
A Comparison of Two Distributed
Systems: Amoeba and Sprite

Fred Douglisx

Matsushita Information TÞchnology Laboratory

John K. Ousterhout

University of California, Berkeley

M. Frans Kaashoek

Andrew S. Thnenbaum

Vrije Universiteit

Amsterdam, The Netherlands

ABSTRACT This paper compares two distributed oper-
ating systems, Amoeba and Sprite. Although the sys-
tems share many goals, they diverged on two philo-
sophical grounds: whether to emphasize a distributed
computing model or traditional UNIX-style applica-
tions, and whether to use a workstation-centered model
of computation or a combination of terminals and a
shared processor pool. Many of the most prominent
features of the systems (both positive and negative) fol-
low from the philosophical differences. For example,
Amoeba provides a high-performance user-level IPC
mechanism, while Sprite's RPC mechanism is only
available for kernel use; Sprite's file access perfor-
mance benefits from client-level caching, while Amoeba

This work was supported in part by the Netherlands Organization for Scientific Research
(N.W.O.) under grant NF 62-334.

@ Computíng Systems, Vol. 4 . No. 4 . Fall 1991 353

caches files only on servers; and Sprite uses a process

migration model to share compute power, while
Amoeba uses a centralized server to allocate processors

and distribute load automatically.

I . Introduction

The shift from time-sharing computers to collections of processors

connected by a local-area network has motivated the development of
numerous distributed operating systems [Abrossimov et al. 1989;

Cheriton 1988; Mullender et al. l99O:' Ousterhout et al. 19881. This
paper compares two distributed systems, Amoeba [Mullender et al.
1990; Thnenbaum et al. 19901 and Sprite [Nelson et al. 1988; Ouster-
hout et al. 19881, which have taken two substantially different ap-
proaches to building distributed systems. These approaches have devel-

oped as a result of different philosophies about the role of distributed
qystems and the allocation of resources within them. By comparing
these two systems in the context of our experiences with them, we
draw conclusions about operating system organization that may aid the
design of future distributed systems.

We have chosen to compare Amoeba and Sprite for three reasons.

First, they take different approaches toward user applications in a dis-
tributed system. Sprite is primarily intended to run UNIX applications
on a network of workstations, and it hides the distribution of the sys-

tem behind a shared file system. It distributes the operating system but
does not provide special support for distributed applications. Amoeba
is intended as a testbed for distributed and parallel applications, as well
as traditional applications. It provides a high-performance mechanism

for user-to-user remote procedure calls (RPCs) [Birrell & Nelson
19841, as well as a language to support parallel programming, so ap-
plications can easily take advantage of multiple processors. At the
same time, it hides the physical distribution of the system, and pro-
cesses cannot even determine where they physically execute. Second,
Amoeba and Sprite allocate processing resources in substantially dif-

354 F. Douglis, J. Ousterhout, M. Kaashoek, and A. Tanenbaum

ferent fashions. Amoeba users share a single "processor pool," while
Sprite associates users with individual workstations. Third, we have

personal experience with both systems over the course of several

years. We know a good deal about the historical development of the

systems and have personal knowledge of both their strengths and

weaknesses. We also have access to both systems and are able to com-
pare their performance on identical hardware.

Naturally, there are many distributed systems besides Amoeba and

Sprite. It would be possible to compare several contemporary dis-

tributed systems in a survey fashion, much as Tanenbaum and van Re-

nesse did in 1985 [Thnenbaum & van Renesse 1985]. However, with
the exception of Section 4 below, we have chosen to restrict our com-
parison to two systems. We believe that limiting the scope of this pa-

per permits us to consider issues in greater detail than would otherwise

be possible.
The rest of this paper is organized as follows. Section 2 elaborates

on the fundamental design philosophies behind the two systems. Sec-

tion 3 relates these philosophies to several operating system issues:

kernel architectures, communication, ûle systems, and process man-

agement. Section 4 discusses how these issues have been addressed by
other systems. Section 5 briefly reviews the development history of
Amoeba and Sprite and describes their current research directions. Fi-
nally, Section 6 draws several conclusions.

2. Design Philosophies

The Amoeba and Sprite projects began with many similar goals. Both
projects recognized the trend towards large numbers of powerful but
inexpensive processors connected by high-speed networks, and both
projects set out to build operating systems that would enhance the
power and usability of such configurations. Both design teams focussed

on two key issues: shared storage and shared processing power. The

first issue was how to implement a distributed file system that would
allow secondary storage to be shared among all the processors without
degrading performance or forcing users to worry about the distributed
nature of the file system. The second issue was how to allow collec-
tions of processors to be harnessed by individual users, so that appli-
cations could benefit from the large number of available machines.

A Comparison of Two Distributed Systems: Amoeba and Sprite 355

However, in spite of their similarities, the Amoeba and Sprite
projects diverged on two philosophical grounds. The first philosophical
difference is the expected computing model. The Amoeba designers
predicted that networked systems would soon have many more proces-
sors than users, and they envisioned that future software would be de-
signed to take advantage of massive parallelism. One of the key goals
of the Amoeba project was to develop new operating system facilities
that would support parallel and distributed computations, in addition to
traditional applications, on a network with hundreds of processors. In
contrast, Sprite assumed a more traditional model of computation,
along the lines of typical UNIX applications. The goal of the Sprite
designers was to develop new technologies for implementing UNIX-
like facilities (particularþ file systems) on networked workstations,
and they assumed that the distributed nature of the system would not
generally be visible outside the kernel.

The second philosophical difference is the way that processes are
associated with processors. Sprite again took a more traditional ap-
proach, where each user has a (mostly private) workstation and the
user's processes are normally executed on that workstation. Although
active users are guaranteed exclusive access to their workstations,
Sprite provides a process migration mechanism that applications can
use to offload work to idle machines all around the network. In con-
trast, Amoeba assumed that computing power would be shared equally
by all users. Users would not have personal processors; instead, com-
puting resources would be concentrated in a processor pool containing
a very large number of processors. Thus processing power is managed
in a much more centralized fashion in Amoeba than in Sprite.

2.1 Application Environment

Amoeba and Sprite differ greatly in the applications they are intended
to run and the resulting execution environment they provide. Amoeba
provides an object-based distributed system, while Sprite runs a net-
work operating system that is oriented around a shared file system.

In Amoeba, each entity such as a process or file is an object, and
each object is identified by a capability lDennis & Horn 19661. The
capability includes a port which is a logical address that has no con-
nection to the physical address of the server managing the object.

356 F. Douglis, J. Ousterhout, M. Kaashoek, and A. Tänenbaum

Thus, the location of the server is hidden from any objects that inter-
act with it.

In addition to providing a uniform communication model, Amoeba
eases the task of writing distributed applications. It provides automatic
stub generation for remote procedure calls from a procedural interface
declaration [van Rossum 1989]. It also supplies a programming lan-
guage, called Orca, that simplifies writing parallel applications on a
distributed system [Bal et al. 1990].

By comparison, Sprite is intended to ease the transition from
UNIX time-sharing systems to networked workstations. Since most of
the applications running on Sprite are such things as compilations, ed-

iting, and text formatting, the design of Sprite has emphasized loca-
tion-transparent file access, consistent access to shared files, and high
file system performance. In particular, Sprite caches file data on client
workstations in order to perform many file operations without the need

for network transfers [Nelson et al. 1988]. On the other hand, because

applications on UNIX typically performed little or no interprocess
communication (other than pipes), little effort was made to support
special protocols for communication over the network at user-level. In-
stead, the file system provides a simple but relatively inefficient
method for location-transparent user-level IPC when it is needed.

The decision to model a new system after an existing one has both
positive and negative consequences. On the positive side, compatibility
with UNIX has helped Sprite to develop quickly into a system that
many people use for all their day-to-day computing. In particular,
most UNIX applications can be run on Sprite by recompiling. On the
negative side, UNIX compatibility has restricted Sprite's application
domain, and it has complicated several aspects of the system (such as

process migration, described below). Compatibility with UNIX was

less of a goal for Amoeba; because Amoeba is only partially compat-
ible with UNIX, it is more difficult to port existing software to it.
However, it offers more flexibility in the design of new software and

more opportunities to do research on distributed and parallel languages

and applications.

2.2 Processor Allocation

Allocation of processors in a distributed system ranges from a pure

"workstation" model, in which each user executes tasks on exactly one

A Comparison of Two Distributed Systems: Amoeba and Sprite 357

machine, to a pure "processor pool" model, in which all users have
equal access to all processors. The workstation model makes each host
essentially autonomous; for example, each host maintains its own list
of processes, which may typically be viewed only from that host. To
execute commands on another host, a user must normally perform an
explicit remote login. With the processor pool approach, the system is
more integrated. Processors are dynamically allocated to processes re-
gardless of the location of the user running them, and users may view
the state of their processes anywhere in the system. Amoeba and
Sprite implement two system architectures that fall between these two
extremes. Amoeba's architecture is closer to the processor pool ap-
proach, while Sprite's is closer to the workstation model.

Amoeba's system architecture is organized around a centralized
processor pool, as shown in Figure 1. Each "pool processor" has a
network interface and RAM associated with it, and these processors
are dynamically allocated to processes as they are needed. However,
unlike a system with a "pure" processor pool model, Amoeba also use
processors outside the processor pool for system services. For example,
the file server and directory server both run on dedicated processors.
This separation avoids contention between user processes and system
functions. Finally, users interact with the system using a graphics ter-
minal, such as an "X-terminal." The terminal is essentially a cheap
dedicated processor, a bit-mapped display, and a network interface.
Only a display server runs on the graphics terminal; all other applica-
tions run in the processor pool.

Graphics terminals
Time se¡ver File server D¡rectofy sêrver

Specialized servers

Figure l: An Amoeba system consists of a processor pool, specialized
servers, and graphics terminals.

358 F. Douglis, J. Ousterhout, M. Kaashoek, and A. Tanenbaum

Workstations File server

Figure 2: A Sprite system consists of workstations and file servers,

The designers of Amoeba chose the processor pool model for three

reasons. First, as we have indicated, they assumed that as processor

and memory chips continue to decrease in price, the number of pro-
cessors in future systems would greatly outnumber the users. In their
opinion, it would be easier to place hundreds of processors in racks in
a machine room than to distribute those processors equally among

each user, and the addition of a new processor would benefit all users

equally. Second, they assumed that the cost of adding a new pool pro-
cessor would be substantially less than the cost of adding a worksta-

tion, since a pool processor would require only a processor, memory,
and a network interface; a fixed amount of capital could make a larger
increase in computing resources under the processor pool model.

Third, they wanted to make the entire distributed system appear as a

single time-sharing system. Users not only should not be concerned

with the physical distribution of the hardware, they should not be

aware of it at all.
Sprite's processing power is distributed among a collection of per-

sonal workstations, as shown in Figure 2, blut it does not implement a

"pure" workstation model. Each user has priority over one worksta-

tion, is guaranteed the full processing power of that workstation, and

executes commands on that workstation by default. However, Sprite

also provides a facility to execute commands using the processing

power of idle hosts. These commands appear to the user to run on the

user's own workstation. In keeping with the workstation model, Sprite
recognizes the preeminence of workstation owners on their own ma-

A Comparison of Two Distributed Systems: Amoeba and Spite 359

chines by migrating "foreign" processes away from a workstation if its
owner returns.

In addition to workstations, Sprite provides dedicated file servers
that are not normally used for application programs. It is also possible
to add processing resources to the system without associating them
with individual users. For example, a rack of processors could be used
as a shared compute server, offering the same cost advantages as an
Amoeba processor pool.

The designers of Sprite chose a workstation-based model for three
reasons. First, they believed that workstations offered the opportunity
to isolate system load, so that one user would not suffer a degradation
in performance due to a high load on the system from another user.
Second, they hypothesized that much of the power of newer and faster
machines would be used to provide better user interfaces. The best
way to use this power would be to put it as close to the display as pos-
sible; i.e., in a workstation. Third, to the designers of Sprite, there
appeared to be no difference between a graphics terminal and a disk-
less workstation except for,more memory on the workstation; why not
perform all computation on the workstations, rather than just interac-
tive tasks?

3. Design Consequences

The decision of whether to organize processing resources into a shared
pool or individual workstations has affected the design of Amoeba and
Sprite in several ways. For example, Amoeba assigns processes to the
most desirable processor in the system, achieving some dynamic load
balancing. It does not implement client file caching, because the effec-
tiveness of caching is decreased when the process that reads a new file
is not likely to execute on the processor where the file was just writ-
ten. Sprite caches files on workstations, and it implements process mi-
gration to preserve response time on workstations.

In this section, we discuss how the design philosophies described
above affected operating system issues such as kernel architectures, in-
terprocess communication, f,le systems, and process management.
Amoeba and Sprite have made different sets of tradeoffs and differ
both in the functionality they provide and the performance of many
operations. While the design philosophies have affected both of these

360 F. Douglis, J. Ousterhout, M. Kaashoek, and A. Tanenbaum

areas, in some cases performance has been affected by low-level im-
plementation details as well. We evaluate both functionality and per-
formance,l distinguishing between the effects of design and implemen-
tation on performance when appropriate.

3.1 Kernel Architectures

One of the greatest differences between Amoeba and Sprite is their ba-
sic kernel architectures. Sprite follows the traditional UNIX mono-
lithic model, with all of the kernel's functionality implemented in a
single privileged address space. Processes access most services by
trapping into the kernel, and each kernel provides services for those
processes running on its host. The only shared kernel-level service
provided by Sprite is the file system. In contrast, Amoeba implements
a "microkernel," with a minimal set of services (most importantly,
communication and low-level process management) implemented
within the kernel. Other services, such as the file system and process

placement, are provided by separate processes that may be accessed

directly from anywhere in the system. As a result, some services that
would be provided independently on each Sprite workstation (such as

the time-of-day clock) may be provided in Amoeba by a single net-

work-wide server.

There were two principal reasons for the decision to use a mono-
lithic kernel in Sprite. First, the performance implications of micro-
kernels were unclear at the time (even today they are still somewhat
controversial). Communicating with user-level processes is more ex-

pensive than just trapping into the kernel, since hardware registers
(such as the virtual memory context) typically must be modified.
Thus, although it is possible to minimize the overhead of changing
protection domains [Bershad et 41. 1989], there are still additional
costs associated with user-level services relative to kernel-level ser-

vices. Second, placing all the kernel facilities together in a single ad-

dress space made it possible for them to work together and share data

structures. For example, the file cache and virtual memory system

work together to share the physical memory of a machine [Nelson et

l. Measurements in this paper rvere taken on 8-Mbyte Sun 3/60 workstations (20 MHz
Motorola 68020 processors, or about 3 MIPS), using Lance Ethernet controllers on a 10
megabits/second Ethernet. The file server for both systems used a SCSI-3 controller and
a Wren IV SCSI disk.

A Comparison of Two Distributed Systems: Amoeba and Sprite 361

al. 19881, and the process migration mechanism has a close relation-
ship with all the major parts of the system. Although such close coop-
eration could also have been achieved in the microkernel model,
shared memory would have been precluded and additional context
switches would have been incurred on each cross-module invocation.

Amoeba's microkernel approach was motivated by uniformity,
modularity, and extensibility. Since services are obtained through
RPC, both kernel-level and user-level services may be accessed

through a uniform, location-transparent interface. Users may extend or
replace standard services with their own by using different capabili-
ties. Finally, separate services permit the functionality of the system to
be distributed and replicated on multiple processors to gain perfor-
mance and fault tolerance.

In light of the advantages of the microkernel approach, one may
ask whether any potential overhead from separate server processes is

significant enough to detract from their design. A comparison between
the performance of Amoeba and Sprite offers the opportunity to an-
swer this question, especially since Sprite's performance during system

calls and context switching is similar to several commercial UNIX-
based systems [Ousterhout 1990].

As one might expect, performance differences between Amoeba's
microkernel and Sprite's monolithic kernel depend on service access

patterns. Since a kernel call is inherently faster than a remote proce-
dure call, obtaining a simple service from a different process can be
substantially slower than obtaining it from the kernel. For example,
the minimum cost of a kernel call in Sprite on a Sun 3/60 workstation
is about 70 microseconds, while the minimum cost of an RPC between
two distinct processes on an Amoeba processor is 500 microseconds.
Furthermore, a service may be provided by each kernel in Sprite but
by a single global server in Amoeba. Accessing a service over the Eth-
ernet in Amoeba takes at least 1200 microseconds.

However, the overall performance of the system depends on many
factors. For example, Amoeba's lack of swapping or paging improves
performance considerably: as we describe below, process creation and
context switching are both generally faster in Amoeba than in Sprite.
Overall performance is more likely to be affected by system character-
istics such as the speed of communications and the use of file caching
than by the choice between a microkernel or monolithic kernel. If a
microkernel could be tolerably efficient for trivial operations and at

362 F. Douglis, J. Ousterhout, M. Kaashoek, and A. Tänenbaum

least as good as a monolithic kernel for more complicated operations,

the advantages of the microkernel approach-most importantly, mod-
ularity and extensibility-would appear to outweigh any potential dis-
advantages in performance.

3.2 Communication Mechanisms

Both Amoeba and Sprite implement communication mechanisms to
enable processes to communicate with each other and to hide machine

boundaries. Their mechanisms for doing so, however, are different.
Amoeba presents the whole system as a collection of objects, on each

of which a set of operations can be performed using RPC. Like
Amoeba, Sprite uses RPC for kernel-to-kernel communication. Sprite
has not really addressed the problems of building distributed applica-

tions, but it does provide a mechanism that can be used to support

some kinds of client-server communication.
Considering kernel communication in isolation, Amoeba and

Sprite have more in common than not. Both use RPC to communicate

between kernels on different machines. The implementations vary in
minor ways. Sprite uses the implicit acknowledgements of the Birrell-
Nelson design lBirrell & Nelson 1984] to avoid extra network mes-

sages when the same parties communicate repeatedly. On the other
hand, Amoeba sends an explicit acknowledgement for the server's re-
ply to make it possible for the server to free its state associated with
the RPC. This simplifies the implementation of the RPC protocol but
requires an additional packet to be built and delivered to the network.
Despite this extra packet, Amoeba obtains lower latency for the null
RPC (passing no data): it takes 1.1 msec to perform a null RPC in
Amoeba between kernels on two Sun 3/60 workstations, compared to
1.9 msec in Sprite. The difference is largely due to the necessity to
perform a context-switch in Sprite when an RPC is received. For large
RPCs, Sprite uses a blast protocol to send many packets without indi-
vidual acknowledgments. This compensates for the other overhead in
the RPC system, resulting in a slightly higher maximum kernel-to-ker-
nel bandwidth: 820 Kbytesisec in Sprite compared to 814 Kbytes/sec
in Amoeba. Table 1(a) summarizes the performance of kernel-to-ker-
nel RPC in each system.

User-level communication, however, differs greatly between the
two systems. Amoeba uses the same model for user-level as for

A Comparison of Two Distributed Systems: Amoeba and Sprite 363

Size
(Bytes)

Kernel-level Latency
(msec)

Amoeba Sprite
0 1.1 1.9

16384 20.0 19.5

30000 36.0
(u)

Size
(Bytes)

User-level Latency
(msec)

Á.moeba Sprite
0 1,.2 7.9

16384 2L.0 33.5
30000 36.0 62.8

b

Täble 1: Communication latency in Amoeba and Sprite. Measure-
ments were taken for transfer units of 0 bytes, 16 Kbytes (the largest
transfer permitted for kernel-to-kernel RPC in Sprite), and 30000
bytes (the largest transfer permitted during a single RPC in Amoeba).
Part (a) shows kernel-to-kernel RPC performance. Amoeba provides
appreciably lower latency for small RPCs but Sprite provides better
performance at its largest transfer unit. The difference in the perfor-
mance of large transfers arises because individual fragments in Sprite
are not acknowledged. Part (b) shows the performance of user-level
IPC. Amoeba's remote procedure calls are substantially faster than
Sprite pseudo-device operations for all data sizes. Measurements were
made on two Sun 3/60 workstations connected by a lO-Mbit Ethernet.

kernel-level communications, with marginal overhead over the kernel
case. Communication in Sprite is integrated into the file system name
space using "pseudo-devices," which permit synchronous and asyn-
chronous communication between user processes using the flle system
read, write and I/O control kernel calls [Welch & Ousterhout 1988].
User-level communication in Sprite is more expensive than in Amoeba
for four reasons: first, Sprite's user-level communication is layered on
a kernel-to-kernel RPC that is significantly slower than Amoeba's for
small transfers and about the same performance for large transfers;
second, as a result of this layering, the Sprite calls involve additional
locking and copying that Amoeba avoids; third, all buffers in Amoeba
are contiguous and resident in physical memory, so no per-page
checks need be performed; and fourth, Amoeba performs context
switching much faster than Sprite (see Section 3.4). Thus, these differ-
ences in performance arise from both lowlevel implementation differ-
ences, such as contiguous buffers and context-switching speeds, and
the higher-level philosophical differences that led to Sprite's layered
approach. Table 1(b) demonstrates how Amoeba consistently outper-
forms Sprite at user level.

364 F. Douglis, J. Ousterhout, M. Kaashoek, and A. Tanenbaum

3.3 Fíle System

Both Amoeba and Sprite provide a single globally shared, location-

transparent file system. In either system a user can access any file sys-

tem object from any location without being aware of the location of
the object. The design of Sprite's file system was strongly influenced

by Sprite's workstation environment and file-intensive applications. In
particular, it caches data on both clients and servers to achieve high
performance, and it adjusts the size of the file cache in response to de-

mands for physical memory. Distributed applications on Amoeba are

not necessarily file-intensive, and each new process is typically placed

on a different processor, so client caching was not as important in
Amoeba as in Sprite. Instead, Amoeba has emphasized the transpar-

ency and fault-tolerance necessary for a large distributed system.

Sprite provides a traditional UNIX open-close-read-write interface,

with naming and file access performed in the kernel [Welch 1990].

Processes perform kernel calls to open files and obtain tokens they

may use to perform further operations on the files. The kernel of the

host running a process, known as the client identifies the server for a
file using an associative table based on the leading characters of the

file's name. The client passes the file's full path name to the server,

where name lookup and protection checking occur. The kernel of the

file server returns either a handle that may be used to perform I/O on

the f,le, a new path name to open (in the case of symbolic links), or
an error condition. Once the client has obtained a handle for a file, it
performs I/O operations by passing the handle to the server named in

the handle. For ordinary files I/O is handled by the same server that

looked up the name, but for devices the I/O server may be different
than the server that looks up the file name (this scheme permits

devices on diskless workstations to be accessed remotely). Sprite file
servers support read and write operations of arbitrary size and align-

ment.
Sprite's file system emphasizes caching and scalability. Both

clients and servers cache files in their main memories, reducing con-

tention for network and disk bandwidth, and file-server processors

[Nelson et al. 1988]. The size of the file cache varies dynamically as

the demands for file data and virtual memory change: a variable cache

size permits applications to perform better than in systems with a fixed

partition between file data and virtual memory. The I/O server is

A Comparison of Two Distributed Systems: Amoeba and Sprite 365

responsible for ensuring that a process reading a file sees the most re-
cently written data; in particular, it disables client caching for a file if
one host has the file open for writing while another host is accessing
it. If a server crashes, or there is a network partition, clients use an
idempotent reopen protocol to reestablish the state of their open files
with the server and ensure that cached file data remains valid [Baker
& Ousterhout 19901. Sprite uses a block-based file access model. Files
are stored in blocks that may or may not be contiguous on disk, and
not all of a file need be in memory at once. A file is transferred to and
from its I/O server in blocks of 4 Kbytes.

Amoeba splits naming and access into two different servers, a di-
rectory server and a file server, in order to provide flexibility. The di-
rectory server translates names into capabilities, and permits processes
to create new mappings of names to capabilities and sets of capabili-
ties. It places no restrictions on the location of objects referenced by a
directory, thus one directory may contain entries for files on different
file servers or objects that are not files. (By comparison, this would
typically not be possible in a system that provided a single combined
tle and directory service.) It automatically replicates directory entries
as they are created, and replicates files asynchronously.

The standard Amoeba file server, known as the Bullet Server em-
phasizes network transfer speed and simplicity [van Renesse et al.
19891. The Bullet Server provides an immutable file store, which sim-
plifies file replication. The server's principal operations arc read-fi\e,
create-fi\e, and delete-fi\e. Aprocess may create a new file, specifying
its initial contents and receiving a capability for it. It may then modify
the contents, but the file may not be read until it has been committed.
Once the process has committed the file, it is immediately written
through to disk for reliability. (V/rite-through may be disabled at the
option of the caller, but this option is rarely used in practice.) At this
point, the file may be read by anyone with the appropriate permission,
but may never be modified. The only permissible operations on a com-
mitted file are reading and deletion.

In addition to its goal of simplicity, the implementation of the Bul-
let Server has been influenced by the distributed nature of Amoeba's
software architecture. since the Bullet server runs on a dedicated ma-
chine, it is normally run as a collection of threads within the kernel,
but it can equally well run in user space at the cost of some additional

copying between the user process and the kernel thread that manages

disks. All files are stored contiguously in memory and on disk. The

sefver alleviates fragmentation problems by compacting memory and

disks as needed. It is responsible for replicating files on multiple disks,

while a Separate "object manager" replicates files on multiple instances

of the Bullet Server. Because of the distinction between the file ser-

vice and the directory service, the Bullet Server provides a mechanism

for garbage-collecting files that are not referenced after a period of
time. It caches files, so read operations do not necessarily result in

disk accesses. However, Amoeba's dynamic processor allocation sug-

gested that new processes would be allocated to different processors

over time, so client caching would be less beneficial than in a worksta-

tion-based environment. As a result, clients do not cache files, and

each read must result in a network transfer. File data may be trans-

ferred in any unit up to the maximum RPC buffer size.

Although both Amoeba and Sprite have location transparent file

systems, they are very different. First, Amoeba permits transparent

replication of files and directory entries. Replication of files is simple

because they are immutable; replication of directory entries is more

complicated and trades some performance for reliability, as indicated

below. second, the Bullet server is simpler than sprite's file system

but it enforces some restrictions. Since files are immutable, Some Ser-

vices that can be provided by Sprite's file system have to be provided

in other services. For example, Amoeba needs a logging service to

manage append-only files, which currently result in entire files being

copied each time data are appended. Some other UNIX file semantics

are similarly hard to emulate in Amoeba without substantial overhead:

for example, to emulate the write kernel call correctly-without
buffering-a process that has a flle open for reading and writing must

copy the file completely each time it switches from writing the file to

reading it. Furthermore, since files are required to be contiguous, the

Bullet Server cannot deal with files larger than the size of its physical

memory. Third, the Bullet Server does not do client caching. A file
has be transferred across the network each time it is accessed. When

caching would otherwise have eliminated a network transfer, the lack

of caching puts more load on the network and increases latency.

Fourth, unlike the Bullet Server, a Sprite file server must dedicate a

significant amount of memory to maintain state about open f,les. The

A Comparison of Two Distributed Systems: Amoeba and Sprite 367

Bullet Server only keeps track of new files that have not yet been com-
mitted, and it removes any such file that is not accessed after a pro-
longed interval.

We compared the performance of the file systems of Amoeba and
sprite, using three file system benchmarks from ousterhout's operating
system performance analysis [ousterhout 1990]. The results of these
benchmarks appear in Thble 2. The "open-close" benchmarko on
Sprite, measures the elapsed time to open a file and then close it
again. In Amoeba, this measures the time to lookup the capability in
the directory server. Table 2 shows the time to open and close a ûle

T.able 2: File system performance of Amoeba and Sprite. subheadings
indicate multiple m€asurements for the purpose of distinguishing
between factors affecting performance. The ..open-close,; benchmark
measures the time to open and close a file in Sprite, or obtain a
capability for a file in Amoeba. The "read" benchmark measures the
time to read a file on a client. The file was not cached on the client in
Amoeba; for Sprite, the measurement shows the measurement with
client caching allowed (CACHE), followed by the measurement
without client caching (NOCACHE). The "create-delete,, benchmark
simulates the use of a temporary file, creating and later deleting a file
that it transfers data to and from. For Amoeba, the measurement
shows the costs of communication only with the Bullet server
(BULLET) and also with the direcrory server (BULLET/DIR). Borh
measurements include the cost of writing files through to disk. For
Sprite, the measurement again shows the performance with and
without client caching. Measurements were made on Sun 3/60
workstations connected by a lO-Mbit Ethernet.

Douglis, J. Ousterhout, M. Kaashoek, and A. Tanenbaum

Operation Delay (nsec)
Amoeba Sprite

open-close
Foo 7.2 9.7
a/b/c/foo 7.6 10.4

read l-idfbytes
t lõõI{Iytes

CACHÐ NOCACHE

L4.0 2.8 18.6
123.0 21.7 L67.4

crea.te-¿leletp

BULLET nulrur/orn CACHE NOCACHE
no data 33.0 288.0 50.9 50.9

86.0 312.0 67.L 84.9
100 Kbytes 367.0 617.0 LOI.4 411.1

368 F.

with a name containing one element, foo and the time for a name con-
taining four elements, alblclfoo.

The "read" benchmark measures the time to read 10 Kbytes and

100 Kbytes from a f,le server. The measurements for Sprite show two
numbers, corresponding to measurements with and without client
caching enabled, respectively. The benchmark demonstrates the effects

of client caching and file system overhead: with client caching en-

abled, Sprite outperforms Amoeba, but without client caching, Sprite
is slower. The latter difference arises because Sprite transfers data

only in 4-Kbyte units, and it performs additional copying that
Amoeba's RPC qystem avoids.

Finally, the "create-delete" benchmark simulates the use of a tem-
porary file. It measures the time to create a file, write a fixed amount
of data to it, and close it; then open the file, read the data from it, and

close it; and finally delete it. Like Ousterhout, we varied the amount

of data, transferring no data, 10 Kbytes, and 100 Kbytes. Amoeba
applications can use capabilities for temporary files without registering
the capabilities in a directory, so the measurements for Amoeba show

first the cost of creating and deleting a file without registering a capa-

bility for the file with the directory server, and then the cost including
the additional overhead of registering a directory entry, replicating it,
and removing it. In each case, the file is written through to disk for
reliability. For Sprite, in the case of non-empty files, the measurement

again shows the performance with and without client caching.

Table 2 shows that Sprite's file system is slower than Amoeba's
for opening files, but is much faster than Amoeba's when client
caching obviates the need for network transfers. The benefits of client
caching on machines with large physical memory have been shown be-

fore [Nelson et al. 1988], and this comparison further illustrates the
point: despite optimizations to store files contiguously in memory and

transfer them in a single operation, Amoeba's file system would benefit

from caching files in the memory of each processor.2 Client caching of
immutable files could be implemented in a natural fashion in Amoeba,

2. A higherJevel comparison ofthe systems, such as the modified Andrew benchmark

[Ousterhout 1990], would provide additional insights into performance differences. Un-
fortunately, however, any comparison involving UNIX-based progrâms would be af-
fected more by overhead in Amoeba's UNIX emulation than by differences in their file
systems. In particular, as the next section indicates, native-Amoeba process creation is
faster than Sprite's, but process creation that is compatible with LJNIX is extremely slow.

A Comparison of Two Distributed Systems: Amoeba and Sprite 369

as in the Cedar File System lGifford et al. 1988], but caching of
newly-created files would be more difficult.

3.4 Process Management

The final area of comparison is process management. Amoeba's pro-
cess model was influenced by both the distributed nature of Amoeba
applications and the use of a centralized processor pool. Sprite pro-
vides facilities comparable to BSD UNIX, combined with a mecha-
nism to use idle workstations.

Process Model

Amoeba is designed to provide high performance communication
between clients and servers, and it has a fairþ simple and efficient
process model. It provides virtual memory, allowing processes to use
the full addressing range available on the hardware, but it does not
perform swapping or demand-paging: i.e., a process is resident in
memory at all times during its lifetime. The lack of paging helps to
improve the performance of user-level RPC, because there is no need
to verify that each page of a buffer is physically in memory. Amoeba
provides threads as a method for structuring servers. A server process
can inexpensively create a new thread of control within its address
space. Multiple threads can service multiple RPCs in parallel, and can
share resources (such as the buffer cache of a file server).

Process creation in Amoeba is designed to work efficiently in an
environment with a processor pool. As described below, each new
process is likely to run on a new processor, so Amoeba is tailored for
remote program invocation. A process starts a new program using the
exec-file library call, specifying the name of an executable file and a
set of capabilities with which to execute the program. This sequence
avoids the need to copy the state of the creating process, as in a UNIX
fork call. (The Amoeba exec-file call is comparable to the run call in
LOCUS [Popek & Walker 1985]).

Sprite's process model is nearþ identical to that of BSD UNIX.
Sprite supports demand-paging, but it uses a regular file rather than a
separate paging area. This permits the system to use the main memory
on a file server to cache pages for clients. To execute a new program
in Sprite, as in UNIX, aprocessþr/<s a copy of itself and then issues

a second kernel call (exec) to replace its virtual image. In addition,

370 F. Douglis, J. Ousterhout, M. Kaashoek, and A. Tänenbaum

Sprite's version of the fork kernel call optionally permits the newly

child process to share the data segment of its parent. This option is

not commonly used in Sprite; however, it provides semantics that are

similar to lightweight threads in Amoeba, so a comparison of the two
can demonstrate the performance advantage of threads for server pro-

cesses.

Table 3 shows the costs associated with process management. It
shows the speed of context switching, the time to create a shared-

memory thread or process, the time to create an identical process that

does not share memory, and the time to invoke a program that imme-

diateþ exits. The context-switch benchmark measured the fastest possi-

ble round-trip context switch in each system: a null RPC in Amoeba

and qynchronization using shared memory and kernel-level wakeup

calls in Sprite. Context switching is significantly faster in Amoeba than

in Sprite. The difference in performance is largely a function of the

overhead of a highly layered mechanism for synchronization and

scheduling in Sprite, as well as the overhead of supporting virtual
memory. The table next gives the time to create a new entity that

shares memory with its parent-a thread in Amoeba or a process in
Sprite. Thread creation is faster than process creation, as one might

expect, because the kernel performs substantially less bookkeeping.

By comparison, Amoeba is much slower at creating a new process

with an unshared copy of the state of its parent. This operation is

Time (msec)

Operation Amoeba Sprite

Context switch
Thread creation

fork
Program invocation

Table 3: Performance of context switching and process creation on

Sun 3/60 workstations. Parenthesized numbers indicate operations that
are not performed under normal circumstances: shared memoryþrfrs
in Sprite and UNIXlike forks in Amoeba. The "context switch"
benchmark measures the cost of round-trip communication (1.e., two
context switches). Amoeba ouþerforms Sprite in all areas but a

UNlX-likeþrk. The high cost of creating a new Amoeba process

from an existing one is attributable to overhead relating to UNIX
compatibility; normally, this cost is avoided because processes in
Amoeba invoke programs without an interveningfork.

0.5
2.4

(16e.5)
58.0

1.6
(t2.s)
13.6
7r.6

A Comparison of Two Distributed Systems: Amoeba and Sprite 37I

expensive in Amoeba because the only way to perform the equivalent
of a UNIXþrfr is to communicate with a special server that will sus-
pend the forking process and copy its state from user-level. Finally,
Thble 3 shows the performance of creating a new process from an
executable image, and waiting for it to exit. The combination of pro-
cess creation and termination in sprite is moderately slower than in
Amoeba. The additional overhead in Sprite is due to the wasted effort
of creating a new address space for a child process that immediately
replaces its image.

All in all, these comparisons suggest that UNIX compatibility has
had a great impact on the performance of process management in the
two systems. The desire to support a wide range of UNIX applications
resulted in Sprite's providing virtual memory, which slows context
switching, andaforklexec paradigm, which slows process creation. In
contrast, Amoeba' s poor performance for UNlX-compatible þrfrs
arises more from an inefficient UNIX emulation than from a particular
design decision.

Processor Allocation

Since the designers of Amoeba assumed that a system would con-
tain many processors per user, they arranged for the system to assign
processes to processors transparently. The run server selects a proces-
sor for a new process based on factors such as processor load and
memory usage. (The only exceptions to automatic host placement are
dedicated server processes, which are explicitly placed on the special-
ized servers shown in Figure 1.) Because of the assumption of many
processors, Amoeba makes no provisions for associating individual
users with specific processing resources, and instead relies on auto-
matic distribution of load. There is no mechanism to migrate a process
atomically to a new processor once it has started execution, though
there is a facility to checkpoint the state of a process and create a new
process elsewhere with the same state.

sprite's basic model assumes a one-to-one mapping between users
and workstations, and it assumes that Sprite would be used mostly for
traditional applications. It further assumes that users want a guaran-
teed response time for interactive processes, and that most processes
are either interactive or short-lived. As a result, Sprite gives each user
priority on one workstation and run all processes there by default.
Nevertheless, f,here are often many idle machines in a coilection of

372 F. Douglis, J. Ousterhout, M. Kaashoek, and A. Thnenbaum

personal workstations, so Sprite provides a mechanism to take advan-
tage of idle hosts transparently using process migration [Douglis &
Ousterhout l99ll.

Logically, a process in Sprite executes on the host of the user that
invoked it (known as its "home machine"), though it may physically
migrate between machines at any time. Tbe fork kernel call creates a

new process that physically executes on the same host as its parent,
wherever that may be, while logically executing on the parent's home
machine. The exec call permits a process to specify a new execution
site, so that the address space of the process need not be transferred
when the process migrates. Alternatively, a process may migrate at

some other time, in which case any modified pages in its address
space are flushed to a shared file server and paged in by the process's
new host. Tiransparency is assured by forwarding location-dependent
operations to and from a process's home machine, using kernel-to-ker-
nel RPC. For example, a request by a remote process to get the time
of day would be forwarded home; the call would take about two mil-
liseconds, compared to 210 microseconds in the local case.

Though Sprite could make remote execution the default case, by
starting all new programs on idle hosts, it currently starts a new pro-
gram on the same host as its parent unless specified otherwise. A few
system programs, such as a parallel make [Feldman 19791facility, take
advantage of remote execution by default. A centralized daemon pro-
cess called migdkeeps track of idle hosts and allocates them to pro-
cesses when needed. A process such as make can request an arbitrary
number of hosts and start a command, such as a compilation, on each
host. The process can continue to use the host until it is notified by
the daemon that the host has been reclaimed. A workstation is re-
claimed when its owner returns, or if no aclditional hosts are available
and one process is using more than its fair share of hosts [Douglis &
Ousterhout 19911.

Thble 4 shows the costs of creating a new process to execute a
small program that immediately exits. The first entry in the table cor-
responds to the cost of creating a local program, from Table 3. The
second entry shows the cost of running the same progffim on a remote
host known in advance, while the third shows the cost of running it on
a remote host determined at invocation time. The normal case in
Amoeba is to select a remote host at invocation time, while in Sprite
process creation is usually local or on a predetermined remote host.

A Comparison of Two Distributed Systems: Amoeba and Sprite 373

Time (msec)

Operation Sprite

Local
Remote (specified)

Remote (unspecified)

58

84
95

72
116

131

Täble 4: Performance of program invocation. Local program
invocation is faster in Amoeba than Sprite, as is remote invocation if a
new processor must be selected. Sprite normally executes locally or
reuses the same host multiple times for remote invocation, with
minimal costs of 72 and 116 milliseconds respectively. Amoeba
normally selects a processor each time a program is invoked, for a
minimal cost of 95 milliseconds. Measurements were made on Sun
3/60 workstations connected by a l0-Mbit Ethernet.

The cost of remote invocation in Sprite is additionally affected by the
time to transfer open files [Douglis & Ousterhout l99l], which in
Amoeba are capabilities that require no additional processing over-
head.

In both systems, centralized scheduling has its drawbacks. Amoeba
provides no support for multiple parallel applications to cooperate and
scale their parallelism to use the system efficiently; instead, it will let
each application create as many processes as processors, and then
time-share each processor among all processes in a round-robin fash-
ion. In Sprite, the default of local execution means that users can
overload their own workstation if they run programs that do not exe-
cute remotely-the system will not automatically spread load. Also, an
application may use another workstation only if it is idle and no other
application is already using it. This rule is based on the assumption
that processes that run remotely will be processor-bound and will not
operate as efficiently if they are multiprogrammed. As a result, inter-
active applications may not use the remote execution facility without
monopolizing resources they do not fully utilize.

4. Related Work

In the introduction, we noted that there are many other distributed
systems, and several of them have similar goals and functionality to

374 F. Douglis, J. Ousterhout, M. Kaashoek, and A. Tanenbaum

Amoeba and Sprite. V/e briefly describe these systems in the context

of the design philosophies we have discussed throughout this paper.

The V System lCheriton 1988], like Amoeba, provides most sys-

tem services at user-level via messages. Those services that are inter-
nal to the kernel, such as one that provides the current time, are ac-

cessed via a message interface as well. Unlike Amoeba, V implements

conventional files, using paged virtual memory to access the files from
process address spaces. File I/O is based on block transfers rather than

whole file transfers or byte streams. Finally, V implements a worksta-

tion model similar to Sprite. It uses process migration to execute new

tasks on lightly loaded workstations, but it runs "guest" tasks at a

lower priority than local ones in order to reduce their impact on inter-
active response. V provides multicast communication to support dis-

tributed applications.
Chorus [Rozier et al. 1988] is based on a microkernel and mes-

sage passing as well. Like Amoeba, it implements capabilities and

ports, and it runs system services in both kernel mode and user mode.

It permits the execution of multiple operating system interfaces layered

on a kernel; in particular, it supports a binary-compatible UNIX inter-
face through the use of user-level managers for processes, pipes, and

devices. It also provides support for real-time facilities, but provides

no special support for distributed applications or load leveling.

Locus [Popek & Walker 1985] has more similarities to Sprite than

to Amoeba, as it is a UNlX-compatible system based on a monolithic
kernel. It supports a transparent network-wide file system with provi-
sions for redundant data storage. It also supports remote execution

with automatic load leveling [Kiser 1990]. However, as it was de-

signed for a small collection of time-sharing mainframes, it has only
limited support for distributed applications.

Mach [Accetta et al. 1986] is similar to both Amoeba and Sprite

in various ways. Mach integrates virtual memory with its message-

based communication system, using memory mapping techniques and

copy-on-write semantics to improve performance. It allows user-level
processes to service requests to read and write memory segments.

Mach is compatible with BSD UNIX and was initially implemented as

a modification of the BSD UNIX monolithic kernel. Mach was later

separated into a Mach microkernel and a separate user-level UNIX
server process, which offered comparable performance to previous

monolithic versions of Mach [Golub et al. 1990]. Mach is organized

A Comparison of Two Distributed Systems: Amoeba and Sprite 315

around the workstation model: each host is autonomous, with its own
processes and file system. However, Mach's network-transparent com-
munication is used by other facilities, such as Avalon [Detlefs et al.
19881, to support distributed applications.

Finally, Plan 9 [Pike et al. 1990] offers an interesting perspective
on the subject of processor allocation. Like Amoeba, it distinguishes
between graphics terminals (with a small amount of processing capac-
ity) and computation-intensive processors. However, rather than
providing a large number of independent processors, Plan 9 centralizes
its processing power in a small number of multiprocessors. The de-
signers of Plan 9 argue that this centralization is the most cost-effec-
tive way to provide a large amount of processing power. Though Plan
9 does not provide process migration-which offers less benefits in a
system with a small number of shared processors than one with a

larger number of "independently owned" workstations-the execution
environment on a graphics terminal, relative to a CPU server, is simi-
lar to Sprite's "home machine."

5. Project Evolution

Both Amoeba and Sprite have been under development for several
years. In this section we summarize the development history of the
two projects, describe the ways in which the systems are currently
used, and discuss the current directions of research for Sprite and
Amoeba.

5.1 Amoeba

The initial work on Amoeba began in 1981. By 1984 a working proto-
type existed and was selected as the basis for a European-wide dis-
tributed system as part of the EEC sponsored COST- 11 Mandis pro-
ject. The Mandis project involved connecting sites in Holland,
England, and Norway in a transparent distributed system based on
Amoeba. This experience led to the discovery of various problems

[Tanenbaum et al. 1990] and a major redesign, leading to the current
version, Amoeba 5.0.

Amoeba is currently being used in the European space industry for

376 F. Douglis, J. Ousterhout, M. Kaashoek, and A. Tänenbaum

the transmission of of real-time digital video over LANs, as well as

other applications where high performance and parallelism are impor-
tant. Amoeba has evolved from a one student's PhD research to a sys-

tem in daily use by about a dozen people at the Vrije Universiteit
(faculty members, students, and staff) for a wide variety of projects
involving distributed and parallel computing. It is also available to
universities (on an "as is" basis) and to companies (on a commercial
basis).

Current research is concentrated in the following areas:

Parallel Applications. The Amoeba group has designed and imple-
mented a language for parallel programming called Orca, which runs
on Amoeba, and eases the task of write applications that use massive
parallelism, such as playing chess. Research is continuing on the lan-
guage, runtime system, and parallel applications.
Group Communication. Current distributed systems, are based on a
point-to-point communication paradigm, usually using RPC. One pro-
ject is looking at the use of group communication in distributed com-
puting, for example, to support replicated services [Kaashoek &
Tänenbaum 19911.

Distributed Shared Memory. An object-based distributed shared
memory system based on Amoeba allows programs to share data ob-
jects on machines that do not have physically shared memory, as

though they did. This system attains a high degree of speedup on cer-
tain classes of problems. Work is continuing in improving and using
the distributed shared memory.
Wide-area transparent systems. With the current system, it is possi-
ble to have Amoeba machines in different countries work together
completely transparently. An authorized user logged into Amoeba at
Cornell, for example, can use the processor pool and file server in
Amsterdam as though it were local. Research into transparent dis-
tributed computing is continuing, to better understand the interaction
between wide-area computing and transparent computing.

5.2 Sprite

The design of Sprite began in the Fall of 1984, and implementation
began in 1985. By the Fall of 1987 the system had sufficient function-
ality to support its own development, and members of the Sprite

A Comparison of Two Distributed Systems: Amoeba and Sprite 377

project began using Sprite for all their day-to-day computing. Addi-
tional users began using Sprite in 1988. As of the Fall of 1991 the
Sprite user community numbers more than 50, of which 20-30 do all
their day-to-day computing on Sprite. Sprite currently supports re-
search in operating systems, computer-aided design, and computer ar-
chitecture, plus a number of administative functions. Most people use

Sprite as though it were UNIX, though they implicitly take advantage
of Sprite's process migration and file caching. At least one person has

used Sprite to run large numbers of simulations in parallel on 10-15
idle machines, obtaining the equivalent of over 8007o effective utiliza-
tion relative to a single machine [Douglis & Ousterhout 1991].

The original Sprite research on network file systems and process

migration is now complete, but a number of new research projects are
underway. Most of the new projects concern high-performance file
systems and are being carried out as part of the RAID project (Redun-
dant Arrays of Inexpensive Disks) [Patterson et al. 1988]. Current re-
search includes the following topics:
Dog-structured file systems (LFS). LFS is a new approach to disk
storage management where the only structure on disk is an append-
only log. This structure allows information to be written to disk an or-
der of magnitude more efficiently than previous approaches, but it in-
troduces interesting problems with garbage collection [Rosenblum &
Ousterhout 19921.

Striping files. Tþchniques are being investigated for improving the
bandwidth of large-file accesses by spreading the files across multiple
disks and even multiple file servers.
Buffering Techniques. For sequential accesses to large files, buffering
may make more sense than caching, particularþ with disk arrays to
provide high bandwidth. The Sprite project is studying how best to use

buffer/cache memory and how reconcile the buffering and caching ap-
proaches.

Reliability. Another project is investigating the recovery of file qystem

state after server crashes. One of the project's goals is to reduce server
recovery time to only a few seconds, so that crashes are almost invisi-
ble to the rest of the system [Baker & Ousterhout 1990].
Mach Interoperability. Micro-kernel approaches are being explored
by porting the Sprite kernel to run as a user-level server process on
the Mach operating system.

378 F. Douglis, J. Ousterhout, M. Kaashoek, and A. Tanenbaum

6. Conclusions

This paper has compared two distributed systems that share many

goals but diverge on two philosophical grounds. Their approaches to-
ward distributed applications and resource allocation account for many

differences in their designs, and in their performance. The issues ad-

dressed in this paper lead to several conclusions.

First, Amoeba helps to disprove the notion that the performance of
microkernals need be inferior to monolithic kernels. Although the cost

of simple operations can be higher if a service is delivered via RPC,

many other operations are faster in Amoeba than in Sprite. (Golub, et

al., provide even stronger support for this hypothesis, since they were

able to compare two versions of the same system rather than two dis-

tinct systems [Golub et al. 1990].) By providing services as separate

processes, accessed via RPC, the system offers several advantages

over a monolithic kernel: simple location transparency, extensibility,
and modularity. With a microkernel, it is possible to develop new ser-

vices at user-level, test them, and then possibly incorporaûe them into
the kernel to obtain higher performance. Given these advantages, we

think that microkernels will be the implementation method of choice

for future distributed systems.

Second, along the same lines, Amoeba demonstrates the desirabil-

ity of a uniform communication model. Whether a service is provided

at user-level or within the kernel, it is accessed via the same high-per-

formance RPC interface. Services are completely location-transparent,

without the need for explicit forwarding of operations (as in Sprite).

Applications may take advantage of the distributed nature of the sys-

tem explicitly, using RPC, or implicitly, using Orca. In contrast,

Sprite's organization is restrictive. Sprite does not export its relativd
fast kernel-to-kernel RPC to user-level, and it lacks flexibility in re-

placing system services. As qystems become more and more dis-

tributed, fast and simple communication at user level will be even

more important.
Third, Sprite demonstrates the benefits of client caching. Just as

communication-intensive applications can take advantage of high-
performance IPC, file-intensive applications obtain significantly better-
performance if network transfers can be avoided. Client caching also

helps to alleviate contention for networks and file servers [Nelson et

A Comparison of Two Distributed Systems: Amoeba and Sprite 379

al. 1988; Satyanarayanan et al. 19851. It has not been implemented in
Amoeba because of Amoeba's processor pool model. However, if it
were combined with more sophisticated processor allocation, using the
same processor repeatedly for related but sequential applications, the
performance and scalability of Amoeba's file system should improve.
Like communication, client caching will become more important as
distributed systems grow larger.

Fourth, the comparison between Amoeba and Sprite shows the ad-
vantages of a hybrid system containing both workstations and a pro-
cessor pool. Dedicated personal workstations guarantee fast interactive
response: in a distributed system, it should be unacceptable for a small
number of users to monopolize tbe resources of the system in a way
that degrades the performance of other users beyond some threshold.
Once each user has a workstation, additional processing capacity can
be shared by all, providing cost-effective power for parallel, computa-
tion-intensive applications. The flexibility offered by this hybrid ap-
proach will be necessary as hardware becomes cheaper and parallel
programming becomes more common.

Fifth, compatibility with UNIX has been a double-edged sword.
Cn the one hand, the decision to make Sprite mostly compatible with
BSD UNIX has helped Sprite to mature to a "real system" in a rela-
tively short time. Though Amoeba is easily used for some applica-
tions-distributed programs using Orca, and simple UNIX-based pro-
grams-it is not yet ready to serve as a replacement for a system like
UNIX on a day-to-day basis-nor was it intended for that use. On the
other hand, UNIX compatibility is not necessarily a bed of roses. The
UNIX model of performing interprocess communication through the
file system has hurt performance and complicated the kernel imple-
mentation. Support for UNIX file system semantics, such as shared
file descriptors, has complicated the implementation of process migra-
tion [Douglis & Ousterhout 1991]. Supporting the UNIX process
model at the lowest level of the system can detract from the perfor-
mance of normal operation (witness the cost of context switching and
program invocation in Sprite), while supporting full UNIX semantics
only with a user-level emulation layer can be unacceptably
inefficient (for example, afork in Amoeba). Given the impact of UNIX
compatibility on both the performance and the application domain of a
system, one must make a conscious decision about whether to be com-
patible, and how.

380 F. Douglis, J. Ousterhout, M. Kaashoek, and A. Tânenbaum

Finally, one should consider the performance differences between
Amoeba and Sprite in light of their development. V/hile some of the
differences are attributable to fundamental differences in their designs,

such as the mechanism for user-level interprocess communication,
other differences are due at least in part to inefficiencies in implemen-
tation. Though Amoeba has been programmed with an eye toward
high performance throughout its history, and has undergone several
substantial rewrites, its UNlx-compatibility library is especially
inefficient. Some of its inefficiency results from the imperfect mapping
between UNIX and Amoeba operations, but the performance of the
compatibility library could be significantly improved, given time. Sim-
ilarly, Sprite has several important components (especially with re-
spect to context-switching and scheduling) that have barely changed
since its inception. Thus, we have used performance as an obvious
metric for comparison, but differences in performance should be con-
sidered in the context of design versus implementation.

Amoeba and Sprite continue to evolve. We hope that the issues

addressed in this paper will result in positive changes to the implemen-
tation of these two systems and the design of future distributed sys-

tems.

Availability

Amoeba and Sprite are both available. For information about Amoeba,
please contact Andrew S. Tanenbaum (email: ast@cs.w.nl or FAX
+3120 6427705). To get more information about Sprite, please con-
tact the Sprite group by email (sprite-request@sprite.berkeley. edu).

Acknowledgements

Erik Baalbergen, Henri Bal, Arnold Geels, Dick Grune, Mike Kupfer,
Darrell Long, Sape Mullender, Mike Nelson, Robbert van Renesse,

Guido van Rossum, Greg Sharp, Kees Verstoep, and Brent \ù/elch pro-
vided comments on early drafts of this paper, which improved its con-
tent and presentation substantially. We also wish to thank the referees
for their imput, which further helped to improve the paper.

A Comparison of Two Distributed Systems: Amoeba and Sprite 381

References

V. Abrossimov, M. Rozier, & M. Shapiro. Generic virtual memory manage-
ment for operating system kernels. In Proceedings of the l2th ACM
Symposium on Operating System Principles, pages 123-136, December
1989.

M. Accetta, R. Baron, W. Bolosþ, D. Golub, R. Rashid, A. Tþvanian, &
M. Young. Mach: A new kernel foundation for UNIX development. In
Proceedings of the USENIX 1986 Summer Conference, July 1986.

M. Baker & J. Ousterhout. Availability in the Sprite distributed file qystem.
ln Proceedings of the Fourth ACM SIGOPS European Workshop,
Bologna, Italy, September 1990.

H. E. Bal, M. F. Kaashoek, & A. S. Tanenbaum. Experience with dis-
tributed programming in Orca. IEEE CS Int. Conf . on Computer Lan-
gurges, pages 79-89, March 1990.

B. N. Bershad, T. E. Anderson, E. D. Lazowska, & H. M. Levy.
Lightweight remote procedure call. In Proceedings of the 12th ACM
Symposium on Operating System Principles, pages 102-113, December
1989.

A. D. Birrell & B. J. Nelson. Implementing remote procedure calls. ACM
Transactions on Comput er Sy stems, 2(l):39 -59, February I 984.

D. R. Cheriton. The V distributed system. Communications of the ACM,
3I(3):314-333, March 1988.

J. Dennis & E. Van Horn. Programming semantics for multiprogrammed
computation. Communications of the ACM, 9:143-155, March 1966.

D. L. Detlefs, M. P. Herlihy, & J. M. Wing. Inheritance of synchronization
and recovery properties in Avalon/C + + . IEEE Computer , 2I(I2),
December 1988.

F. Douglis & J. Ousterhout. Tiansparent process migration: Design alterna-
tives and the Sprite implementation. Software-Practice and Experi-
ence, 2l(8):7 57 -7 85, August 1991.

S. L Feldman. Make-a program for maintaining computer programs. So/t-
ware-Practice and Experience, 9(4):255-265, April 1979.

D. Gifford, R. Needham, & M. Schroeder. The Cedar file system. Communi-
cations of the ACM, 3l(3):288-298, March 1988.

D. Golub, R. Dean, A. Forin, & R. Rashid. Unix as an application program.
In Usenix 1990 Summer Conference, pages 87-95, June 1990.

382 F. Douglis, J. Ousterhout, M. Kaashoek, and A. Tanenbaum

M. F. Kaashoek & A. S. Tanenbaum. Group communication in the Amoeba
distributed operating systems. In Proceedings of the I lth International
Conference on Distributed Computing Systems, Arlington, TX, May
1991. To appear.

S. Kiser. Personal communication, 1990.

S. Mullender, G. van Rossum, A. Tanenbaum, R. van Renesse, & H. van
Staveren. Amoeba: A distributed operating system for the I990s. IEEE
Computer, 23(5):44-53, May 1990.

M. Nelson, B. Welch, & J. Ousterhout. Caching in the Sprite network file
system. ACM Transactions on Computer Systems, 6(l):134-154,
February 1988.

J. K. Ousterhout, A. R. Cherenson, F. Douglis, M. N. Nelson, & B. B.
rù/elch. The Sprite network operating system. IEEE Computer,
2I(2):23-36, February 1988.

J. K. Ousterhout. Why aren't operating systems getting faster as fast as hard-
ware? In Usenix 1990 Summer Conference, pages 247-256, June 1990.

D. Patterson, G. Gibson, & R. Katz. A case for redundant arrays of inexpen-
sive disks (RAID). In ACM SIGMOD 88, pages 109-116, Chicago,
June 1988.

R. Pike, D. Presotto, K. Thompson, & H. Tiickey. Plan 9 from Bell Labs.
ln UKUUG Summer 1990 Conference Proceedingr, pages 1-9, Lon-
don, England, July 1990.

G. J. Popek & B. J. Walker, editors. The LOCUS Distributed System Archi-
tecture. Computer Systems Series. The MIT Press, 1985.

M. Rosenblum & J. K. Ousterhout. The design and implementation of a log-
structured file system. ACM Transactions on Computer Systems, lO(I),
February 1992. To appear. Also appears in Proceedings of the 13th
Symposium on Operating Systerns Principles, October 1991.

M. Rozier et al. Chorus distributed operating systems. Computing Systems,
1(4),1988.

M. Satyanarayanan, J. Howard, D. Nichols, R. Sidebotham, A. Spector, &
M. West. The ITC distributed file system: Principles and design. In
Proceedings of the l0th Symposium on Operating System Principles,
pages 35-50, Orcas Island, WA, December 1985. ACM.

A. S. Thnenbaum & R. van Renesse. Distributed operating systems. ACM
Computing Surv ey s, L7 (4):419 -470, December 1 985.

A Comparison of Two Distributed Systems: Amoeba and Sprite 383

A. S. Tänenbaum, R. van Renesse, H. van Staveren, G. Sharp, S. Mullen-
der, A. Jansen, & G. van Rossum. Experiences with the Amoeba dis-
tributed operating system. Communications of the ACM, 33(12):46-63,
December 1990.

R. van Renesse, A. S. Tanenbaum, & A. Wilschut, The design of a high-
performance file server. Proc. of the 9th Int. Conf . on Distr. Comput-
ing Systems, pages22-27, June 1989.

G. van Rossum. AIL-a class-oriented stub generator for Amoeba.In Pro-
ceedings of the Workshop on Experience with Distributed Systems.
Springer Verlag, 1989.

B. B. Welch & J. K. Ousterhout. Pseudo devices: User-level extensions to the
Sprite file system. ln USENIX l9BB Summer Conference, pages
37-49, San Francisco, CA, June 1988.

B. B. Welch. Naming, Snte Management, and User-Level Extensions in the
Sprite Distributed File System. PhD thesis, University of California,
Berkeley, C494720, February 1990. Available as Technical Report
UCB/CSD 901567.

fsubmitted July 20, 1991; revised Sept. 27, I99l; accepted Oct. 15, 1991]

Permission to copy without fee all or part of this material is granted provided that the copies
are not made or distributed for direct commercial advantage, the Computing Systems copyright
notice and its date appear, and notice is given that copying is by permission of the Regents of
the University of California. To copy otherwise, or to republish, requires a fee and/or specific
permission. See inside front cover for details.

384 F. Douglis, J. Ousterhout, M. Kaashoek, and A. Tänenbaum

