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ABSTRACT: Mach is a new operating system tar-
geted for distributed and multiprocessor environ-
ments. Mach contains 4.3BSD compatibility code
that, unlike the Mach kernel proper, runs only on a
single processor, thus presenting a performance
bottleneck to a multiprocessor system. Pieces of the
4.3BSD compatibility code were selectively parallel-
ized to reduce this bottleneck. Signifrcantly
improved multiprocessor and multi-user perfor-
mance was achieved using minimum modifrcation
of existing data structures and algorithms. A frame-
work was left in place for future parallelization
enhancements.
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l. Introduction

The Mach operating system, developed at Carnegie-Mellon
University, targets a broad range of computer architectures,
including uniprocessor, multiprocessor and distributed systems.
The designers of Mach intend to produce a compact, efficient ker-
nel on top of which may be layered interfaces for traditional
operating systems such as 4.3BSD, System V, MS-DOS, VMS, etc.
Most traditional kernel support, such as device drivers and filesys-

tem handling, will be provided by a set of user-level servers. The
Mach kernel will provide the mechanisms necessary for simple
operation in a distributed environment using uniprocessor or mul-
tiprocessor systems. Mach currently provides full backward com-
patibility with 4.3BSD. However, while Mach exploits the full
power of a multiprocessor the 4.3BSD compatibility code does not;
we have parallelized large portions of this compatibility code
while retaining the original data structures and algorithms. The
result has been a kernel that yields good multiprocessor
performance.

Encore is interested in Mach because of its multiprocessor sup-
port [Boykin & Langennan 1989; Langennan et al. 1990]. In par-
ticular, DARPA sponsors Encore's development of a 1,000 MIPS
multiprocessor that will use Mach. Encore currently runs Mach
on the Multimax, a symmetric shared memory multiprocessor
using the National Semiconductor 32000 family of processors.

Mach uses original 4.3BSD code to insure BSD compatibility.
As currently distributed by CMU, Mach's 4.3BSD compatibility
code has not been modified to support efficient multiprocessor
operation. The original 4.3BSD kernel was designed for a unipro-
cessor: kernel data structures are protected from intemrptJevel
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race conditions by disabling interrupts at appropriate times. This
approach does not suffice in a multiprocessor environment in
which processors may be using shared data structures simultane-
ously and intemrpts may be processed on any available processor.

The Mach kernel is designed and implemented to execute
correctly on a multiprocessor. Mach uses multiprocessor locks to
synchronize operations between separate processors. These locks
include spin locks (called simplelocks) for non-blocking synchroni-
zation and read/write locks that may cause a thread to suspend
until the lock becomes available. Mutual exclusion locks are built
from read./write locks. simplelocks may also be used to synchron-
ize between processors and I/O devices that operate out of main
memory.

Mach resolves the contradiction between the native, inherently
parallelized Mach code and the inherently serial 4.3BSD compati-
bility code by forcing all 4.3BSD code to execute on a singls p¡e-
cessor, the so-called master. We use the term unix-master to
denote this restriction because the internal Mach function
unix-masterQ forces a Mach thread to execute on the master Í,ro-
cessor. Device interrupt handling is also confrned to the master
processor. Thus, the normal4.3BSD mutual exclusion mechan-
isms continue to operate as expected. Obviously, any Mach code
that manipulates 4.3BSD state must also be restricted to the mas-

ter processor.
The master processor design works well: all user-level code

and all native Mach operations (e.g., Mach kernel calls, virtual
memory handling and Mach IPC) execute on any available CPU.

Onty 4.3BSD-specifrc routines and the Mach code that interfaces
directly to them must obey the master processor restriction. Ulti-
mately the 4.3BSD compatibility code will migrate into user-level
servers and become executable by any processor.

In the meantime, unfortunately, the master processor restric-
tion has severe implications for overall multiprocessor perfor-
mance. We observed that apparent Mach performance was

sþificantly worse than that offered by the other Encore operating
systems, UMAX4.3 (based on 4.3BSD) and UMAXV (based on Sys-

tem v). Even though the basic Mach functionality had been writ-
ten from scratch for multiprocessor operation, the vast bulk of
user code makes heavy use of the 4.3BSD compatibility code. It

Mach/4.3BSD: A Conservative Approach To Parallelization 7l



became clear that the 4.3BSD routines had to be modified to pro-
vide better performance.

We realized that the unix-master restnction offered us the
opportunity to parallelize the 4.3BSD compatibility code selec-

tively. Rather than alter all of the 4.3BSD code simultaneously,
we could modify one piece at a time for multiprocessor operation
and examine the results.

We adopted these goals:

l. Minimize modifications to existing code.

2. Provide a framework for future performance enhancements.

3. Achieve signifrcant performance increase with minimum
work.

We sought to maximize multiprocessor performance with the
least effort. In effect, we followed a "90/10" rule: try to capture
900/o of the possible performance improvement at a cost of t09o of
the total work. (We didn't take this maxim literally, of course.)
Because of our resource limitations, we preferred to implement a
framework for future parallelization and tuning efforts rather than
parallelize all subsystems immediately or implement highly panl-
lel subsystems from scratch.

After analyzing system call counts and interrupt handling, it
became clear that the greatest performance wins were to be found
by parallelizing the low-level intemrpt handling, the frlesystem,
tty, and network code. In general, we parallelized code by adding
synchronization mechanisms to existing data structures and
adding appropriate calls to synchronization routines from existing
algorithms. In other words, minimum modifrcation was a cardinal
rule.

The minimum modification rule was also important because
we track functional modifrcations and bug-fixes to this code by
Berkeley, CMU, and other organizations.

While a signifrcant amount of work has already been done in
the area of multiprocessor UNIX operating systems [Bach &
Buroff 1984; Barton & W'agner 1988; Hamilton & Code 1988;

Sinkewicz 1988], we are unaware of any design that incorporates
an incremental approach to parallelization and attempts to
achieve substantial parallelism without altering data structures or
devising new algorithms from scratch. There is certainly no other
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implementation that must reconcile these goals within the context
of an operating system that is highly parallel in some parts but
uses a master/slave relationship for the rest of the code [Rashid
le86l.

We will describe some of the design decisions we made and
implementation problems we encountered during the paralleliza-
tion effort. First, we will focus on converting interrupt-level syn-
chronization problems into multiprocessor synchronization prob-
lems. Next, we will discuss our modifrcations to the 4.3BSD
frlesystem and network code. We will also discuss our approach
to debugging and statistics gathering. Finally, we will summarize
our results and mention possibilities for future work.

We assume that the reader is familiar with the internals of the
4.3BSD kernel, particularly the frlesystem and network code. The
reader should also be aware that Mach uses tasks and threads, not
UNIX processes, and throughout this paper we will use the Mach
terminology. The original Encore Mach port, with no
modification of the 4.3BSD compatibility code, was known as

Encore Machl0.Z and derived from CMU's Release 2.0 of Mach.
The current release of Encore's Mach, including the parallelized
4.3BSD code, is known as Mach/0.5.

2. Interrupt Handling

A consequence of the Mach unix-master design is the restriction
of all interrupt handling to the master processor. The same pro-
cessor that executes the 4.3BSD code must also execute the inter-
rupt handling code or the 4.3BSD programming model will break.
This I/O restriction is doubly ironic in our symmetric multiproces-
sor as other processors capable of handling the intemrpts go idle
while the load on the master processor increases.

The parallelization of the filesystem, tty, and network further
demanded that intemrpt handling be o'frxed" because the 4.3BSD-
style interrupt handling would not function with a system using
blocking locks. Left untouched, interruptJevel operations could
attempt to take blocking locks with disastrous results.

We defined three somewhat conflicting goals for upgrading the
4.3BSD intemrpt model for our multiprocessor environment:
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1. Minimize work done at intemrpt-level.

2. Transform interruptJevel synchronization problems into
thread context synchronization problems (so multiprocessor
locks could be used).

3. Avoid lengthy processing delays, where possible.

We chose to define new kernel threads that would be responsi-
ble for handling incoming interrupts. The interrupt handler
would be responsible for saving appropriate information and then
waking up the appropriate thread to complete the processing. For
example, the Multimax has four main intemrpt sources: per-
processor time-slice end counters; the System Control Card (SCC)

which, among other things, provides serial ports for local and
remote consoles; the masstore (disk/tape) interface; and the Ether-
net interface. Time-slice end activities are already handled by the
Mach kernel and therefore required no additional work on our
part.

2.1 Console TTY handling

The intemrpt handler for the directly-connected serial ports
required some recoding. Originally, the SCC intemrpt handler,
slcintr, would directly invoke SCC tty routines. In our parallelized
code, however, the SCC tty routines must acquire a blocking
tty-lock before manipulating tty data structures. We modified
slcintr to catch the intemrpt, enqueue a unit identifrer on the
scc-pend-intrs qrueuq then awaken the slcintr-thread. The
slcintr-thread handles the normal character processing, including
calling into the SCC tty routines. Keeping up with console input
is not difficult and we don't mind a delay between receiving the
character and processing it so the slcintr-threadhas a relatively
low priority.

2.2 Masstore Interrupts

lile have paid more attention to optimizing the handling of mas-
store intemrpts because they are frequent and important. A mas-
store intem¡pt signals the completion of an I/O command or the
generation of an eûor message. msintr,the masstore intemrpt
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handler, reads, logs and discards error messages. This behavior
need not change for parallelized interrupt handling. However, on
an I/O completion, there may be a need to manipulate the buffer
on which the I/O frnished. The non-parallelized msintr always
called into a buffer cache routine, iodone, to pass on news of the
I/O completion. iodone might then call brelse to release the buffer
back to the buffer cache. All of these activities took place at
interrupt-level. In our parallelized filesystem, however, blocking
locks synchronize access in the buffer cache. It is an error for the
interruptJevel code to manipulate blocking locks.

We created the bíodone-thread to process all I/O completions.
msintr queues information about the I/O completion to the
biodone-thread, which wakes up and calls iodone. Blocking locks
can then be acquired in thread context.

However, the bíodone-thread itself can become a bottleneck in
the disk subsystem; typically, there is only one thread and there is
also a rescheduling delay when the thread is awakened. Further-
more, the thread will be used frequently, stealing time from other
running threads. To alleviate these problems, we optimized the
frequent case of a synchronous I/O completion to avoid using a
biodone-thread at all. Normally, for a synchronous I/O, iodone
merely has to wake up the user thread waiting for the I/O to com-
plete; no buffer cache manipulation is needed. Therefore, we
employed an "event" mechanism that allows us to post the news
of a synchronous I/O completion directly from intemrpt-level,
awakening the sleeping thread without using the biodone-thread or
iodone. (Asynchronous completions, which manipulate buffer
cache state, continue to require the biodone-thread and iodone.)
This optimizatíon substantially reduces the need for the
biodone-thread. The design and implementation permit multiple
biodone-threads to be started in case a single biodone-thread
becomes a bottleneck. Statistics to date suggest that a single
b i o do ne -t hr e ad is adequate.

2.3 Ethernet Interrupts

Interrupts from the Ethernet interface result from incoming pack-
ets, completions for outgoing packets, and error conditions. The
latter two conditions are easy to handle and were already correctly
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implemented for multiprocessor operation. The most important
matter is handling incoming packets.

It should be no surprise that the original code would not work
in a multiprocessor environment. The original algorithms would
process packets and massage protocol information from the net-
work interface all the way up to the socket layer while operating
the whole time at interrupt level. This design was changed to
minimize the work done at interrupt-level and because operations
at interrupt-level can not work with blocking locks.

There are three parts to the solution. As in the original code,
when the packet arrives, the intemrpt handler determines the
packet types and selects a destination queue for the packet (e.g.,

ipintrq). These queues are instances of ifqs, manipulated by a
well-defrned set of macros. We modifred these macros
(IF_ENQUEUE0, IF_DEQUEUEj, etc.) to operate in a multipro-
cessor environment using spin locks so that the macros could be
used without change at interrupt-level and in thread context.

Having queued the packet, we awaken a netisr-thread.
The netisr-thread invokes the appropriate protocol's incoming
packet processing routine (e.g., ipintr) and normal packet process-

ing continues except that the packet is now handled in thread con-
text rather than at intemrptJevel. Multiple netisr-threads permit
parallel processing of incoming packets; the number of
netisr -threads is configurable.

The last problem was to ensure that the queues to the intelli-
gent Ethernet controller (the EMC) were locked to keep the queues

consistent when multiple threads attempted to enqueue and
dequeue packets. This was accomplished with a spin lock as these
queues are also manipulated at interruptJevel.

For historical reasons, a separate thread was invented to han-
dle incoming ARP requests. This thread could be eliminated
today but there is no strong reason to do so. ARP traffic is rela-
tively rare.

There were a number of other, lesser problems with interrupt
handling that we do not have space to recount. The problems
mentioned above were the most interesting and the most
representative.
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3. Filesystem Parallelization

The 4.3BSD filesystem code distributed with Mach is essentially
identical to the frlesystem code distributed by Berkeley. Some

small modifications have been made at CMU but the scope of
those changes is small and therefore irrelevant to our discussion.
The following discussion applies to generic 4.3BSD-based

frlesystems.

3.1 Design Rules

Wherever possible, we exploited "natural" data structure parallel-
ism. It was clear that the filesystem offered significant opportuni-
ties for data structure parallelism: ø priori, there was every reason

to believe operations could proceed in parallel on separate disks,
filesystems, frle descriptors, file structures, inodes, buffers, etc. It
was also clear that operations could proceed in parallel against
separate elements within important tables, like the inode and
buffer cache hash chains. Most importantly, the natural structur-
ing of the frlesystem code implied that there were few potential
deadlock problems between locks held at the various frlesystem

layers. For example, a thread could acquire (in order) a frle struc-
ture lock, an inode lock, a buffer lock and device driver locks
without deadlocking with other threads performing similar activi-
ties. On the other hand, there were some interesting races within
the various layers. There were small but easily resolved problems
with interrupt-level code (see Section 2).

We did not need to re-design any of the existing 4.3BSD filesys-

tem data structures, even where those data structures were inter-
nal and had no on-disk representation.

Initially we used only blocking, mutual exclusion locks to sim-
plify implementation and ease debugging. As the code matured
we migrated to read/write and simplelocks.

In the Encore Mach/O.S release, most frlesystem code has been
parallelized, including the tty subsystem and all interrupt-handling
code. There are a number of subsystems that remain unparallel-
ized. The various CMU-developed remote frlesystems, RFS and
VICE, have been modifred to work in conjunction with the
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parallelized filesystem code, chiefly by taking and releasing frlesys-

tem locks at the appropriate times. This is not to say that these

subsystems have been parallelized; they still depend on the
unix-master restriction because the RFS- and VlCE-specifrc code

and data structures have not themselves been parallelized. Other
major subsystems that have not been treated include quotas and a

CMU-specific pseudo-tty implementation.

3.2 Implementation Details

The scope of the frlesystem parallelization effort is too broad to
recount in detail. Instead, we will discuss some of the interesting
cases encountered in the implementation.

The most challenging subsystem to parallelize tumed out to be

the buffer cache. The relationships among the hash table, the
various freelists, and the buffers themselves are complex and
further complicated by the different ways the cache can be
accessed from interruptJevel and from within thread context.
Interrupt-level buffer cache manipulations had to be eliminated, as

we described in Section 2.2.

The internal complexity of the buffer cache led to a large

number of possible deadlocks. Most of these deadlocks were
resolved without restructuring the underlying aþrithms by using
conditional locking. With conditional locking, a thread receives

an error indication if acquiring a lock would require blocking.
For example, when fetching a disk block from the cache, it is
necessary to lock the hash chain where the buffer containing the
block should go, search the chain and, on a miss, allocate an

empty buffer from the free list. However, buffers on the free list
are also linked onto hash chains and must be removed from those

chains. Naively acquiring the second hash chain lock could
deadlock. Releasing the frrst hash chain lock opens up new races

and at a minimum requires re-locking and re-searching the hash

chain after a buffer has been allocated from the free list. We
chose to attempt a conditional lock on the second hash chain and,
if the lock attempt failed, to try allocating a different buffer from
the free list.

The buffer cache returns locked buffers to callers, so that the
calling code does not have to be modifred to understand buffer
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locking. A substantial amount of code did not have to be altered
because of this implicit locking. For example, cylinder group
information is fetched through the buffer cache and operated on
within the buffer itself. The buffer lock implicitly protects the
cylinder group data, permitting signifrcantly easier parallelization
of the disk block allocation and de-allocation code.

That same disk block allocation code provides a good example
of the use of our parallelization framework. At an early stage in
the filesystem parallelization process, all of the disk block alloca-
tion code was single-threaded through a disk block allocation lock
(disk-alloc-lock). This scheme allowed us to bring up the filesys-

tem quickly as only the few routines used outside of the disk block
allocation package (e.g., bmap, ialloc, ifree, and dirprefl had to be

modified to take the disk-alloc-lock. There wers no race condi-
tions to consider and the implementation took very little time.
Once we had the filesystem running and had achieved basic stabil-
ity we analyzed lock contention and found it to be unacceptable.
The solution was to migrate to a scheme using the implicit
cylinder group locks described above. However, it was also neces-

sary to lock accesses to the in-core superblock at appropriate times
and guarantee that there were no deadlocks between superblock
locks, (implicit) cylinder group locks and other frlesystem locks.

At a higher level, we encountered a number of interesting
problems with frle descriptors and file structures. Mach permits

all of the threads in a task to share the task's file descriptor table.
It is then possible for one thread in a task to be altering the
descriptor table while another thread is using it. We defrned indi-
vidual locks for each file descriptor to allow as much parallelism
through this table as possible. tWe envisioned utilities like parallel
make, frnd, and grep that would be heavy file descriptor table
users. The individual locks created their own problems: for
example, two threads within the same task trying to dup2(2) could
deadlock trivially if the first thread attempted a dup2(X,Y) while
the second thread attempted a dup2(Y,X). For any situation
requiring the acquisition of two file descriptor locks, we ordered
the lock attempts by lock address to guarantee that no deadlock
could result.

The interactions between pathname to inode translation
(namei), inode fetching (iget) and filesystem attaching and
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detaching (smount, umount) become slightly more complex in a
multiprocessor environment. iget mast cross mount points from
the top of the frlesystem hierarchy on down; iget detects
mounted-on inodes and automatically fetches the root inode of
the mounted filesystem. namei performs the opposite task when
translating '0. . " in pathnames it occasionally must cross a

mount-point going back up the frlesystem tree.
In both cases, the original code "knew" that a filesystem could

not be added to or removed from the mount table while namei or
iget was active. In our multiprocessor kernel that assumption
becomes invalid. The mount table was given a read/write lock,
providing maximum parallelism for frequent operations, ví2.,

namei and iget, and adding minimal complexity to smount and
umount. Had we used a mutual exclusion lock, namei and iget
would have serialized across mount-points. On the other hand, a

flag-based mechanism or some other lock that couldn't be held
across an I/O would have significantly complicatedthe smount and
umount code. By taking the mount-table-lock for writing, the
umount code prevents namei and iget from crossing mount-points,
thus making it easy to determine whether a filesystem is inactive.
smount holds the mount-table-lock writeJocked to eliminate
other races. Since smount and umounl are both infrequent opera-

tions, the typical case where the mount-table-lock is held read-

locked presents no bottleneck whatsoever.
There were a number of minor annoyances related to the use

of global variables. One embarrassing instance occurred with the
bmap subroutine. We overlooked the read-ahead variables,
rablock and rasize, maintained so that the callers of bmap know
what block to request on a read-ahead operation. This omission
on our part turned out to be insidious: for a very long time we

weren't aware that there was any problem at all. The read-ahead

variables were frequently over-written by another thread before
they could be used by the thread that originally set their values.

The resulting buffer read-ahead calls were nearly useless. Because

the failure resulted in decreased performance but not in system

failure (panic) we had no reason to suspect the existence of the
problem. In fact, the problem was finally detected only because

we noticed an unusual number of read-ahead calls into the buffer
cache for disk blocks that should not have been the target of
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read-ahead operations. We eliminated the global variables and
forced bmap users to supply call-by-reference read-ahead
variables.

Encore Mach/O.5 eliminated the unix-master restnction for
roughly four dozen frequently used filesystem calls. In fact, only a
few of these calls are heavily used but parallelizing those required
modifying data structures used by the others. We were thus
rewarded with a large number of parallelized filesystem calls "for
free."

3.3 Performance Analysis

3.3.1 The Benchmark

The performance analysis effort used the Neal Nelson Business
Benchmark INNB 1986], a commercially-available set of system
benchmarks. The NNB is oriented towards traditional UNIX
filesystem operations. V/hile Mach has a notion of memory-
mapped files (and this notion has become popular in various
UNIX dialects) we were more interested in chancteñzing the
improvements we had made to the 4.3BSD compatibility code.
The NNB fit the bill: it is simple to use, popular, and results are
available for a wide variety of systems.r

The Neal Nelson Benchmarks consist of 18 separate tests
oriented towards measuring frlesystem and processor performance.
Space limitations force us to confine our discussion to only four of
those tests. Here are brief descriptions of them:

Test #1. "The Average [Jser": various calculations and frlesystem
functions intended to represent the average user at work.

Test #3. Disk I/O: 250 iterations of a loop with a mixture of
filesystem I/O functions.

Test #8. 500K Function Overhead Loop: call an empty function
many times.

Test #18. Random Disk Tests: random reads from the disk.

l. The results we obtained are used only for comparisons internal to Encore. The data
derived from the NNB suite are reprinted here in the format required by, and with
the permission of, Neal Nelson and Associates.
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The NNB driver is compiled with an option to select the max-
imum number of users to simulate during the benchmark run, typ-
ically between 20 and 60. During the course of the run, the driver
executes a test program with arguments that select one of the 18

tests. The driver begins by executing one copy ofthe test program

and recording the completion time for the test. The driver then
executes two copies of the test program, as nearly simultaneously
as it can manage, and records the completion times for those tests.

This process is repeated until the driver has executed up to the
maximum number of test copies requested.

3.3.2 Test Conditions

The NNB suite was run on a Multimax-32O configured as follows:

. 3 APC-01 CPU boards, 2 two-MIPS NS32332 CPUs per card,
total 12 MIPS

. 2 SMC-16 memory cards, at 16 megabytes each, total32
megabytes

. I EMC-I, with one Ethernet interface and one masstore
interface

. I CDC Sabre 1.2 gigøbyte disk drive, with average access

time of 8.3 ms.

. I SCC, the System Control Card (irrelevant to this discus-
sion)

As with all NNB runs, the system was brought to multi-user
mode and a representative of Neal Nelson Associates downloaded
and executed the benchmark. There were no other users logged
in. There was substantial overall network traffic but only broad-
cast packets were sent to the benchmark machine. Network pack-

ets were therefore processed by the system; however, we presume

that all benchmark runs should have been affected to approxi-
mately the same extent. We also ran unofficial benchmarks from
single-user mode with the network interface disabled and achieved
nearly-identical results; the differeûces were statisticaþ
insignifrcant. A single biodone-thread was present and active as

needed. The slcintr-thread was present and would have been
active whenever the console presented input to the system so the
console was not used.

82 Joseph Boykin and Alan Langerman



Both Machl}.2 and Mach/0.5 booted from the same root parti-
tion and shared the same user partition. The NNB suite resided
on the user partition and all working frles for the suite were con-
tained on that partition, as well.

The NNB was compiled for 20 users. (At larger numbers of
users, the tests take a long time to run. In the future, we hope to
have the opportunity to reserve a test machine for sufficient time
to run a 60 user test.) The entire suite was run againstMachl0.2,
the "serial" kernel, and Mach/O.S, the "parallel" kernel.

3.3.3 Test Results

The overall results indicate that Mach/O.5 does a substantially
better job of exploiting the parallel architecture of the Multimax
than does MachlD.2. We will discuss some specifrc cases frrst and
close with the most general test. The compute-bound tests, such

as NNB #8 (see Figure 1), revealed no signifrcant performance
improvement in Mach/O.5 over Mach/O.2. Although the graph

shows a small difference between Mach/0.5 and Mach/0.2, the
difference is largely attributable to round-off error. All of the tests

are coded to record only the time consumed by their CPU-bound
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portions, and both MachlD.2 and Mach/0.5 distribute user-level
computation to any available processor, so both versions of the
operating system delivered similar results on the compute-bound
benchmarks. This test is included as a control. NNB #18 yields
more relevant results (see Figure 2). This test lseeks and reads
from different parts of a working file. Each simultaneously execut-
ing copy of the test has its own working frle. The test demon-
strates a significant performance improvement for approximately
6-10 simultaneously executing copies of the test. However,
IÙ'4achlÙ.2 degrades more slowly than we would expect and at
roughly eight simultaneous tasks Mach/0.5 degrades surprisingly
quickly, approximating the performance of Mach/0.2 from eleven
through twenty simultaneous tasks. The primary culprit appears
to be the bfreelist-lock, which our statistics demonstrated to have
a miss ratio an order of magnitude worse than the next most fre-
quently used lock. The bfreelist-lock is occasionally held for long
periods of time while walking the buffer freelist or while waiting
on a buffer lock. NNB #3 tests disk I/O by explicitly seeking to the
beginning of the working file and performing frve sequential 512-

byte reads followed by frve sequential 512-byte writes, after which
random seeks and reads are done against the working frle. This
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Figure 2: Random Disk Tests under Is'fachl}.2 and Mach/O.S
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Figure 3: More Disk I/O on Mach/0.2 and Mach/O.S

loop is repeated 250 times. Once again, each task has its own
working frle. Mach/0.5 clearþ out-performs Mach/O.2 until about
eight simultaneous tasks, when decay sets in (see Figure 3). The
main factor once again appears to be the bfreelist-lock, which
displayed an unusually high miss ratio on this test as it did on test
#18. NNB #1, representing the average user at work, nicely sum-
marizes the current level of filesystem parallelizatíon (see Figure
a). While the Neal Nelson Benchmark suite suggests that
Mach/O.5 suffers from one or more as-yet-unidentifred hotspots,
Mach/O.S represents a substantial improvement in ûlesystem paral-
lelism over Mach/0.2. We have already benefrted from our incre-
mental approach to parallelization by quickly bringing up a work-
ing system and then concentrating on parallelizing the worst
bottlenecks frrst.

3.3.4 Future Work

Future filesystem parallelization enhancements will be guided
chiefly by analysis oflock contention statistics to detect
bottlenecks. Undoubtedly some of this work will focus on reduc-
ing bfreelist-lock contention as well as on improved inode and
buffer locking. Selective use of inode read locks could dramati-
cally increase parallelism on commonly-used frles and directories
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Figure 4: The Average User Working under Machl0.2 and Mach/O.S

and could be achieved with small modificatiorrsto namei, iget,

and rwip. An additional interface to the buffer cache could be
provided for the case where a buffer is going to be read but not
written. (bread must assume that the buffer will be modified by
the caller.) In this case, the buffer cache could readJock the
bufer, allowing it to be shared by other readers.

More aggressive optimizations are conceivable. For example,
inode locking as a means of preventing simultaneous overlapping
modifrcations of frle data largely could be eliminated. Buffer lock-
ing can synchronize modifications to the same block of frle data.

Inode locking could be restricted to the cases where the frle's size

would change or the I/o would span multiple ñle blocks. An
optimization of this nature might have a benefrcial effect on data-

base operations against large, random-access frles.

Finally, the direction of our work will change somewhat as we

incorporate the latest CMU release of Mach, which contains a
vnode layer and client and server NFS. This work is already well
under way and has had a major impact on fi.lesystem locking
strategies.
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4. Network Parallelization

Parallelization of the network subsystem was accomplished by
dividing the network code into the same layers as defined by the
NO/OSI 7-layer model. Each layer, Link (device driver), Network
(IP, ARP), and Transport/Session (TCP, UDP) was examined and
parallelized separately. By so doing, we realized two benefrts.

First, multiple developers could work on separate sections of code
with only minimal interference. Second, lock contention and
overall performance could be examined and effort applied to only
those algorithms or data structures revealed to be bottlenecks.

4.1 General Lock Policy

The network code presented a fundamental problem for paralleli-
zatíon: not only could data transfer be initiated by the local user

but also asynchronously from the network. In other words, the
user may send packets to the network interface whenever he

wishes and (from the standpoint of the kernel) the network inter-
face may send packets whenever it wishes. This behavior is

different than that of the filesystem where interrupts do not gen-

erally represent unsolicited I/O operations but the completion of a
user-initiated event.

Rather than poll the network interface for new packets, the
4.3BSD code, triggered by a network intemrpt, pushes the packet

across multiple protocol layers all the way up to the socket queue.

In a kernel using locks to serialize simultaneous transactions, care

must be taken to prevent the obvious deadlocks that can result
from threads simultaneously traversing these layers in opposite
directions.

To prevent deadlocks, permit multiprocessor execution, and
encourage a speedy initial implementation, we decided upon a
straightforward locking policy: each protocol would have a single,
global lock guarding its data. A protocol's lock would be taken
when using any associated protocol code and released when the
protocol invoked a lower or higher layer. A thread that could not
immediately acquire one of these locks would be put to sleep and
awoken when the lock became available. This scheme was

Mach/4.3BSD: A Conservqtive Approach To Parallelization 87



sumcient for protocols such as ARP which have little traffic, but
not acceptable for IP, TCP and UDP where there is significantly
more traffic. For these "high-use" protocols, we ultimately
developed frner-grained locking schemes on a per-connection
basis.

The protocols we parallelized included TCP, UDP, ICMP, ARP
and Ip. rWe did not have the time or the need to parallelize other
protocols present in the 4.3BSD distribution, such as Xerox NS or
VMTP from Stanford.

A number of asynchronous kernel threads were created to han-
dle timer based events for the various protocols. Under 4.3BSD

all timer based operations, such as connection time-out, keep-alive
transmission, and packet retransmission are performed at
intemrptJevel from the callout queue. As these actions may need

to take locks, all such operations were moved into separate kernel
threads.

4.2 Link Layer

The link layer primarily consists of device drivers. The Multimax
uses intelligent controllers for all I/O operations, including Ether-
net. Refer to Section 23 for the details of interaction with the
Ethernet device driver.

4.3 Network layer

The network layer consists of the IP, ARP and ICMP protocols.

4.3.1 ARP

ARP packets are handled by two kernel threads with a single glo-
bal lock around all ARP data structures. One of these threads
processes incoming ARP packets; the second thread is used to time
out old entries in the ARP table. While finer-grained locking has

been considered, analysis of lock statistics shows that there is little
lock contention in this area and we have concentrated our efforts
elsewhere.
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4.3.2 rP

The IP code is almost completely free of locks. Most packets pass

through the IP layer without ever taking a lock. The major excep-
tion is packet fragmentation and reassembly, which is controlled
by a single lock. On networks where there is a great deal of Ip
fragmentation, this single lock may be a bottleneck; however, with
a single exception, on most local area networks there is no IP frag-
mentation. Even our Internet connection receives only an occa-
sional IP fragment.

The addition of Network File System (NFS) functionality will
create a greater need for IP fragmentation of UOp packets.
Currently, Mach does not support NFS but when NFS support
becomes available we will revisit the issue of IP fragmentation.

A separate kernel thread was created to handle IP timeouts.
The only use of these timeouts is to remove old fragments from
the queue. A thread was required as the IP lock needs to be held
during this operation.

One interesting problem existed with incoming source routes.
These are IP options to be used in replies to the incoming mes-
sage. The original 4.3BSD implementation used a static structure
to contain this information. As IP is a state-less protocol, there is
no "connection" information maintained. A classic uniprocessor
assumption was made that no other thread could change the data
before the reply was sent.

With no per-connection structure to store this information, a
place needed to be found to store the information. The solution
used was to save the information in Mach's equivalent to the
4.3BSD u-area.

4.3.3 ICMP

The ICMP code is similar to IP in that few locks are required. In
fact, the only lock is in the case of REDIRECT requests, i.e.,
changes to the route table. Management of the route table is
described below.
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4.3.4 Route Table

Routing information may be used by any network layer protocol.

It is currently used by both IP and ICMP. Our analysis has shown

that the routing data structures, while frequentþ used, did not
warrant fine-grained locks. The reason for this is that the time
spent within the routing code is relatively short. To provide for
increased parallelism, the routing structures are protected by a
read/write lock rather than a mutual exclusion lock.

The existing 4.3BSD code already had a reference count on the
route table entries. This reference count is protected under lock
and assures us that routing entries will not be unexpectedly

deleted.

4.4 Transport/Session layer

The TCP and UDP protocols were parallelized in almost identical
ways. For both of these protocols a linked list of all connections
is maintained. In the Mach/O.5 implementation described in this
paper, a mutual exclusion lock protects all operations to this list,
including lookups. A new version of the kernel which uses

read/write locks has already been implemented to allow simultane-
ous lookups.

To find the correct connection the global lock is taken prior to
calling in-pcblookup0. Once the connection is found, a reference

count in the per-connection ínpcb structure is incremented
(preventing the deallocation of the structure), the global lock is
released and the inpcb lock acquired, thereby guarding the connec-

tion against simultaneous access. This lock is held during all
packet processing. This lock also implicitly protects the tcpcb or
udpcb structure pointed to by the inpcb, as appropriate. While it
may be possible to release the lock, or to use a read/write lock,
current statistics do not suggest that such a change is warranted.

In addition to the reference count added to the inpcb, another
flag was added for protocols such as TCP to indicate that the con-

nection is being closed. This field \ryas necessary to prevent race

conditions, for example, further transmission attempts while clos-

ing the connection.
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The single major difference between TCP and UDP is that TCP
provides reliable data transfer. This implies the need for
retransmission, maintaining connections, etc. Much of this
activity is driven from two timers; "fast" (200ms) and "slo\ry"
(500ms). As the TCP connection chain must be traversed during
these timeouts and locks taken, separate kernel threads were
created to handle each of these timeouts.

The 4.3BSD code uses the callout queue to implement
timeouts. Having the entry in the callout queue awaken the
timeout threads would have worked, however, it would also
require that timeout routines be rewritten as threads. To work
around this limitation, two additional threads were created,
pffast-thread and pfslow -thread, whích call the per-protocol
timeout functions. Thus, an implementation could either single
stream timeout functions, or wake additional threads for increased
parallelism. In our current implementation, all of our timeout
functions are implemented using separate threads, providing
greater parallelism.

4.5 Miscellaneous

The user layer and protocol layer are quite separate in the 4.3BSD

model. The user layer interacts through system calls such as

read(z), wríte(z\, send(z), and recv(2). Each of these calls ulti-
mately uses a socket structlrre, each of which now has its own
lock. All operations on the socket are protected by this lock.
When the user sends data, the data is chained to the socket while
the socket lock is held. Receive operations dequeue data from the
socket, also under lock. Lower level protocols that work with
sockets, such as TCP and UDP, must not only take the relevant
ínpcb lock but any appropriate socket locks as well.

The network memory pool is almost exclusively made up of
mbufs, which come from two pools, the mbuf list and the cluster
list. mbufs may be allocated or deallocated in both intemrpt and
thread context, so each list has its own simple lock. Although
mbufs are used widely in the 4.3BSD code, the implementation
simply required adding locking calls to a few macros and subrou-
tines. One signifrcant change was creating threads to allocate
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additional memory when needed. These threads permit blocking
during mbuf and cluster memory allocation.

Under 4.3BSD UNIX pipes use sockets for I/O. Connecting
two sockets together required a signifrcant amount of work to
avoid deadlock when attempting to take the two socket locks. A
solution similar to the dup2 problem was used here - socket pairs

were always locked by taking the lock of the lowest addressed

socket first. V/ith only this exception, the remainder of the net-
work parallelization allowed pipes to operate in parallel as well.

4.6 Parallelized Network Calls

The network parallelization effort allowed alatge number of
4.3BSD calls to execute in parallel and permitted outgoing and
incoming packets to be handled on any processor. As with the
frlesystem code, a few calls were heavily used and the remainder
were parallelized because they shared data structures with the
performance-sensitive routines.

4.7 Network Perþrmance AnalYsis

There are many components within the network subsystem that
affect performance. While we would have liked to measure the
performance of individual pieces of the network code, for our pur-

poses here we present an analysis based on total TCP throughput.
Unfortunately, there are no standard network performance tests

similar to the disk I/O tests performed by the Neal Nelson Bench-

marks. Therefore, we constructed our own network performance

tests.
The fundamental test we developed creates a TCP connection

to a remote system and repeatedly sends data using the wríte(Z)

system call. The recipient simply reads and discards the data.

The size of the write requests was varied using values of 1,2, 10,

64, 100, 512, 1000, 2000, and l6K bytes. During the development
of these tests we experimented with other values but did not frnd

that they yielded much additional information. The total amount

of data sent was controlled so that the length of the test was at

least five seconds and ran no more than ten minutes. These times

were chosen to provide steady-state performance without forcing
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the benchmarking process to become needlessly lengthy. Only
time to transfer the data was counted; time to establish and close
the connection was not included. For each request size the experi-
ment was repeated three times and the average of the three runs
was used in the accompanying graphs.

The test just described uses only a single TCP connection. We
created another test using multiple copies of the single-stream test.
Data was also collected while running 2,3,5 and l0 simultaneous
copies. As before, the multiple connection experiments were run
three times and the average of the three runs was used.

The systems used to run these tests were two Multimax-320
systems, each confrgured as follows:

. 4 APC-01 CPU boards, 2 two-MIPS NS32332 CPUs per card,
total 16 MIPS

. 5 SMC-16 memory cards, at 16 megabytes of memory, total
80 megabytes

. I EMC-I, with one Ethernet interface and one masstore
interface

. I CDC Sabre disk drive

. Private Ethernet connection between these two machines

Baseline measurements were taken using the Mach/O.2 "serial"
kernel (see Figure 5). For each request size from one through 512

b¡es there was almost no increase in aggregate throughput when
the number of connections was increased. Aggregate throughput
only increased with additional connections when the request size
exceeded 1000 bytes, and then by only 170lo (1000 byte requests) to
42.5o/o (l6K byte requests). As expected, the master CPU, forced to
process all interrupts and incoming packets, as well as TCP, IP,
and ARP requests was limited in the amount of network traffic it
could handle. The performance improvement observed with
larger packets resulted from the amorlization of the (fixed-size)
TCP/P packet overhead across a larger quantity of data. Analysis
of the Mach/O.S aggregate throughput (see Figure 6) shows that
increasing the number of connections increases the aggregate

throughput. For example, when making 1000 byte requests (typi-
cal for FTP) two simultaneous connections had 83%o additional
throughput over a single stream; obviously, the theoretical
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Figure 5: Mach/0.2 Network Performance

maximum would be 100%. Ten simultaneous connections had

5t7o/o additional throughput. Many multi-processor benchmarks

attempt to attain linear speedup as the number of simultaneous

tasks increase. While this goal also applies to benchmarks of net-
work performance on a multi-processor, additional constraints
prevent the network subsystem from achieving linear speedup.

The speed of the transmission line represents an absolute mÐ(-
imum on network throughput regardless of the number of
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Figure 6: Mach/0.5 Network Performance
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processors used. Unbounded linear speedup, in this case, is not
possible. Our tests \ryere run using standard lOM bit/second Ether-
net. The maximum theoretical data throughput of 1.25M
bytes/second does not take into account TCP header, IP header,
source and destination address, CRC b¡es, preamble, and colli-
sions. In addition, the TCP protocol also requires acknowledg-
ments from the receiver, each of these requiring a 64 byte packet.
Given all of this, the effective maximum transfer rate is much
closer to I Million b¡es per second. The tests described in this
paper show a maximum throughput of approximately 803,000
b¡es per second, with every sign that additional connections
could be supported, further increasing throughput.

As we have mentioned, the design of the network paralTeliza-
tion was done under a framework where separate functional areas

of the network, such as IP, ARP, TCP and UDP were all parallel-
ized separately. For the most part, changes in one area were not
dependent upon another. We analyzed performance and lock con-
tention in these separate areas and optimized only those areas
which would yield the greatest payoff. An example of this
occurred between version MachlD.4 and Mach/0.5. Figures 7 and
8 show performance results for the serial and two parallel versions
of Mach. Mach/O.4 contained a global lock around the TCP sub-
system and another around the IP subsystem. Mach/0.5 removed

1 00000
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Figure 7: Single-Stream Performance, Mach/O.2 vs. Mach/0.5
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the IP lock completely; the only locking done within the IP layer is
around the fragmentation/reassembly queues. In addition, the glo-

bal lock around TCP was removed in favor of a per-connection
lock. Analysis, design and implementation of these changes were

accomplished over a two-month time span. The increased perfor-
mance, especially with multiple connections, is obvious from the
graphs. Modern computer systems require ever increasing perfor-
mance from their networking facilities. Network subsystem per-
formance is crucial on the Encore Multimax, which depends on an
Ethernet interface for all user terminal traffic. Parallelization of
the network code has significantly enhanced multi-stream TCP
performance.
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Figure 8: Aggregate Performance Gained by Incremental Parallelization

5. Debugging

Encore has created a number of tools to assist in the debugging of
multiprocessor kernels. First, our standard user-level, highJevel
language debugger has been modified slightly to understand
remote kernel debugging. All Encore operating system kernels

include a very low-level, nearly stand-alone debugging module that
understands how to observe and control the execution of the
larger kernel. This debttgging module communicates over a serial
line with a production machine running our highJevel debugger.
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The module permits single-stepping, tracing and observation of
the activities of any processor on the machine being debugged.
The highJevel debugger allows the user to control the target kernel
at the level of C statements or assembly-language instructions. In
fact, the very same debugging module and highJevel debugger are
used to debug our low-level firmware and diagnostic code. Need-
less to say, these tools are invaluable.

For our project, we also developed a standard approach to
coding locks. All locks are coded as macros, so the developer may
modify a single deûnition to include extra debugging code or even,
on occasion, to change the type of lock being used. A single,
compile-time option indicates whether extra lock debugging code
is to be included in the kernel image. Another compile-time
option causes the locking routines to record statistics about lock
contention rates.

When compiled for lock debugging, the lock routines them-
selves record the program counter where the lock was locked and
unlocked but only for mutual exclusion locks, which is why many
of our locks start out as mutual exclusion locks and are changed to
read/write locks after being debugged. The lock routines also
record lock ownership and check whether locks are being re-taken
by the same owner or being released without having first been
acquired (two common errors). Note that the locking routines will
always record lock ownership, regardless of compile-time options.
Lock ownership is a valuable clue when analyzing crash dumps.

Frequently, a function will include at its beginning debugging
assertions about the state of various relevant locks. Especially
important are assertions about locks that are expected to have
already been taken by another routine. Such assertions prevent
the vexing problem of unruly threads clobbering unlocked data. If
any ofthese assertions fail, the kernel panics.

The blocking lock routines optionally track interesting lock
statistics, including number of attempts, misses, forced re-
schedules, minimum and maximum wait times, and total time
threads spent waiting. Similar statistics have recently been added
to símplelocks.

These statistics can be retrieved and displayed at any time
with a simple user-level utility, allowing us to dynamically moni-
tor a running system to detect locks with high contention rates
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under varying workloads. This tool has been quite useful in guid-
ing our parallelization efforts.

6. Summary

The data demonstrate that Mach/O.5 is signifrcantly more parallel
than Mach/O.2 in terms of filesystem and network performance.
ril/e have a framework in place for incrementaþ increasing the
parallelism of the operating system.

We have reasoû to believe that current Mach/O.5 performance
is competitive with commercial operating systems for tightly-
coupled parallel architectures. A benchmark developed and run at
CMU compared the performance of Mach/O.5, running on a
Multimax-32O using 2-MIPS NS32332 processors, to that of another
vendor's commercial operating system running on 4-MIPS Intel
386 processors [Rashid 1989]. Single-stream, the benchmark com-
pleted half as quickly on the Multimax. By ten streams, however,
the Multimax completed the benchmark more quickly than the
system built on faster processors.

Our efforts to minimize source code modifrcations and to
always #ifdef the modifrcations we made are paying offtoday as

we merge our filesystem and network changes with CMU's latest
enhancements, including new networking features and a vnode
layer for the frlesystem.

Future work will focus on further improving the parallelization
of Mach/O.5's 4.3BSD compatibility code. In particular, remaining
frequently used or long-running system calls will be targeted for
parallelization. Signal-related system calls are now at the top of
our list. There are a number of other calls that only require
unix-master because they depend on updating one or two 4.3BSD

data structures (e.g., the proc table) that are maintaified chiefly for
the beneût of user-level utilities that read kernel memory. In par-
ticular, fork(z) and exit(2) fall into this category.

Mach/0.5 was released in August, 1989 to the twenty-five
Encore customers already running an earlier version of the paral-
lelized frlesystem and network code. The current release,

Mach/0.5.3, includes enhancements such as TCP and UDP
read/write locks described within this paper.
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