-

alent to a real drive losing power or spinning down. This should not
have any long lasting effect on the workstation and is remedied by re-
booting the ION system.

3. System Architecture

The hardware configuration of an ION node is shown in Figure 2. The

current ION configuration uses high speed Motorola 68030 micropro-
cessor based single board computers (SBC's). A port to an Intel 960

based product is underway, although the current system only deals

with homogeneous processors. These processors offer suff,cient power

for the current set of ION I/O devices and will be upgraded to faster

processors when more demanding peripherals are in use.
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Figure 2. An ION node. Each node contains a dedicated single board com-
puter (SBC) to manage each workstation interface. Other SBC's control local
storage, manage object repositories, control additional I/O devices, or run
application code.

An SBC is dedicated to each workstation connection, primarily be-

cause most hosts insist on using the same SCSI bus address. Each SBC

contains its own SCSI interface chip and DMA interface, and is capa-

ble of transferring data directly into its private memory without creat-

ing external (VME) bus activity. Additional disk interfaces are used to

control local node storage, which may consist of file system data or

application managed object repositories. Large buffer memory, on the

order of hundreds of megabytes, is used as a cache for physical device

data. A network interface (Ethernet) connects an ION node to other

hosts.

SCSI exploits the use of programmed intelligence within each

device on the bus, offloading many functions otherwise performed by

the host. It is the fastest common interface supported by a variety of
workstations. None of the design issues in ION are constrained to

SCSI, and the current version of the system uses Ethernet and serial

line interfaces for additional connectivity. Until better interfaces are

commonly available, SCSI provides the fastest, common, expansion in-
terface and has a defined next generation architecture offering

significantly higher performance (40 megabytes per second SCSI-2).

Additional details on SCSI can be found in the appendix.
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3.2 Software

ION is implemented as a fast tasking qystem, specifically designed to
support peripheral devices by adding flexible processing power to their
functioning, and then interfacing the enhanced device to other conven-
tional computers in an easy and portable manner. Modularity is

achieved by dedicating tasks to specific system functions, and passing

requests for service through client-server transactions on the same or
other ION processors.

All ION tasks are memory resident and execute with their own
flow of control. Although they share a common address space, tasks
typically do not share any data, relying instead on the fast communica-
tions mechanisms available in the system. Most tasks are simple filters
that read an input queue, process data, and pass results to an output
queue. Tasks are classified into 3 fixed priority groups: interrupt, nor-
mal, and background. V/ithin a group, tasks are non-preemptive and
run until completion or resource unavailability. Across groups, tasks
can be preempted, essentially allowing interrupt tasks to respond to
hardware as quickly as possible.

While state machines rather than multiple tasks are often used for
managing disk-like operations lzf, the recursive state machines neces-
sary for SCSI are difficult to design and enhance. Alternatively, as-
signing a task to the management of each individual workstation con-
nection and I/O device simplifies the coordination of multiple objects,
which in turn allows for easier parallelization of I/O activities. Individ-
ual SCSI tasks manage their own disconnect/reconnect behavior on the
SCSI bus on a device by device basis. The multiple flows of control
offered by the tasking system are useful for application as well as sys-

tem functions. Such operations as consistency management, network
control and routing, and recovery management are more easily de-
signed as separate tasks. Multiple processors fit naturally into such an
environment and provide needed power and responsiveness for han-
dling multiple powerful workstations and devices.

While acknowledging that multiple tasks can lead to a loss of per-
formance [3], ION alleviates this by exploiting certain characteristics
of its environment: With a single address space and no need for the
complete functionality of a general purpose operating system, many
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optimizations are possible. Tiask switching, event synchronization and

interrupt response time have been designed with minimal overhead.

Table 1 summarizes some of these characteristics for the 68030-based

system. The cost of using a tasking system over a conventional state

machine can be seen in some of the performance measurements pre-

sented in Section 6.

Null subroutine time
Intemrpt dispatch time.
Null intemrpt service time
Task switch
Event synchronization
Simple system call
Same processor null clienVserver interaction
Remote processor null clienVserver interaction

Täble l: ION system characteristic measurements.

Interrupt dispatch time is the delay between when an I/O device

signals its need for service and when its interrupt service routine is en-

tered. Null interrupt service time is the time needed to save and re-
store pre-interrupt state and increment a counter. The task switch time
measures the delay incurred when one task suspends and a second task
continues execution without any specific form of synchronization. It is
mostly the time required to save and restore 2 sets of the general pur-
pose registers of the 68030. Event synchronization time must be added

to the basic task switch time when 2 tasks qynchronize through the

data queueing and dequeueing primitives. A simple system call is simi-
lar in timing to the null interrupt time since much of the same func-
tionality must occur.

The null client/server interactions are essentially remote procedure

call (RPC) interfaces between cooperating tasks. When on the same

processor, this involves task-switching the receiving and sending tasks,
queueing and dequeueing the request and response data, and determin-
ing the location of the sending and receiving queues. When the RPC

crosses processor boundaries, the timing includes the single processor

case above plus interrupt latency for sending and receiving, and extra

I Frs

4ps
9ps

25ps
16p.s

8ps
105¡rs

l40ps
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interrupt processing necessary in the processor-to-processor commum-
cations functions. (A single interrupt indicates message reception from
multiple processors in the system, so a number of input sources must
be checked for the presence of a message.) This interprocessor com-
munication takes place over a shared backplane bus, and copying of
data can therefore be avoided. It should be noted that the processors

are essentially independent of each other they do not share tables or
other system data. All interactions occur by placing data in appropriate
queues.

The point of the above measurements is not that ION is the fastest

system around (it is not), but that a system constructed out of tradi-
tional piece parts and written in a high-level language is capable of
performance that encourages the application designer to use separate

independent tasks for services rather than constructing large complex
procedures. The 25:1 ratio between task switch time and null subrou-
tine execution is encouraging, but is still an order of magnitude higher
than desired. More favorable is the 3:1 ratio of task switch time com-
pared to a null, non-blocking system call, which indicates that the
overhead associated with a request for service is close to becoming in-
dependent of how that service is implemented. The 307o overhead of
the remote null-RPC over the local null-RPC is also encouraging, and
suggests that the location of a service need not be constrained by
closeness to its clients.

3.3 Internal ION System Servíces

The system primitives provided by ION fall into 5 categories:

Task contol: Create or destroy a flow of control. Thsks can be created
at interrupt time.

SCSI application interfoce: Defrne the set of disk block addresses

to which an ION application will respond, and the action function to
invoke when a workstation reads or writes a block from the set.

SCSI hardware interface.'Exchange data with the workstation
across the SCSI bus. Also, disconnect and reconnect from the bus to
improve bus utilization.

Message exchange and nsk synchronizatiorz.' Queue and dequeue

messages. This is also the only task synchronization facility available
in ION, essentially combining task activation with data availability.
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Figure 3. Data queueing model. Queues are used to pass data between tasks,

are of infinite length, and never block on a "queue put" operation' Queues
are the only mechanism for task synchronization in the system. Data flows in
a closed-loop path between tasks to control resource consumption.

Message buffer manipulatíon: Allocation and duplication of system

buffer memory. Three types are available: cached, uncached, and ex-

ternal bus (VME) memory. Cached memory is traditional system

memory that can be cached by the processor's memory system hard-

ware for faster access. Uncached memory is used for regions of local
memory that can be changed by I/O devices or external bus refer-
ences. This class of memory is necessary for SBC's that do not have

snooping caches. VME memory is the pool of external memory avail-

able for buffering large quantities of device data.

3.4 The Data Queueing Model

The queueing of data objects for task-to-task communication uses a

straight forward producer / consumer model as shown in Figure 3. The

queue structures do not contain space for the pointers to the queued

objects, but rather some space is claimed in the object for this pur-
pose. In this manner, queues are effectively of "infinite" length, where

any task capable of creating an object is guaranteed to have a place to
put it. Tasks never block placing data on a queue, but only by de-

queueing from an empty one.

ION places minimal structure on passed data: the data arc manipu-

lated by:

. list pointers used for queue linkage,

. a free-list pointer used when a buffer is no longer needed, and

226 Marc Pucci



. buffer length, data length, and data offset indicators used for
defining the amount of data within the object.

The data description is flexible enough to allow the expansion and
contraction of a data object without requiring recopying. The offset
and data length describe the location of data within the physical
buffer. As an object is passed through a set of tasks, data can be
added or removed from either end by adjusting these values within the
confines of the actual buffer size. Thus, for example, protocol layers

can add wrappers to data without extra copying.
The queue structures contain two optional activation procedures

that are invoked during queueing and dequeueing. Apør routine is
called after a data object has been placed on an empty queue. This
allows a hardware device, which is not being maintained by a task,
to "kick" the device in order to reactivate VO. The VO completion
intemrpt is used to maintain data flow when the device is active. A
get rotÍine is called before a dequeue operation on an empty queue.

This allows a "status queue" to be constructed which will return infor-
mation about an application as it exists immediately before the de-
queue operation.

3.5 Flow Control

Flow control is the mechanism used to control the rate at which data
moves about in a system. It prevents resource starvation by limiting
the activity of tasks that generate data too quickly for consuming tasks
to absorb. The conventional mechanism for flow control uses an upper
and lower limit on the number of elements that can be stored in a
queue (also known as a high and low-water mark). A process that at-

tempts to queue more than the upper limit will suspend execution. It
will be reactivated when consuming tasks reduce the number of ele-
ments below the lower limit for the queue. These two values add hys-
teresis and prevent the thrashing which can occur if a single maximum
were imposed on queue size.

Several complications exist with this scheme. Scheduling is im-
pacted because tasks can be suspended at queueing time, rather than
just dequeueing time. The ordering of queue operations cannot be
guaranteed across separate tasks since it is impossible to predict the
closeness of a queue to its high-watsr mark. The number of buffers in
use by a pipeJine of cooperating tasks will grow with the number of

Confgurable Data Manipulation ín an Atnched Multþrocessor 227



tasks. This can stress the stability of the system's buffering mecha-

nism. Finally, tasks must be designed with the understanding that

any given queue operation can cause task suspension, rather than the

more intuitive approach of suspension occurring only when data are

requested.

Because ION tasks do not block on queueing, flow control cannot

be implemented in this manner. Instead, closed-loop paths are estab-

lished that link together the original producer of data to the final con-

sumer as well as all intermediate tasks. The advantage of such a

scheme is that the maximum number of buffers that will be used by a

particular application is constant and can be preallocated. Also, a run-

ãway task *itt U" throttled back when it waits for a buffer to be re-

leasld by its last consumer. This scheme also permits trivial tuning of

the amount of read-ahead or pre-fetching that an application can per-

form, since this will be limited by the number of assigned buffers in

the pipe-line. Finally, the system does not waste time constantly per-

forming dynamic buffer allocation and deallocation, which can require

searching and coalescing of free space. Buffers remain in use until an

application terminates, and are then returned to the global memory

pool.

3.6 Specifying the Data Manipulation

DescriPtion

A data manþlation list is used to describe the interconnection of

tasks, define buffer allocations, and construct the closed-loop free-list

circuits. The syntax is similar to the Iio redirection of unix, except

that the outputs and inputs specify queues, not files, and can indicate

multiple inPuts or outPuts:

command argument<input-queuel input-queue2 "'
>output-queuel output-queue2'''

where a queue specification includes:

queue-name:free-list(number-of-buffers'size-of-buffer)

The command can identify a built-in generic task such as a mixing or

duplicating operation, or can specify hardware interfaces, which should

generate or accept data from the indicated queues. Thefreelist

Ipecification is uied to supply buffers to a task that must create data,

rather than simply modify existing data. The buffering details are op-
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Figure 4. Task connections for an audio mix application. The closed-loop
free-list connections are omitted for clarity, but feed into the atod and dup
tasks, and drain from the dtoa, mix and scsi tasks.

tional, and a default size and number exists for each hardware device.
Figure 4 illustrates a simple example of an application used to mix

a stereo source of analog data into a single stream, duplication of the
stream for 1) monitoring at a loudspeaker, and 2) mu-law compression
and output to a workstation by reading from an indicated SCSI I/O ad-

dress.

The ION description of this behavior is shown in Figure 5, and is
sent in a data buffer to a particular SCSI block address, placing it into
a corresponding input queue. A previously created task that awaits in-
put from that queue accepts the list, creates the tasks and buffers, and

activates all the I/O devices. Further instructions can be sent to tear
down the connections by disablingthe atod devices. This will cause an
end-of-file indication to pass through the system as tasks discover their
inputs have closed and in turn close their ouþuts. Further details on
the internal construction of a similar data manipulation can be found
in the example application section on analog to digital conversion.

mon¡tor
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Ø
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atod 0 > aJ(50)
atod 1 > b:f
mixab>c

-+ dupc>de:f
dtoa2<d
mulawce>g
scsi 32 < g

*@*@
Figure 5. Data manipulation description. A short sequence of instructions is
prepared by the workstation to configure the data acquisition tasks.
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4. Relationship to Other Systems

ION's tasking system is similar in scope to such minimal kernels as

Alpha [5], Arts [6], Chaos [7], Mach [8] Ra [9], Spring [10], Synthe-

sis [t1], V U2], and others. However, ION is specifically geared to-
wards supporting peripheral devices and then interfacing the resultant
modified, intelligent peripheral to other conventional computers in an

easy and portable manner. Most of these systems provide similar task

manipulation services and are optimized for low latency service re-
quests. Unlike the Spring kernel, ION does not support dynamic dead-

line guarantees for service [13], but uses a closed-loop control path

with a fixed number of preallocated buffers to control service by limit-
ing availability. This scheme prevents a task from using excessive ca-

pacity by restricting its rate of production to the rate of consumption,

while controlling the amount of read-ahead that can occur in an appli-
cation. Although ION requires the user to assign fixed scheduling pri-
orities to tasks, which is unnecessary in Spring, the use of 3 levels (in-
terrupt service, normal task service, and background service) and the

closed-loop buffer mechanism has proved sufficient for all applications

constructed to date.

The programming model of ION resembles a large-grain data flow
system [14] such as that used in Max [15]. It is also similar to the

Unix Streams package [16] although ION queues are not associated in
pairs, and the processing of queue data is done by the Unix equivalent

of a process rather than at interrupt time. The information flowing be-

tween stream queues is typed to indicate whether it contains data or
various forms of control, whereas ION information is untyped.

The notion of sending a configuration description for required data

processing to a remote site is similar to the NeFS protocol specifi-

cation [17] for remote file system access. This system has the advan-

tage of using an interpretor to avoid system dependencies, while ION
uses predefined generic services or compiledand-down-loaded modules

that necessitate a system reboot. The NeFS programs sent to a remote

host are intended to perform file system operations, possibly return
data, and then terminate. ION descriptions can be used to establish
perpetual data flow, or to set up transactions that are terminated by
subsequent requests.

Some of the features used in ION are now appearing in the com-
mercial marketplace. For example, an analog data capture device [18]
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is available which returns data to a user in a manner similar to that of
the voice messaging system described below. However, ION offers the
advantage of user programmability of the interfaces and device charac-
teristics. This leads to greater functionality and power located off the
host processor and in the peripheral device. ION can also accommo-
date multiple different devices within the same physical conûguration,
supporting data filtering operations that can reduce the amount of data
that passes through the workstation, thereby improving system
efficiency.

5. An Example Application-Analog
to Digital Conversion

ION provides the platform for analog to digital (A-to-D) services for a
voice messaging application of a prototype programmable telephone
switch system called GARDEN. It provides the physical interface to
readily available VME cards, and also provides additional processing
power to off-load the interrupt handling and data formatting necessary
for their operation. It has already provided protection against obsoles-
cence of the hardware investment, since the workstation running the
application has already been upgraded, without any impact on the I/O
component of the application software. Additionally, since the hard-
ware dependent A-to-D code remains within ION, no driver changes
to the host's operating system are necessary upon workstation upgrade.

The part of the A-to-D application that resides within ION is
structured around three cooperating tasks. One task is activated by pe-
riodic interrupts from the hardware and extracts the raw data from the
converter, placing it into a queue for temporary storage. Since the data
extraction is not done at interrupt time, less system activity occurs at a
high CPU priority level. The interrupt routine and the task share a
pair of queues and a token which is passed between the queues to co-
ordinate activity. This prevents the interrupt routine from reactivating
the task if the task has not completed its previous data extraction.

The second task is a generic system utility that translates 16-bit
linear data into 8-bit mu-law data, as required by this particular appli-
cation. It is essentially performing data compression on the input
stream.
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The third task interfaces to the SCSI bus and returns data to the

workstation when requested. This task defines a SCSI action function

which contains 4 block addresses for each of 5 A-to-D channels. Each

channel contains a block address to start conversion, stop conversion,

return status, and retrieve A-to-D data.

The part of the application that runs on the workstation requests

converted data in response to a start/stop signal from other system

hardware, which indicates the beginning and end of a recording ses-

sion. Upon start, the workstation reads the A-to-D start address for an

appropriate channel, activating the device. It then retrieves data by

reading the data block address for that channel, while also monitoring

for an end-of-session indication. When the latter occurs' the worksta-

tion reads the stop address, halting the data conversion. It continues to

read the data address until all buffered data have been obtained. The

channel is then available for reuse.

5.1 SCS/ Flow Control

An underrun condition occurs if the workstation requests data from a

channel without any data. At this point, two alternatives exist: The ap-

plication can suspend the host's I/O operation until data are available,

òr it can return immediately with some indication that the workstation

program should reattempt the data request at a later time. The former

approach results in a simpler form of data access, where flow control

can be extended into the host system by delaying the completion of I/
O operations issued by the host. The latter alternative is essentially

polling, which can be inefficient and decrease SCSI bus utilization.

However, waiting for the data to be available will tie up the worksta-

tion's channel into ION, making it impossible for other applications to

communicate over the scSI bus. (Only the IoN connection is af-

fected, other scsl devices are still accessible.) Hence, if only a single

connection to ION is required, the application can be designed to sus-

pend on data availability, while using a polling mechanism if multiple

connections are necessary. Both versions can be providing simulta-

neously by defining 2 action block addresses for data access-one

which delays host I/O completion, the other which returns a "poll

again" result. The host software would determine which block address

to use based on the number of connections in use.
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The problem of limited channels can be mitigated somewhat by us-
ing I of the 8 logical unit numbers (LUN's) defined by SCSI for sub-
device access, effectively giving 8 independent channels into ION.
However, not all workstations support multiple LUN's. The problem is
solved with SCSI-2, which includes a tagged command facility that al-
lows multiple outstanding commands to be issued to a single target
device. Both the workstation and the target are responsible for remem-
bering that multiple jobs are pending, and properþ coordinating the
returned information across the SCSI bus.

6. Using ION to Measure
Proce ssor-to -Disk I I O Perþrmance

Another application of ION is a measurement tool for studying the
SCSI interface performance of a computer system. Contrary to mea-
surement systems such as IOStone [19] and IOBench [20], which use
synthetic workloads as a basis, or trace driven studies that require sys-
tem modifications [21], these measurements are made from the per-
spective of the disk device, not the workstation, and therefore reflect
hardware capabilities, not software characteristics. Also, the procedure
used does not require any changes to the host systems. The data thus
captured can be used to optimize software performance within the op-
erating qystem or guide the design of data access routines in a sophisti-
cated user application.

The performance measurement system is deûned as an action over
alarge range of block addresses, corresponding to the "4" section of
a standard raw disk device partition table. The action function records
the time and type of SCSI state transitions, and the amount of data
transferred, and returns or accepts host data immediateþ. No interme-
diate SCSI disconnection occurs. From this information, throughput,
transfer rate and overhead calculations can be made. Measurements
were taken on 3 sample workstations, referred to as Systems A, B and
C.. Each workstation is connected to an ION system in an idle envi-

* The workstations employed in this exercise were selected for the sole purpose of illustrat-
ing this application of ION. The exercise was not intended as an exhaustive or sci-
entifrcally p-recise analysis of computer products. The results reported herein are merely
examples of results achieved and should not be considered as either positive or negativè
judgements about any product or vendor.

Configurable Data Manipulation in an Atøched Multíprocessor 233



ronment. For contrast, comparison to a second ION system is also

shown. Unless indicated otherwise, all measurements are taken using

instrumented code running only in the ION system and initiated

through the raw disk system interfaces provided by each workstation.

The timers used for each measurement are triggered by the inter-

rupts that correspond to phase changes of the scsl protocol (each

SCSI command can be composed of multiple instances of 6 types of

information exchanges called phases). Hence, such measurements are

not influenced by operating system overhead, which is subject to con-

siderable variation between vendors. The systems were operated in

the asynchronous SCSI data transfer mode, as this was the only mode

of operation common to all 3; only one workstation supported syn-

chronous transfers at the time of the experiments, which would im-

prove the relative performance of that station. However, data transfer

is only one part of the more complex SCSI command protocol. The

discussion measures performance in megabytes per second (mbs)' kilo-

bytes (kb) and milliseconds (ms).

6.1 IIO Transþr Rates

Figure 6 illustrates the data transfer rate of the 3 workstations and

ION. The abscissa is indexed in disk sectors of 512 bytes, which cor-

responds to the physical block size used on most scsl drives. Most

unix file qystem traffic occurs in 16 sector increments. This measure-

ment shows only data transfer rate, and does not include any addi-

tional SCSI command overhead. It is therefore indicative of the maxi-

mum performance attainable by each system. The expected profile of

these plots would be rapid increase in transfer rate up to the maximum

data rate, followed by steady performance. Instead it can be seen that

the rise is fairþ slow, indicating additional overhead in setting up the

DMA phases of the transfers. Also, the read plots indicate crossings in

the data rates at different transfer values, rather than a constant order-

ing from the slowest to the fastest system.

6.2 Command Overhead

Figure 7 illustrates the command overhead component of a data trans-

fer. These data are obtained by subtracting the data transfer time from

the command time. System C, ION and System A indicate the ex-
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pected overhead profile-an almost constant component of the overall
command. System B exhibits peculiar behavior between 2 and 16 sec-
tors, where the command overhead increases sharply and then flattens
out. We speculate that System B does not contain DMA control in the
SCSI data paths, but includes a FIFO (a hardware device used as a
temporary buffer for fast I/O data). When the FIFO reaches its capac-
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ity, it must be drained by a programmed copy loop executed by the

processor, thereby increasing the overhead associated with larger

transfers.

6.3 State Machínes v. Multiple Tasks

While the ION SCSI interface is the fastest of the systems shown, in

Figure 7, System C is consistently faster. The explanation involves the

diúerent methods in which the SCSI protocol is implemented in each

system. Most of the additional overhead for a transfer is caused by the

ptrur. changes (and their accompanying interrupts) in the scsl proto-

col. These changes can be handled more rapidly with a state machine

implementation (typical of most Unix systems) than by the multiple

tasks in use in the ION system. In a state machine, the phase transi-

tions can be controlled at interrupt time, while ION must incur the

overhead of task synchronization and task scheduling before the transi-

tion can occur.

7. A Memory-Based Pseudo-Disk

þplication

Another IoN application is to function as a pseudo-disk for analyzing

computer system behavior as disk technology changes. By defining

hardware disk characteristics in software, it is possible to use ION to

study the impact of new disk technology before it is commercially

avaiiable. When such an application is backed by sufficient buffer

memory in ION, actual file-system behavior, rather than simulation,

can be monitored.
Using software running within ION, the following attributes can

be controlled:

. Rotational latency

. Head Positioning time

. Tiansfer rate

' Sectors per track

' kacks per cylinder

In addition, the behavior of various caching strategies within a disk

drive can be studied for their affect on device throughput'
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7.1 A Zero Latency Disk

If the above parameters are adjusted for maximum performance, a
zero-latency pseudo-disk drive results. It is similar in effect to a mem-
ory based file system l22lin that physical I/O operations are replaced
by access to RAM memory. Three experiments were run to determine
the impact of such a device in a Unix environment: building the ION
source, copying a 2 megabyte ûle, and database-like accesses involv-
ing widely scattered I/O operations. The latter consisted of 4000 single
sector reads uniformly distributed over a disk partition of 32768 sec-
tors. All tests were conducted on an idle workstation. The pseudo-
disk experiments differed from the real disk case by moving all the
executable images, source files and temporary file storage onto the
pseudo-disk.

Operation Real System lmprovement

Build ION-Real Disk
Build lON-Pseudo-Disk
Copy File-Real Disk
Copy File-Pseudo-Disk
Random Access-Real Disk
Random Access-Pseudo-Disk

156.7

t26.6
11.5
7,2

67.7
8.1

81.2
81.0
0.0
0.0
0.1
0.1

28.2
27.7
r.6
1.6
4.2
2.7

1.2

1,6

8.4

Table 2. Real disk v. pseudo-disk performance. Time measured in
seconds.

The results indicate that this type of pseudo-disk is not very practi-
cal for single-user operations involving sequential file access. The
readahead/write-behind strategies employed in Unix work exception-
ally well when the CPU performs some processing of the data between
I/O accesses. A better improvement is seen when only minimal pro-
cessing occurs, as in the file copy. For random behavior, the pseudo-

disk is seen to behave significantly better than a conventional disk
drive. Further study is necessary to compare such results when multi-
ple users are involved, for example, on a file qystem server. When re-
quests for sequential file access occur from multiple sources, it is pos-

sible that the resultant behavior more closely resembles scattered
accesses as requests are intermixed.
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8. AvailabilitY

ION is available for experimental research use. Interested parties

should contact the author.

9. Conclusions and Future Work

ION is far from being a completed project. The qystem is evolving as

it accommodates additional peripheral devices and application func-

tions. IoN has proved to be a flexible tool for experimenting with new

hardware, r.próiuly given its nonintrusive (to the host workstation)

development environment.
There are several additional features that are necessary to improve

the utility of ION. Dynamic task definition, implemented either

through ân interpretor or by using down-loaded compiled code, would

simffi the devãlopment process. A graphical interface, instead of the

in-line description iungoug", would also be a more intuitive task and

queue description mechanism and would be less efror prone. work is

underway to construct an object repository for storing various size in-

termediate and long-lived data objects. It will be accessible from both

internal and external ION applications.

10. Appendix-What is SCSI?

SCSI, the Small Computer System Interface, is a protocol definition

for connecting procesiors, disk drives, printers and other devices. It is

a high-level interface that expects a significant amount of intelligence

within the controller associated with each device. This is in sharp con-

trast to other disk interfaces (e.g., SMD) where individual devices typ-

ically respond only to control signals, and all programmed intelligence

resides in the host controller. Up to 8 devices can exist on a single

scsl bus, each taking a fixed SCSI device identifier number. Most

hosts insist on being ãevice 7. Each device can be composed of up to 8

independent subdevices using a logical unit number (LUN) facility.

However, few devices and operating system implementations support

this feature. The maximum bus length is about 20 feet, although a dif-
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ferential bus specification also exists which permits a total bus length
of 80 feet.

I0.I SCff Devices, Commands and Phases

SCSI devices are typically classified as either initiators or targets, al-
though these roles need not be permanent. As the names imply, an
initiator (usually the host processor) starts an operation by arbitrating
for the SCSI bus and selecting atarget device (such as a disk drive) to
respond to its request. All further action is controlled by the target
device which indicates its intentions by changing the SCSI bus phase.

A facility known as disconnectlreconneu allows better utilization
of the SCSI bus. If a command involves a relatively long delay before
requested data will be available, the target can disconnect from the
SCSI bus, making it available for other targets, and reconnect when
the data are ready. Such delays are normally encountered during phys-
ical head repositioning on disk drives. The initiator informs the target
of its ability to accommodate this behavior during a message exchange
before the actual command begins.

Six phases are defined by the SCSI specification to coordinate
transmissions between the initiator and the target. The terminology of
in and out used below is always with respect to the initiator. All phase
changes are controlled by the target.

The target is requesting a multibyte command se-
quence that defines the desired operation.
The target is returning a single status byte to the ini-
tiator indicating the outcome of the command.

message in The target is sending a control message to the initia-
tor. Messages are transmitted to indicate parity error
detection, command completion and identification of
sub-units within a target.

message out The target is requesting a message from the initiator.
This phase is usually generated in response to a con-
trol signal (attention) asserted by the initiator.

command

status

data in

dan out

The target is instructing the initiator to begin accept-
ing data as a result of the command.
The target is requesting data from the initiator, as de-
scribed by the command.
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10.2 Whither SCSI?

The next generation of scSI, scsl-2, is a mostly upwards compatible

change with many optional SCSI-I commands and messages becoming

manJatory. The significant improvements involve the width of the

data path and the cycle time for each individual transfer on the bus.

SCSiI has an 8 bit data path with a minimum cycle time of 200

nanoseconds yielding a maximum throughput of 5 mbs. SCSI-2 can

use optional iecondary cables, providing 16 ot 32 bit transfers. In ad-

dition, the minimum transfer cycle time is reduced to 100 nanosec-

onds. Hence, the maximum throughput is 40 mbs. SCSI-2 peripherals

and controllers are beginning to appear on the marketplace'

scsl-2 also provides a mechanism for command queueing, where

an initiator can send multiple commands to a target, allowing it to ser-

vice these requests in a device specific optimal ordering. A further fea-

ture allows a target to inform an initiator of a change of condition,

even if the initiator does not have a command pending with the

device. This is instrumental in returning error conditions such as

device off-line which formerþ required polling of the target.
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