
Experience Developing the RP3
Operating Systeml

Ray Bryant, Hung-Yang Chang, Bryan Rosenburg

IBM Thomas J. Watson Research Center

ABSTRACT RP3, or Research Parallel Processing
Prototype, was the name given to the architecture of a
research vehicle for exploring the hardware and
software aspects of highly parallel computation. RP3
was a shared-memory machine designed to be scalable
to 512 processors; a 64 processor machine was in
operation for two and half years starting in October
1988. The operating system for RP3 was a version of
the Mach system from Carnegie Mellon University.
This paper discusses what we learned about developing
operating systems for shared-memory parallel machines
such as RP3 and includes recommendations on how we
feel such systems should and should not be structured.
rJy'e also evaluate the architectural features of RP3 from
the viewpoint of our use of the machine. Finally, we
include some recommendations for others who
endeavor to build similar prototype or product
machines.

L Supported in part by the Defense Advanced Research Projects Agency under Contract
Number N00039-87-C-0122 (Multi-processor System Architecture).

@ Computing Systems, Vol. 4 . No. 3 . Summer 1991 183

I. Introduction

The RP3 project of the IBM Research Division had as its goal the de-

velopment of a research vehicle for exploring all aspects of highly par-

allel computation. RP3 was a shared-memory machine designed to be

scalable to 512 processors; a 64-way machine was built and was in op-

eration from October 1988 through March 1991.

The authors of this paper were responsible for creating the operat-

ing system environment used to run programs on RP3. (The operating

system for RP3 was a version of Mach [2], which is a restructured ver-
sion of BSD 4.3 Unix.) The extensions we made to Mach to support

RP3 are described in [7] and will not be discussed in detail here. In-
stead, this paper summarizes our experience developing Mach/RP3 and

presents our views on how operating systems for highly parallel

shared-memory machines such as RP3 should be constructed, as well
as our experience in supporting and using this system for parallel pro-
cessing research.

In the following sections of this paper, we provide an overview of
the RP3 architecture and a brief history of the RP3 project. We then

discuss the lessons we feel we learned during the course of this project
and we make some recommendations to developers of similar ma-

chines.

2. RP3 Hardware Overview

Figure 1 illustrates the RP3 architecture. An RP3 machine could con-
sist of up to 512 processor memory elements or PME's. The prototype
hardware that was actually built, which we will refer to as RP3x, con-
sists of 64 PME's. Each PME included the following components:

184 R. Bryant, H. Chang, and B. Rosenburg

Figure 1: The RP3 Architecture

CPU The central processing unit, a 3}-bit RISC processor known
as the ROMP. The same processor was used in the original IBM RT
workstation.

FPU The floating point unit, similar to the floating point unit
found in second-generation IBM RT workstations. It used the Motorola
MC68881 floating point chip which implemenrs the IEEE floating
point standard.

I/O The I/O interface, which provided a connection to an IBM
PC/AT that served as an I/O and Support Processor, or ISp. Each ISp
was connected to 8 PME's and to an IBM System/37O mainframe.

MMU The memory management unit. The MMU supported a typ-
ical segment and page table address translation mechanism and in-
cluded a 64-entry, 2-way set-associative translation lookaside buffer
(rLB).

CACHE A 32-kilobyte, 2-way set-associative, real-address cache.
To allow cache lookup to proceed simultaneously with virtual address
translation, the RP3 page size was made equal to the cache set size of
16 kilobytes.

Experience Developing the RP3 Operating System 185

The memory controller. The memory controller examined each

memory request to determine whether it was for this PME (in which
case it was passed to the memory module) or a remote PME (in which
case it was passed to the switch). The top 9 bits of the address

specified the target PME.
A 1- to 8-megabyte memory module. (The 64-way prototype,

RP3x, was fully populated with 8-megabyte memory modules.) Note

that all memory in RP3 was packaged with the processors.

The performance measurement chip. This device included registers

that counted such things as instruction completions, cache hits and

misses, local and remote memory references, and TLB misses. It
could also periodically sample the switch response time.

All the PME's of an RP3 machine were connected by a multistage

interconnection network or switch. The switch, which was constructed

of water-cooled bipolar technology, had 64-bit data paths and a band-

width of roughly 14 megabytes/second per PME. All memory on RP3

was local to individual PME's but was accessible from any processor

in the machine. However, a performance penalty was incurred when

accessing remote memory. RP3x had an access time ratio of l:I2:20
between cache, local, and remote memory, assuming no network or
memory contention. The fact that not all memory in the system had

the same access time put RP3 in the class of nonuniþrm memory ac-

c¿ss or NUMA machines. Support of this NUMA architecture required

operating system extensions that are discussed in Ul.
To avoid potential memory bottlenecks, the RP3 memory manage-

ment unit supported the concept of software-controlled interleaved
memory. Addresses for interleaved memory underwent an additional
transformation after virtual to real address translation. The interleaving
transformation exchanged bits in the lowand highorder portions of the

real address (see Figure 2). Since the high-order bits of the address

specified the PME number, the effect of the interleaving transforma-

tion was to spread interleaved pages across memory modules in the

system, with adjacent doublewords being stored in different memory
modules. The number of bits interchanged (and hence the base Zloga-
rithm of the number of modules used) was specified by the interleave

amount in the page table. Figure 2 shows how the interleaving trans-

formation could be used to spread virtual pages across multiple
PME's.

186 R. Bryant, H. Chang, and B. Rosenburg

inrerreaveH

Absolute Address

PME O PMT 1 PUE Z PUE 3

Virtual Address Space Physical Storage

Figure 2: The RP3 interleaving transformation

Normally, all data used by more than one processor was stored
in interleaved memory. For this reason, interleaved memory is also
referred to as global memory. Local, or non-interleaved, memory is

referred to as sequential memory.
If enabled in the hardware, a one-to-one hashing transformation

was applied before the interleaving transformation. The hashing trans-
formation randomized sequential memory references as an additional
technique to minimize memory conflicts.

The RP3 hardware did not provide any mechanism for keeping
caches coherent between PME's; cache coherency had to be main-
tained in software. The cache was visible to application code in the
sense that user-mode instructions to invalidate the cache were pro-
vided. In addition, the page tables included cacheability information,
so that ranges of virtual addresses (on page boundaries) could be

speciûed as cacheable or non-cacheable. Since there was no page table
associated with real-mode memory access, all real-mode memory ac-

Real Address
0 89 19 A0 2A 29 3t

interleave
amount 0

interleave
amount 1

interleave
arnount 2

Experience Developing the RP3 Operating System I87

cesses on RP3 were non-cacheable references. Cacheable memory
could be further identified as marked daø. A single cache operation

could be used to invalidate all data in the cache that had been loaded

from virtual memory identified as marked data.

RP3 supported the fetch&add [10] operation (as well as fetch&or,
fetch&and, etc.) as the basic synchronization primitive.
Fetch&add.(location,value) is an atomic operation that returns the

contents of 'location' and then increments the contents of the location

by'value'.
Further details of the design of the RP3 PME and system organua-

tion can be found in [1] and [6]. RP3x, our working64-way proto-
type, differed from the published design in the following respects:

. The I/O and Support Processors, or ISP's, in RP3x were simple

IBM PC/AT's rather than the elaborate custom-built machines

described in the published RP3 design. Each PC/AT was con-
nected to 8 PME's and could access RP3 memory through its
PME's. Memory requests from an ISP were identical to requests

from a PME's own processor, so an ISP could address real or
virtual memory that was local, remote, or even interleaved. The
ISP-PME bandwidth was roughly 500 kilobytes/second and

could be dedicated to a single PME or multiplexed among

PME's. An ISP could raise an interrupt in any of its PME's,
and a PME could signal its ISP. The I/O hardware allowed such

a signal to interrupt the ISP, but our ISP software was syn-

chronous and periodically polled each PME's signal line.
In the original RP3 design, each ISP was to be directly con-

nected to devices such as disks and networks. In the imple-
mented design, the ISP's were channel-connected to a System/

370 mainframe which in turn could access a large collection of
disks and other devices. Bandwidth between an ISP and the

System/370 was roughly 3 megabytes/second. RP3 I/O requests

were passed from a PME to its ISP to the System/37O and back.
. The original RP3 design called for a combining switch tbat

would reduce memory and switch contention by merging

fetch&op operations when they collided at interior switch ele-
ments. The design could not be implemented in the technology
available at the time. RP3x supported the full range of

fetch&op' s, but the operations were serialized at individual
memory controllers and were not combined in the switch.

188 R. Bryant, H. Chang, and B. Rosenburg

The floating point processors in RP3x were based on a standard
Rf workstation floating point unit and incorporated Motorola
MC68881 floating point chips implementing the IEEE floating
point standard. The original RP3 design called for vector
floating point processors implementing the System/370 floating
point standard.
The RP3x cache system limited the PME clock rate to 7 MHz,
about a third of the originally projected rate. Furthermore, the
RP3x memory controller could support just one outstanding re-
quest to the memory subsystem at a time rather than the eight
outstanding requests it was designed to handle.
The RP3x memory management unit did not support hardware
reload of the translation lookaside buffer (TLB). \W'hen a pro-
cessor made a memory request to a virtual address that was not
mapped by the TLB, an exception was raised, and a software
exception handler had to explicitly load translation information
for the faulting address into the TLB.

3. History of RP3

Our experience with RP3 is closely related to its development history,
so it is useful to summarize the major milestones of this project. The
original idea that the IBM Research Division should attempt to build a

large parallel processor apparently originated with a task force led by
George Almasi during the winter of 1982-83. The earliest the name
iRPi was actually used appears to be in the fall of 1983, when a group
led by Greg Pfister began to design the RP3 architecture. In October
of 1984, the IBM Corporate Management Committee agreed to fund
the RP3 project.

With funding secured, the existing project team was expanded to
include a design automation group, a processor design group, a tech-
nology group (responsible for constructing the machine and coordinat-
ing production of parts with the IBM development divisions), and a
software development group. The software group initially concentrated
on the development of parallel applications. Since no parallel hardware
was available, the approach selected was to emulate a virtual parallel
processor under VM/370. This effort produced the EPEX [8] system,
and a significant library of applications were written using the EPEX
parallel programming extensions to Fortran.

Experience Developing the RP3 Operatíng System 189

Other significant technical milestones:
Dec. 1984 RP3 architecture frozen. With the exceptions noted

previously, this architecture was an accurate description of the 64-way
prototype, RP3x.

Aug. 1985 A set of papers on RP3 were published in the Proceed-
ings of the I 985 International Conference on Parqllel Proce ssing [1,6, I 6].

Dec. 1985 Power/mechanical frame completed and installed in lab.

Jun. 1986 Uniprocessor version of RP3 instruction-level simulator
completed.

Aug. 1986 First version of Mach on RP3 simulator completed.

Dec. 1986 First complete processor chip set assembled and tested.

Apr. 1987 Final-pass chip designs released to manufacturing.

Sep. 1987 EPEX environment ported to Mach/RL
Sep. 1987 First full PME with final-pass chips completed.

Sep. 1987 Multiprocessor version of RP3 instruction-level simula-
tor completed.

Oct. 1987 Mach/RP3 runs on first PME.
Nov. 1987 MachiRP3 runs on multiprocessor RP3 simulator.

Feb. 1988 Mach/RP3 runs on 2-processor hardware.

Jun. 1988 Mach and three EPEX test applications run on 4-proces-
sor hardware.

Aug. 1988 Mach and three EPEX test applications run on 8-pro-
cessor hardware.

Oct. 1988 64-processor prototype (RP3x) completed and turned
over to software team.

Nov. 1988 64-way application speedup experiments completed on
three EPEX test programs.

Feb. 1989 Mach/RP3 with cacheability control and interleaved
memory support completed.

Mar. 1989 Mach/RP3 with processor allocation primitives and lo-
cal memory support completed.

Jun. 1989 RP3x upgraded to include cache and PMC.

Jul. 1989 RP3x available to outside users via NSF net.

Mar. 1990 RP3x upgraded with floating point coprocessors. (Pre-

viously, all floating point operations were emulated in software.)
}4ar. I99l RP3x decommissioned.

A final historical note: all the authors of this paper joined the RP3

project after the initial design for the machine was complete. Thus we

are unable to comment on the design process that led to the RP3 ar-

chitecture, but only on the results of that process.

190 R. Bryant, H. Chang, and B. Rosenburg

4. Lessons Learned from RP3 Operating
Systems Development

We feel we learned a great deal during the years we were part of the
RP3 project, not only about the RP3 architecture itself, but also about
the art of programming such machines, and about the difficulty of
managing such a large research project. The rest of this paper presents

some of the things we learned, categorized roughly into three areas:

evaluations of specif,c RP3 architectural features, discussions of a vari-
ety of software development issues for such machines, and general
comments about large research projects and the future of sharedmem-
ory multiprocessing.

5. RP3 Architecture

5.1 Interleaved Memory

The RP3 programmable interleaving mechanism let us take advantage
of both the performance of local memory and the convenience of a
nearly uniform global shared memory. However, the mechanism was
too inflexible to be used easily in other than trivial ways.

Globally interleaved memory let us program an RP3 machine as a
true shared-memory multiprocessor. We were able to run RP3x using
a single copy of the kernel text and data; partitioning of kernel data
structures on a per-PME basis was not required. Furthermore, opti-
mizations such as copy-on-write and shared user text segments were
feasible in interleaved memory. Use of these optimizations in sequen-
tial memory could have resulted in intolerable memory contention.

Earþ versions of Mach/RP3 did not support interleaved memory.
All kernel text and static data resided in a single memory module, and
most application programs were small enough to fit in a few 16-
kilobyte pages. For these versions of the kernel, we found memory
and network contention to be significant, especially the contention
caused by instruction fetches. (In particular, instruction fetches from
the busy-wait loop in the kernel simple-lock routine caused kernel
startup on the 64-processor prototype to take an inordinate amount of
time.) Furthermore, text and read-only-data regions of related tasks
were shared copy-on-write. This optimization reduced memory usage

Experience Developing the RP3 Operating System l9l

and copying costs, but it caused severe contention for the memory
modules in which the resulting shared pages resided. Application
programmers found it necessary to artificially modify the read-only
regions of their programs to force them to be replicated.

These problems were alleviated when we restructured the Mach/
RP3 machine-dependent memory management subsystem to support
the RP3 interleaving mechanism. Without interleaving, we would have

been forced to replicate the kernel text to every processor and to dis-
able the Mach kernel optimizations that result in user-level memory
sharing, and we would have had to devote a considerable effort to par-
titioning the kernel data structures into PME-specific regions.

Our earþ memory contention problems were exacerbated by the

initial lack of processor caches in RP3x. Processor caches can alleviate
some of the contention caused by instruction fetches and accesses to
read-only or private data. Nevertheless, interleaving of non-cached

data structures was still important, and even for cached pages, inter-
leaving increased the bandwidth available for cache reload.

While globally interleaved memory was important on RP3, also

important was the ability to use local or non-interleaved memory. The
access time to local memory was half that to remote memory, even

without switch or remote memory contention. Without processor

caches, the use of local memory would have been absolutely critical.
With the write-through caches of RP3, the use of local memory was

important because it kept memory writes off the switch.
The RP3 programmable interleaving mechanism was important be-

cause it provided both globally interleaved and local memory, but we
found it was too inflexible to make intermediate interleaving levels

useful. The interleaving transformation could spread a virtual page

across a set of PME's smaller than the entire machine, but it could not
spread a virtual page across an arbitrary subset of the machine. The
interleave amount in the page table was the base 2 logarithm of the

number of memory modules used, and the page was interleaved across

a range of adjacent memory modules that began at some multiple of
that amount. For example, if the interleave amount was 4, the page

was spread across 16 consecutive memory modules, starting with PME
0, 16, 32,48, etc. These restrictions made it difficult to interleave
pages across just those processors allocated to a particular parallel ap-
plication. Furthermore, an interleaved page sliced across the real
memory of the machine and occupied part of a page frame in each

I92 R. Bryant, H. Chang, and B. Rosenburg

memory module. The rest of the memory in the affected page frames
could only be used in identically interleaved virtual pages. Supporting
variable interleave amounts would have made the allocation of real
memory a two-dimensional bin packing problem. Also, given the
presence of processor caches, it seemed most appropriate to use the
maximum interleave amount so as to make the maximum memory
bandwidth available for cache reload. For our purposes, a single page

table bit indicating whether a page was located in sequential memory
or was interleaved across the entire machine would have been

sufficient.
The variable interleave mechanism could have been used to stati-

cally partition an RP3 machine, an option we will discuss in a later
section.

5 .2 Software -Controlled Caches

Local caches proved to be critical to RP3 performance even though

the caches were not kept consistent across processors. However, the
potential for a software-controlled cache to be as efficient as a hard-
ware-controlled cache was not demonstrated by RP3.

Coherence was not an issue for pages that were used by just one

processor, or pages that were read-only. Cacheing such pages was

very important, even for applications that made heavy use of shared

read-write memory.
Nevertheless, the RP3 cache included features designed to let so-

phisticated applications explicitly manage cached, shared-writable

memory, but no compiler that could exploit the RP3 software-

controlled cache was ever completed. Without compiler support, cache

invalidation and software cache coherency were difficult to implement
efficiently. To ensure safety, hand-coded software cache coherency
schemes were forced to invalidate the cache too frequently and proces-

sor performance was dominated by cache cold-start effects. The RP3

"marked data" mechanism helped alleviate this problem but did not
eliminate it.

Experiments indicated that, even if RP3 had hardware cache-co-
herency, it would often have been advantageous to keep shared vari-
ables in non-cacheable memory. Shared data was often read once and

not reused quickly, and loading it into the cache could evict data that

Experience Developing the RP3 Operating System 193

could profitably have been retained. This effect was particularly severe
on RP3 because instructions and data shared a single cache.

The difficulty of dealing with RP3's non-coherent cache structure
led us to execute the Mach kernel code with instructions and stack in
cacheable memory, and all other data in non-cacheable memory. As a
result, kernel code executed half as fast as user code that placed all
data in cacheable memory. A hardware-coherent cache would have
allowed us to place all kernel data in cacheable memory. The per-
formance penalty for supporting a hardware-coherent cache would
probably have been no worse than the performance penalty we in-
curred due to data being non-cacheable. Furthermore, a hardware-
coherent cache would have allowed the use of the cache when the pro-
cessor was executing in real mode. On RP3, all real-mode accesses

were non-cacheable. While very little code on Mach/RP3 executed in
real mode, the performance penalty of executing in non-cacheable
mode was high and was one of the reasons we encountered significant
performance problems related to TLB thrashing (see below).

'We now believe multiprocessor architectures should support both
coherent and non-coherent modes of execution. The overhead of hard-
ware cache coherence protocols on highly-parallel machines may be
unacceptably high for some applications. Code (such as the Unix ker-
nel) that is too difficult to restructure to allow the use of software-level
cache coherency would be executed in coherent mode. Restructured
software that can gain from the reduced hardware overhead would ex-

ecute in non-coherent mode.

5.3 Perþrmance Monitor Chip

The RP3 performance monitor chip was an excellent facility for under-
standing RP3 system performance. It was also a relatively simple chip
to implement, since it was mostly made up of counters and interface
logic that let the processor read and reset the counters. The hard part
of the design was in identifying and routing the signals from other
parts of the PME to the PMC. In effect the PMC was a small per-
processor hardware monitor. \ile used the PMC to identify the TLB-
thrashing problem discussed below, to measure the latency of the
global memory in the presence of contention, to count local and
global mernory references, and to observe cache utilization. We thus

I94 R. Bryant, H. Chang, and B. Rosenburg

found the PMC to be crucial to the understanding of parallel system
and application performance on RP3x.

As processors are built of denser and denser integrated logic, it be-
comes more and more difficult to obtain this kind of information by
any other means. As integration densities continue to increase, it also
becomes more feasible to allocate a few circuits for performance mea-
surement. We therefore recommend that such instrumentation be in-
cluded as a standard part of future processors.

5.4 Software TLB Loading

TLB thrashing can be a problem for systems using software TLB
reload. On RP3, the translation lookaside buffer, or TLB, was a Z-way
set-associative cache of virtual to real address translations. As usual,
this cache was used to avoid the penalty of inspecting the page table
during each virtual address translation cycle. On the 64-way prototype,
TLB reload was performed in software at an expense of about 200 in-
structions per entry reloaded. Since these instructions had to be exe-
cuted in real mode, instructions and data were not cached and there-
fore a TLB reload required approximately 2 milliseconds processing
time. As a result, when TLB thrashing occured, it had a significant ef-
fect on program performance. This problem came to our attention
when a user informed us that a parallel loop of 8 instructions took
more than 100 times as long to execute on one of the 64 processors in
the system as on the others. Our initial guess was that the processor in
question had a hardware problem, but subsequent runs showed the
problem moved from processor to processor in the system. Through
use of the PMC we were able to determine that the slow processor
was taking an enormous number of TLB misses (and hence reloads). It
happened that the loop was so constructed that one of the 64 proces-
sors involved was trying to address instructions, local data, and global
data, all using the same TLB entry. Since the TLB is only 2-way set-

associative, each pass through the 8 instruction loop was causing three
TLB misses, expanding the effective size of the loop from 8 to over
600 instructions. In general, we would recommend at least a 4-way set-

associative TLB be used if software TLB reload is proposed for a par-
ticular machine.

Experience Developing the RP3 Operating System 195

5.5 Hot-Spot Contention

Hot spot contention, as defined in [16], was not a problem on RP3x.

Contrary to previous predictions of "hot-spots" on RP3, our measure-

ments showed insignificant delay due to hot-spot tree saturation on the

64-way prototype. In [18] Thomas reports that tree saturation is also

not a problem on the BBN Butterfly, because the Butterfly switch is
non-blocking. The RP3 switch is blocking, so for us the discrepancy

between prediction and measurement has a different explanation. The

original RP3 design, on which the tree saturation prediction was

based, allowed up to 8 outstanding memory requests per processor.

The RP3x prototype allowed only one outstanding request per PME.
This engineering change made RP3x a processorand memory-bound
machine, not a communicationbandwidth-bound machine.3 Indeed

RP3x could be regarded as a 64-processor machine with a 128-port
global memory. 64 of the ports were dedicated to the local processors,

leaving 64 ports to satisfy global memory requests. In order to avoid

saturating a memory module, the pattern of memory references thus

had to be nearþ uniform since there was no extra capacity available to
deal with an imbalance. In hindsight, it would have been better to
construct the machine with 256 or more ports to global memory so

that when the memory reference pattern was not completely uniform,
extra bandwidth would have been available to service the requests at

the more heavily-loaded memory modules.

6. Software Development

6.1 Functional Simulatíon

Timely development of the RP3 operating system would have been im-

possible without functional simulation of the RP3 architecture. Earþ
in the project we obtained an instruction-level simulator of the RI
workstation, and we were able to convert it first to a uniprocessor RP3

simulator and then to a multiprocessor simulator. The time invested in

this effort was considerable, but it was time well spent because it let us

develop system software well ahead of the hardware development

3. This change also eliminated the need for the RP3 fence-registers [6] and made RP3x a
serially consistent machine with respect to store order.

196 R. Bryant, H. Chang, and B. Rosenburg

schedule. The first version of Mach/RP3 was available under the RP3

simulator more than a year before the first prototype PME was com-
pleted. The Mach/RP3 kernel came to be regarded as the final archi-
tectural verification test for each new version of the prototype hard-

ware. rü/ithout the simulator, we would never have had the confidence

in the correctness of MachiRP3 to use the kernel for this purpose.

The RP3 PME development plan required the custom design of
several chips. Chip design "front loads" the processor development cy-

cle in the sense that for the first two-thirds of the development cycle

no prototype hardware is available. Once a set of correct chips has

been completed, production of the parallel machine occurs at an accel-

erated rate. For the RP3 project, the first functioning PME was avail-

able two years after the project started; RP3x was completed approxi-
mately one year later. Without the RP3 functional simulator, we

would probably not have completed the Mach/RP3 kernel until months

after RP3x was built. Using the simulator, we were able to verify not
only that the kernel was correct for the target architecture, but that the

applications would execute correctly as well. We were ready to exe-

cute kernel and applications code on the 4-, 8-, and 64-way machines

as soon as they were available. 'Without this abilitY, we would have

fallen far behind the accelerated hardware schedule during the last year

of the hardware development cycle.
Even if the PME design cycle had been much shorter, the simula-

tor would have been valuable because it provided a much more pro-
ductive development environment than any prototype hardware.

V/e found the conversion of a uniprocessor ROMP simulator to a
simulator of RP3 to be a detailed, but relatively straightforward pro-
cess. Aside from architectural changes between the ROMP and the

RP3 PME, the hardest part of the problem was simulating the multi-
processor. Rather than rewrite the simulator, we converted it to a par-

allel program by replicating the simulator code in multiple virtual ma-

chines under VM/370, and by using memory shared between the

virtual machines to represent RP3 memory. Since the simulator itself
was run on a multiprocessor System/370, we were able to find and

eliminate many multiprocessor timing bugs before the multiprocessor
RP3 hardware was available. If we had run the simulator on a unipro-
cessor system, interactions between simulated processors would have

been limited by VM/370 dispatching intervals, and we probably would
not have found as many timing bugs.

Experience Developing the RP3 Operating System I97

6.2 The Mach Operating System

The Mach system from CMU was an excellent starting point for the
RP3 operating system. The original plans for RP3 included a contract
with the Ultracomputer project at New York University for the devel-
opment of a Unix-compatible RP3 operating system based on the Ul-
tracomputer Symunix operating system [9]. For a variety of reasons,
our group chose to pursue Mach, first as an alternative, and then as

the primary operating system for RP3. The selection of Mach as the
basis for the RP3 operating system was a successful strategy for
the following reasons:

. It allowed us to use the same operating system on RI worksta-
tions, on ViNÍl370, and on RP3. These versions of Mach coop-
erated in supporting compilation, debugging, and testing of user
code on RP3. The same programming environments and com-
pilers executed under Mach/RT as under Mach/RP3, and users

were able to accomplish much of their debugging on Mach/Rf
before moving to the parallel machine.

. It enabled the rapid development of an initial uniprocessor RP3
operating system. Mach was designed to be portable and main-
tains a fairly clear separation of machine-independent from
machine-dependent code. Since RP3 used the same processor as

the RT workstation, porting Mach/Rf to a single RP3 PME was

straightforward. Uniprocessor MachiRP3 used not only the
machine-independent code from Mach/Rf but much of the
machine-dependent code as well. The bulk of the porting effort
involved memory management, because the RP3 and RI mem-
ory management units were radically different. Here again the
porting effort was aided by Mach's clear encapsulation of ma-
chine-dependent memory management code.

. It aided the transformation of the uniprocessor RP3 operating
system to a multiprocessor operating system. The machine-
independent Mach code was multiprocessor-capable to begin
with. We could concentrate on making the Rl-based machine-
dependent code multiprocessor-capable as well. In this effort we
were aided by the examples provided by existing Mach imple-
mentations for a variety of commercial multiprocessors.

198 R. Bryant, H. Chang, and B. Rosenburg

. It simplified the support of the RP3 memory architecture.
Changes for global and local memory support as well as for
user-level cacheability control were isolated in the machine-
dependent portion of the kernel.

Some disadvantages of using Mach were that

. Large parts of the Mach kernel we used were globally serial-
ized. This issue is discussed in more detail in the next section.

. Mach was not designed for NUMA multiprocessors. Adding
support for the RP3 NUMA architecture was a major effort, al-
beit an effort that was aided by the modular design of the Mach
memory management subsystem.

. Given the f,nal speed of the PME's in RP3x, and the single-user
mode in which it was normally used, the Mach/RP3 kernel was
more system than was actually required on RP3x. We did not
usually run RP3x as a time-sharing Unix system, so we did not
really need a full-function Unix system. It may have been more
appropriate to use a small run-time executive that implemented
the small set of system calls that our applications actually used.
The difficulty with this approach would have been choosing an
appropriate set of system calls. New calls might have been re-
quired as more and more applications were ported to the ma-
chine. However, for operating system researchers, Mach was
more interesting than a small run-time executive, and this factor
played a key role in our choosing Mach.

. Mach is a large system. Changes to the system often required
inspection of large portions of code that were irrelevant to the
problem at hand. A small kernel might have been easier to deal
with.

. Mach IPC on the Mach 2.0 kernel we ran was very expensive.
Mach IPC was used not only for communication between user
tasks, but also for communication between a user task and the
kernel, at least for Mach-specific kernel functions. IPC perfor-
mance has been improved in Mach 2.5 and subsequent releases,
but for our kernel a Mach system call was significantly more ex-
pensive than a BSD system call, and the difference was largely
due to IPC overhead.

Experience Developing the RP3 Operating System 199

6.3 Mach kernel serialization

We found it was not necessary to significantly restructure the Mach
kernel to achieve significant application-level parallelism for computa-

tion intensive workloads. Mach/RP3 was a version of Mach 2.0. The

true Mach portion of that kernel was parallel and symmetric, but the

kernel included a lot of BSD Unix code that essentially ran under a
single lock. That is, the Unix portion of the kernel was executed ex-

clusively by a single processor called the Unix Master. ^S/ave
proces-

sors ran user programs, Mach code, and trivial Unix system calls. All
other Unix system calls were implemented by suspending the calling
thread on the slave processor and rescheduling the thread on the mas-

ter processor.a Furthermore, because it was designed for more or less

generic multþocessors, the Mach kernel did not make significant use

of the sophisticated RP3 fetch&op synchronization primitives.
The NYU Symunix system was designed specifically to avoid these

limitations, but in our experience the problems \ryere not severe. We

were able to achieve 40-way speedups on the 64-way RP3x system

with relative ease. We attribute this success to the fact that our
workloads were usually engineering-scientif,c programs. A typical pro-
gram issued a number of system calls to create separate processes and

establish a common shared-memory region, but once it began its com-
putation, it issued relatively few system calls. (To some extent the

workload was artificial, since users knew that RP3x had limited I/O
bandwidth and hence did not run I/O intensive jobs on the machine.

Nonetheless, we feel it is a workload characteristic that such jobs issue

far fewer system calls per million instructions than a commercial
workload might.)

Originally, it was felt that more qystem restructuring would be nec-

essary for RP3. For example, we expected we would have to modify
the system dispatcher to use highly-parallel, non-blocking queue inser-

tion and deletion routines based onfetch&add U0l. However, we

never found the dispatcher on RP3x to be a signiûcant bottleneck, in
particular because our philosophy was to allocate processors to user

tasks and to let users do local scheduling. The system dispatcher was

4. A group at Encore parallelized much of the Unix code in later versions of Mach [5].
These changes were subsequently picked up by the Open Software Foundation and are a
part of the OSF/ I kernel.

200 R. Bryant, H. Chang, and B. Rosenburg

only used for idle processors and global threads that were not bound to
particular processors. The scheduling problem thus divided naturally
into two levels: system-level scheduling decisions that were made on a
job by job basis, and user-level decisions that were made on a thread
by thread basis. (A two-level scheduling mechanism of this flavor is
described in [a]). The intervals between system-level scheduler events

were on the order of many seconds to a few hours; user-level schedul-

ing events could occur as frequently as once every few hundred in-
structions. Thus the system-level scheduler was not a bottleneck and

did not need to we fetch&add algorithms. The user-level scheduler

was part of the application and if necessary could use afetch&add
queue in user space to reduce local scheduling overhead.

6.4 Architectural Compatibility

The RP3 software development effort benefited greatly from the pro-
cessor and operating system compatibility between RP3 and the RI
workstation, but there were pitfalls. On the plus side, this compatibil-
ity let us use essentially all the Mach/RI utility commands (sh, ps, ed,

etc.) on RP3 without recompiling. We could concentrate on those ar-
eas of the system that had to be modified. We were also able to adapt
and use the kernel debugger from Mach/RT as the kernel debugger
for RP3.

We were very successful in using Mach/RT tools for program de-

velopment on RP3. The compilers we used on a routine basis were the
same ones we used on Mach/RI. (These compilers, in turn came from
IBM's AOS 4.3 for the RT system.) Differences between Mach/RI and

Mach/RP3 were encapsulated in library routines. (For example, a sub-

routine on the RT emulates the RP3 fetch&add operation using the RI
test&set instruction.) Application programs compiled for the RI could
be relinked to execute on RP3x. We were able to test user code on
Mach/RI and then move it to RP3x for execution with relative ease.

Our efforts were both aided and complicated by the fact that a va-

riety of floating point hardware options (including "no floating point
hardware.") were available on the RI workstation. RT compilers did
not generate native machine code for floating point hardware, but in-
stead generated floating point pseudo-code. The pseudo-code was

translated at runtime to native code appropriate for the floating point

Experience Developíng the RP3 Operating System 201

hardware actually found on the host machine. If the host machine had

no floating point hardware, the pseudo-code was simply interpreted at

runtime. This floating point emulation mode let us develop real RP3

applications long before floating point hardware was available on
RP3x.

However, we quickly discovered that the floating point emulator
maintained a simulated floating point register set at a fixed location in
a process's address space, and that the emulation was therefore incor-
rect for applications with multiple threads sharing an address space.

The problem existed on the RT, but it did not show up until we delib-
erately disabled the floating point hardware on our workstations. On
RP3 machines, including the RP3 simulator, the problem showed up

immediatd. We had to change the emulation code to maintain
perthread simulated register sets.

When floating point hardware was finally installed in RP3x, the

runtime translation of floating point pseudo-code became a serial bot-

tleneck. The translation was performed the first time a particular

floating point operation was encountered during execution. Conversion

involved replacing the pseudo-code sequence with compiled instruc-
tions appropriate for the floating point hardware. In a multithreaded
application, the second and succeeding threads that hit a particular
floating point operation had to wait while the first thread translated the

pseudo-code. Furthermore, the compiler sometimes did not reserve

enough data space to hold the translated code sequence, at which point
the floating point code generator called malloc to dynamically allocate

space for the generated instructions. The malloc could require a qystem

call, seriously affecting application performance. This problem was

particularly severe for non-threaded applications that forked lots of
separate processes, because the multiple qystem calls from independent

processes could interfere with each other in the kernel.

A final problem with runtime floating point code generation was

that the generated code ended up in the read-write data segment of the
program rather than in the read-only code segment. Parallel programs

could not easily cache read-write data, so for the most part, parallel
programs wound up fetching floating point instructions from memory

rather than from cache.

Two incompatibilities between the RT and RP3 environments

caused us some headaches. First, while Mach/RP3 shared most

system software with Mach/RI, it shared filesystems with Mach/370.

2O2 R. Bryant, H. Chang, and B. Rosenburg

The problem was that Mach/370, and therefore Mach/RP3, used a
filesystem block size of 1024 bytes, while Mach/M used a 5I2-byte
block size. Certain utility programs, namely ls and fsck, were com-
piled for a particular block size. These programs had to be recompiled
for RP3. The problem with ls was subtle. The program never actually
failed, but sometimes it would not display some of the files in large
directories.

Finally, the original design of the RP3 switch did not support the
ROMP partial-w ord - store instructions (store - byte and store - hnlf-w ord) .

If a processor encountered such an instruction, it would raise a pro-
gram exception. The plan was to avoid all such instructions by using a

new compiler. This proposed compiler never materialized. Instead we
had to resort to post-processing the assembly language ouþut of our
C-compiler. In this manner we avoided partial-word-stores in the ker-
nel itself and in application code that could be recompiled. To avoid
having to recompile all user commands, we wrote a program exception
handler to emulate the partial-word-store instructions encountered in
user mode. This emulator had the following disadvantages:

. It could not be made to execute both efficiently and correctly on
a multiprocessor. A lock was required to prevent simultaneous
updates to different bytes of the same word.

. It was extremely slow.

. It required emulation of not only the partial-word-store instruc-
tions themselves, but also of those delayed-bra¿cl¿ instructions
that contained a partial-word-store instruction in the delay slot.

Using the RP3 simulator to demonstrate the software overhead of
partial-word-store emulation, we convinced the hardware designers to
change the switch design to support these instructions. In general, if
compatibility with an existing system is a goal, it is extremely impor-
tant to identify and match all the features of the existing system that
are commonly used. It is a mistake to depend on a compiler or other
sophisticated system software to gloss over inconsistencies.

6.5 Large -Scale Multiproce,uor,s

'We found that a 64-processor machine was much different from a 4-or
8-processor machine. A similar observation concerning the BBN But-
terfly was made in [12]. We learned this lesson in October 1988 when

Experience Developing the RP3 Operating System 203

we first tried to boot our kernel on the 64-processor machine. Before

this, we had successfully run our kernel and a small set of applications

on the 4-way and 8-way prototypes, and had booted the kernel under a

64-processor version of the RP3 functional simulator. On the 4-way

and 8-way machines, it took only a few day's effort, once the hard-

ware was available, to get our kernel and application suite running.

(This success, of course, depended on much previous work with the

simulator and with land 2-way versions of the hardware.) We did

not encounter new timing bugs in the kernel when moving from the

2-processor to the 4- or 8-processor Systems, and reasonable kernel

startup times and application speedups were easily achieved. However,

when we attempted to bring up the 64-way kernel, we found to our

surprise that:

. New timing bugs appeared (the kernel would not boot reliably).

. Kernel startup time had expanded to an unacceptable 2.5 hours!

Of course, we knew that the kernel we were using at that time was

far from optimal (it did not use interleaved memofy, for example) but

we were surprised nonetheless by the disparity between the kernel

startup times for the 8-way and 64-way machines. Eventually we were

able to reduce the kernel startup time to about 8 minutes by reducing

network contention due to spin locks, by placing the kernel in inter-

leaved memory, and by exploiting the processor caches on RP3x.

6.6 Processor Allocation

Thaditional ideas of processor allocation and system control do not
necessarily apply in the shared-memory parallel-processing arena. In

[15], Pancake and Bergmark note the discrepancy between the ap-

proach to parallel programming taken by computer scientists and that
taken by computational scientists. We encountered this distinction
when we first started work on the RP3 operating system. We were
somewhat shocked by the attitude of the (potential) RP3 user commu-
nity toward operating systems and operating system scheduling. Instead

of regarding the operating system as a convenient environment for par-

allel programs, some of our users regarded the system as an adversary

bent on denying them direct access to the hardware.

For example, in our view the operating system had the right to sus-

pend any process at any time based on the operating system's concept

204 R. Bryant, H. Chang, and B. Rosenburg

of the importance of that process. Our users explained to us, patiently,
repeatedly, determinedly, and when necessary, vehemently, that this
approach wreaked havoc with parallel programming models that did
their own processor allocation. For example, in the EPEX model of
computation, the program determined the number of processors avail-
able to the job and divided FORIRAN DO-loops across the available
processors. Each processor was assigned a subset of the DO-loop in-
dices for execution. Subsequently, a BARRIER statement was used to
ensure that all loop instances were complete. Since it was assumed

that the computation had been divided equally among the processors,

the BARRIER was implemented using spin locks rather than suspend

locks. Each processor was represented in the EPEX program as a sepa-

rate Unix process. If the operating system were to suspend one of
these processes after the parallel Do-loop has started, the remaining
processors would loop endlessly when they reached the BARRIER
statement, waiting for the last processor to complete its part of the
computation.

Similarþ, a job might only be able to adapt to a change in the
number of processors at certain points in its execution. EPEX pro-
grams could not adjust to a change in the number of processors during
execution of a parallel DO -loop. Only before the loop started or after
it completed could the number of processors be changed. Even then,
the allocation of additional processors required the creation of addi-
tional Unix address spaces in the EPEX application. The only realistic
approach for the EPEX model was to statically allocate processors to
the program when it began executing. This strategy, of course,
conflicted with the ability of the system to run other jobs, to service

interrupts, or to multiprogram the system, none of which were of in-
terest to our users.

Since a significant number of applications for RP3 had already
been written for the EPEX model of computation, we could not afford
to simply ignore these concerns. Instead, we developed the concept of
family schedulinglTl which corresponds to the ideas of gang scheduling
or co-schedulingfI4], With the family scheduler extensions, the Mach/
RP3 qystem would never suspend individual processes in a parallel
program, but it could, if necessary, reclaim processors from a family
by suspending the entire family.

We believe the family scheduler was an acceptable compromise be-
tween our users' needs and the requirements of the operating system to

Experience Developing the RP3 Operating System 205

perform global scheduling. The EPEX run-time library was enhanced

to use the family scheduling primitives on RP3 and the PTRAN [3]
compiler, an automatic parallelizing compiler for FORIRAN, also

used the family scheduling primitives. In the end, however, the facili-
ties of the family scheduler were largely underutilized, because most

users prefered to run applications on RP3x in a single-user-at-a-time

mode in order to obtain repeatable execution times.

6.7 Perþrmance Consistency

Obtaining consistent and repeatable performance measurements was a

problem for us on RP3x. Our users were primarily interested in study-

ing parallel algorithm speedup. This task was difficult if individual
timing runs were not repeatable. Variations in execution time from one

run to the next could be caused by a variety of factors.

On RP3, multiple jobs executing simultaneously could interfere
with each other even if there were enough processing resources to sat-

isfy all of their requirements. Contention for memory bandwidth, for
processing time on the Unix master processor, and for I/O bandwidth
could degrade the performance of even well-behaved programs. Most
jobs were therefore run on the machine in a single-user-at-a-time

mode.
Even on an otherwise idle machine, however, execution times

could vary from one run to the next. Of course, the variance could be

due to gross non-determinism in a true parallel program, but even sub-

tle non-determinism could affect performance. In successive runs a
given processor might execute exactly the same sequence of operations

but on different regions of a shared data structure. Even if the data

structure were laid out uniformly in interleaved memory, operations

against different regions might result in different remote access pat-

terns, and consequently in different levels of network and memory

contention.
Variations in the execution times of completely deterministic appli-

cations could be due to non-deterministic placement of kernel data

structures associated with the application. For example, process con-

text blocks and per-process kernel stack segments were dynamically

allocated when an application started. These structures might therefore

reside at different kernel virtual addresses from one run to the next,

and consequently might be spread across different sets of PME's. This

206 R. Bryant, H. Chang, and B. Rosenburg

problem was usually not severe for computation-intensive applications,
although clock-interrupt overhead was occasionally increased because

of a particularly unfortunate placement of a kernel data structure.
Our users learned to make sure the same version of the operating

system kernel was used for an entire sequence of timing runs. Thivial
changes to the Mach/RP3 kernel could cause timing differences in user

applications, because the kernel itself was located in interleaved mem-

ory. Small changes in the kernel could shift key data structures in
such a way that imbalances in memory reference patterns could appear
(or disappear). Unfortunately, even simple bug fixes could change the
layout of memory. In one case, a 5O-byte change in initialization code
(only executed at boot time!) dramatically changed key performance

measures of a particular user program.
A final point concerns the RP3 address hashing mechanism. With

hashing disabled, the PME location of a particular double-word of an

interleaved page was determined solely by the word's virtual address.

V/ith hashing enabled, the location was a function of both the virtual
and real addresses of the double-word. Applications could explicitly
control the virtual addresses they used, but they had no control over
(or even knowledge of) the real addresses they used. In repeated runs
of a program, real memory addresses of the user's virtual pages would
change, and hence remote access patterns would change from one run
to the next, even if the application made deterministic use of its vir-
tual address space.

6.8 Static Partitioning

We found that multistage interconnection networks do not lend them-
selves to construction of traditional multi-user machines. As men-

tioned above, we usually ran RP3x in a single-user-at-a-time mode.

Given our application set and user community we would suggest that

designers of other machines with memory hierarchies implemented by
multi-stage interconnection networks not attempt to run the system

with a single kernel, but instead adopt a partitioning approach similar
to that proposed for TRAC [17].

On RP3, we could have used the variable interleave amount to
statically partition an RP3 machine into sub-machines on power-of-
two boundaries. To keep partitions from interfering with each other,

Experience Developing the RP3 Operating System 207

each partition could have been given its own copy of the kernel, with
each page in a partition being either a sequential page or a page inter-
leaved across the entire partition. The machine would have been effec-
tively split into distinct sub-machines as far as the switch and memory
were concerned. Assuming that the I/O system were reconfigured to
split along similar lines, this partitioning would have given users ap-
propriately sized machines, with strong guarantees of repeatable per-
formance and non-interference from other users.

Such a static partitioning scheme would have required a control-
ling system to run outside of RP3 itself. A natural place to run this
system would have been the I/O and Support Processors or ISP's in
the system since these machines already supported system start-up. \ù/e

did not pursue this approach because the software to do so would have

been complex and would have had to run in the primitive environment
of the RP3x ISP's. However, this approach would probably have been

a better match to both our users' needs and to the memory and pro-
cessor structure of the machine. It would certainly have improved pro-
cessor utilization over our single-user mode of operation, since a sin-
gleuser job that used only a few processors left most of the machine
idle.

6.9 NUMA Programming

NUMA machines (like RP3) share the advantages and disadvantages

of both tightly-coupled and distributed multiprocessors. On a message-

passing machine, a serial program must usually be significantly re-
structured before it can even be loaded onto the parallel machine. The
primary advantage of the shared-memory parallel processing approach

is that it is relatively easy to get an existing, serial program to work in
the parallel environment, and on RP3 we found this to be the case.

Transformation of serial programs to the EPEX environment was rela-

tively straightforward [8], and once an application ran under EPEX on

the RT, it was a simple process to move it to RP3.

However, even though the program would run correctly on R.P3

with relatively little restructuring, achieving the maximum available

speedup usually required significant program restructuring. Multipro-

208 R. Bryant, H. Chang, and B. Rosenburg

cessor speedup could be limited unless one used such RP3 features as

local and cacheable memory.
For programs in the EPEX style, code and private data were repli-

cated to each address space and thus could be placed in local and

cacheable memory by the language run-time. With this optimization
speedups in the 40's could be attained on the 64-processor machine
with relative ease. To improve the speedup, additional code restructur-
ing was required.

For example, one of our colleagues (Doug Kimelman) obtained
a speedup of 57 on 64 processors for a parallel implementation of a
prime number counting program based on the sieve technique. To

achieve this speedup he had to:

. divide the sieve space up into 64 subranges.

. place each subrange in local memory on a processor.

. execute separate sieve algorithms on each processor.

. lu;se fetch&add to accumulate the number of primes found in the
subrange into the total number of primes found.

Exactly this kind of program repartitioning would also have al-
lowed the sieve algorithm to work well on a message-passing machine.

The point is that in order to get good speedups on any kind of
finegrain, highly-parallel computation, one must concentrate on parti-
tioning the data in such a way as to minimize data movement and in-
terprocessor synchronization. This statement is true for both shared-
memory and message-passing architectures. On RP3, it is our belief
that while it was easy to convert serial code to parallel code and to get
it to execute correctly, obtaining maximum speedups required the
same kind of restructuring that would be required to get the program
to execute on a message-passing machine. We still feel that the overall
effort was smaller on RP3 than on a message-passing machine, be-

cause the existence of shared memory let the programmer concentrate
on restructuring only those parts of the program that were critical for
good parallel performance. Distributed shared memory systems such as

that of Kai Li [13] may alleviate this disadvantage of messagepassing

systems, but the amount of restructuring required to achieve a given
level of performance will still be greater on such systems than on true
shared-memory systems because the penalties for non-local memory
access are so much greater.

Experience Developing the RP3 Operating System 209

7 . Large-Project Management

7.1 Design Restraint

The RP3 project as a whole suffered because the initial design was not
focused tightly enough on the architectural features that made RP3 in-
teresting. In our opinion, those features were the switch, the memory
management unit, and the cache. The project invested a lot of effort in
those features, but it also devoted a lot of time and money to the de-
sign and implementation of an experimental ISP (I/O and Support
Processor) and of a floating point coprocessor based on a System/370
vector unit. Even if these efforts had been successful, the additional
features would not have made the machine significantly more interest-
ing, because it was really the memory subsystem that distinguished
RP3 from other multiprocessors.

We are not saying the experimental ISP was not an interesting re-
search project in its own right. The point is that it was experimental
and therefore risky, and the overall project could not afford to take
risks in areas unrelated to the truly novel aspects of the architecture.
UO is important, and when the experimental ISP was abandoned, we
were left with an ad hoc I/O architecture that, in its "enhanced" ver-
sion, achieved the unimpressive per-ISP bandwidth of about 500
kilobytes/second. This small bandwidth limited our ability to experi-
ment with performance visualization [11] , to study seismic al-
gorithms, and to run graphics applications on RP3, and it limited the
speed of routine interaction with RP3x. The project would have been

more successful if part of the effort that went into the original ISP had
instead been devoted to the implementation of a reasonable, if unspec-
tacular, interface to a standard I/O subsystem.

The floating point story is similar. Instead of borrowing one of the
floating point hardware implementations from the RI workstation, the
initial RP3 PME design incorporated a vector floating point unit from
a midrange System/37O. The design was experimental, because no one

had before tried to marry a ROMP processor to a System/370 floating
point engine. Furthermore, use of the vector unit presupposed the
completion of a new compiler capable of generating appropriate float-
ing point code. (The same compiler was supposed to solve the partial-
word-store problem.) The effort required to complete the vector hard-

2lO R. Bryant, H. Chang, and B. Rosenburg

ware and the supporting compiler was seriously underestimated, and

neither was ever completed. As a result, RP3x was without floating
point hardware of any kind for ayear and a half, a factor that con-
tributed greatly to the disillusionment of our potential user community.

A late effort to retrofit an Rl-compatible floating point coprocessor

into the initial PME design was straightforward and successful, and it
increased the speed of typical compiled floating point code by a factor
of 40, compared with software floating point emulation. As with I/O,
the RP3 project would have been more successful if this strategy had

been pursued in the original design.

7.2 Future of Shared-Memory Multiprocessing

The success of large-scale shared-memory multiprocessors has been
limited because it is hard to stay ahead of the RISC microprocessor
development curve using parallel processing. Since we started the RP3
project in 1984, we have seen the development of office workstations
with 15 times the processing power of the original RI. Advances in
RISC processor technology continue, with processor speeds doubling
every year or two. If in this environment a parallel processing machine
is built based on a particular microprocessor, and if the lead time for
this development effort exceeds a few years, the resulting machine will
be regarded as obsolete when it is completed, unless, of course, the
then current-generation processor can replace the original processor
designed into the machine. Thus, in order for large numbers of mi-
croprocessor MIPS to be effectively harnessed into a large machine, it
is crucial that the additional complexity associated with the machine
interconnection hardware be kept as small as possible, or that the ma-
chine be built in a sufficiently modular way that it can accept upgraded
processor chips.

Machines like RP3, which were designed to the characteristics of
a particular microprocessor, and which required large investments in
chip design, manufacturing, and packaging, have long development cy-
cles and are ill-suited to compete against the increasing speed of com-
modity microprocessors. It is simply too hard to stay ahead of the
RISC processor development curve. The memory interface of the mi-
croprocessor may not be sufficiently well architected to allow one to
move to nextgeneration chips in a shared-memory parallel processor.

Experience Developing the RP3 Operating System 211

On RP3x, we were limited to a slow cycle time due to timing effors
in the network interface chip, but even if we had not been so limited,
we could not have switched to the faster CMOS ROMP without a re-

design of the RP3x processor card.

Message-passing machines, on the other hand, have a much sim-
pler and more modular interface between the processor and the inter-
connection network, and so are easier (and quicker) to build, and

easier to upgrade when nextgeneration chips become available. For
massively parallel applications and environments where the user is

willing to completely rewrite programs to achieve a performance im-
provement of several orders of magnitude, these machines should be

the vehicle of choice for parallel processing. For programs too large to
be restructured easily, and for automatic parallelizing compilers, the

future remains in shared-memory parallel processing with a modest

number of processors.

7.3 Overstøted Goøls

The RP3 project is widely perceived to have been unsuccessful. In
part, this perception arose because of the disparity between the perfor-

mance of the RP3x prototype and performance predictions published in
the 1985 ICPP proceedings [1,6]. In [1], RP3 was predicted to achieve

a peak performance of I.2 BIPS (assuming a l00%o cache hit rate on

instructions and data). Needless to say, RP3x did not achieve that

mark, but it missed by only a factor of 3 when the prediction is scaled

for a 64-processor prototype of the 512-way architecture: 1.2 BIPS per

512 processors is 2.3 MIPS per processor. In user mode, with data

and instructions cacheable we routinely executed at75O KIPS. The re-

maining factor of 3 is explained by the fact that we ran at one-third the

clock rate originally proposed. This decrease in clock rate was made to

circumvent timing errors in the final revision of the network interface

chips. Rather than wait for yet another chip revision, the project de-

cided to push forward and complete a somewhat slower machine. This

decision was reasonable and defensible for a research project. Why
is it then, that RP3 is regarded by many people as an uninteresting

machine?
We feel this is due to several factors:

. When RP3x was first assembled in 1988 it included neither
processor cache nor floating point hardware. When a system de-

212 R. Bryant, H. Chang, and B. Rosenburg

signed to include cache and hardware floating point is run with-
out cache and with software-emulated floating point, perfor-
mance is bound to be disappointing. The final upgrade of the
machine to include an Rf-equivalent floating point unit was not
completed until 1990, and in the meanwhile a number of our
potential users developed a negative impression of the project as

a whole.
. Since the NMOS ROMP in RP3x was announced by IBM in

the original RT, a new version of the RT (the APC, a CMOS
ROMP) was delivered, and it in turn has been replaced by a
new generation RISC workstation, the RISC System/6000. The
floating point performance of a single RISC System/6000 ex-

ceeds the performance of the 64-processor RP3x. But the point
of RP3x was to enable research into parallel processing, not to
compete with the fastest processors available. RP3x was always

slower than a CRAY Y-MP, for example.
. Flexible, but slow hardware is not as interesting to users as

inflexible, but very fast hardware. In the end, the success of
RP3x was determined by its users. We wanted to build a ma-

chine that was flexible and sufficiently fast to attract application
users to the machine. The hardware was very flexible, but un-
fortunately, it was not fast enough to attract applications. In-
stead, only the parallel processing expert was interested in using

the machine, while other users moved to faster hardware.

The real problem we feel is that the goals of the RP3 project were

overstated. We met the realistic goal of creating a reliable research

machine oriented to studying the hardware and software aspects of
parallel, shared-memory computation. We believe the project would be

regarded more favorably today if we had not initially claimed to be

building the world's fastest computer.

8. Concluding Remarks

The RP3 project was a large and ambitious project whose goal was to
build a flexible research vehicle for studying hardware and software
aspects of shared-memory parallel processing. RP3 was never intended
to be a product, and hence it should not be judged in comparison with
product machines, but as a research vehicle. In that light we would ar-

Experience Developing the RP3 Operating System 2I3

gue that the project was successful:

. The machine was completed and was a reliable research tool for
more than two years.

. We were able to develop a version of Mach for RP3 that ex-

ploits the memory, cache, and processor architecture of the ma-
chine and lets programmers use these facilities to create efficient
parallel programs on RP3x.

. We demonstrated that 40-way speedups are relatively easy to
achieve on a 64-way parallel processor, and we learned much
about the use of such a machine for parallel processing, as

judged by the experience reported in this paper.

We hope that some of the lessons we learned can be of help to oth-
ers building similar machines, whether they are intended as research
prototypes or product machines.

9. Acknowledgements

Our work on RP3 could never have been completed without the assis-

tance of many people, without whose conscientious efforts the system

would not exist. In particular, we would like to thank Fran Allen,
Gordon Braudaway, Wally Kleinfelder, Matt Thoennes, and Herb
Liberman for their assistance and support during the RP3 project. Ra-
jat Datta was responsible for the RP3 I/O service machines on VM;
Rajat also contributed significantly to the first port of Mach to an RP3
PME. Tony Bolmarcich was responsible for the implementation of
EPEX for Mach/RI and Mach/RP3. The original port of Mach to the
RP3 simulator was completed by Dan Julin of Carnegie Mellon Uni-
versity while he was a summer student working with the IBM Re-
search Division. The Mach research group at Carnegie Mellon Univer-
sity, led by Professor Richard Rashid, was very supportive of our
work with Mach and their special efforts to make the latest versions of
Mach available to us are greatly appreciated. Dan Rencewicz of IBM/
TCS at CMU was responsible for obtaining production releases of
Mach for the RT system and making them available within IBM.

214 R. Bryant, H. Chang, and B. Rosenburg

Reþrences

tll M. Accetta et al., "Mach: A New Kermel Foundation for Unix Devel-
opment," Usenix Association Proceedings, Summer 1986.

t21 F. Allen, M. Burke, P. Charles, R. Cytron, and J. Ferrante, o'An

Overview of the PTRAN Analysis System for Multiprocessing," The

Journal of Parallel and Distributed Computing, vol. 5, no. 5, pp. 617-
640, Oct 1988.

t3l T. E. Anderson, B. Bershad, E. Lazowska, and H. Levy, Scheduler
Activation: Effective Kernel Support for the User Level Management
of Parallelism, Department of Computer Science, University of \ilash-
ington, October 1990. Tþchnical Report #900402.

t4l J. Boykin and A. Langerman, "The Parallelization of Mach/4.3BSD:
Design Philosophy and Performance Analysis," Usenix Workshop on
Experiences with Distributed and Multþrocessor Systems, pp. 105-

126, Fort Lauderdale, Florida, 1989.

t5l W. C. Brantley, K. P. McAuliffe, and J. Weiss, "RP3 Processor-
Memory Element," Proceedings of the l9B5 International Conference
on Parallel Processing, pp.782-789, August 1985.

t61 R. M. Bryant, H.-Y. Chang, and B. S. Rosenburg, "Operating System

Support for Parallel Programming on RP3," IBM Journal of Research

and Developm¿nt, Submitted for publication.

t7l F. Darema, D. A. George, V. A. Norton, and G. F. Pfister, "A
single-program-multiple-data computational model for EPEX/Fortran, "
Parallel Computing, no. 7, pp. 17-24,1988.

t8l J. Edler, J. Lipkus, and E. Schonberg, Process Management for
Highly Parallel Unix Systems, New York University, 1988. Ultracom-
puter Note #136.

t91 A. Gottlieb, B. D. Lubachevsky, and L. Rudolph, "Coordinating
Large Numbers of Processors," ACM TOPLA$ January 1982.

t10l D. N. Kimelman, "Environments for Visualization of Program Execu-
tion," IBM Journal of Research and Developm¿nt, Submitted for publi-
cation.

tlll T. J. LeBlanc, M. L. Scott, and C. M. Brown, "Large-Scale Parallel
Programming: Experience with the BBN Butterfly Parallel Processor,"
Proceedings of the ACM SIGPLAN PPEALS L9&\-Parallel Program-
ming: Experience with Applications, Languages, and Systems, pp. 161-
t72, t988.

Experience Developing the RP3 Operating System 215

tIzl K. Li and P. Hudak, "Memory Coherence in Shared Virtual Memory
Systems," Proceedings of the 5th Symposium on Principles of Distrib-
uted Computing, pp. 229-239, August 1986.

t13] J. Ousterhout, "scheduling Techniques for Concurrent Systems," Proc.
of Distributed Cornputing Systems Conference, pp. 22-30, 1982.

t14l C. M. Pancake and D. Bergmark, "Do Parallel Languages Respond to
the Needs of Scientific Programmer{!," IEEE conxputer, pp. 13-23,
December 1990.

t15l G. Pfister et al., "The IBM Research Parallel Processor Prototype
(RP3): Introduction and Architectvre," Proceedings of the 1985 Inter-
nntional Conference on Parallel Processing, pp.764-771., August
1985.

t16l G. F. Pfister and V. A. Norton, " 'Hot Spot' Contention and Com-
bining in Multistage Interconnection Networks," Proceedings of the

1985 Internntional Conference on Parallel Processing, pp.790-795,
August 1985.

llTl M. Sejnowski, E. T. Upchurch, R. N. Kapur, D. P. S. Charlu, and
G. J. Lipovski, "An overview of the Tþxas Reconflgurable Array
Computer," Proceedings of the 1980 National Cornputer Conference,
pp.63l-641, 1980.

t18l R. H. Thomas, "Behavior of the Butterfly Parallel Processor in the
Presence of Memory Hot Spots," Proceedings of the 1986 Internn-
tional Conference on Parallel Processing, pp. 46-50, August 1986.

Permission to copy without fee all or part of this material is granûed provided that the copies

are not made or distributed for direct commerical advantage, Ihe Computing Systems copyright
notice and its date appear, and notice is given that copying is by permission of the Regents of
the University of California. To copy otherwise, or to republish, requires a fee and/or specifrc

permission. See inside front cover for details.

216 R. Bryant, H. Chang, and B. Rosenburg

