
Little Languages for Music
Peter S. Langston Bellcore

ABSTRACT: "Little languages" are programming
languages or data description languages that are spe-
cialized to a particular problem domain. In the last
decade, little languages have emerged to support a
multitude of tasks ranging from complex statistical
calculations to the construction of lexical parsers.
Meanwhile, in the last half decade, a multitude of
computer-controlled sound synthesis devices have
become available. Unfortunately, there has been lit-
tle overlap of these two development areas and the
software to support these new devices has been
rudimentary at best.

This report describes a handful of little languages
that have been designed for music tasks. Some of
them allow particularly dense encoding of musical
material or specify music at a higher level of
abstraction than "notes," others present musical
data in a form that is easy for users to read and
edit. In all cases the representations are machine-
readable and in most cases they can be "played" on
a sound synthesizer by a computer.

@ Computing Systems, Vol. 3 'No. 2 ' Spring 1990 193

I. Introduction

The areas of endeavor that require computer software support can

be broadly divided into three classes. First are those in which the
problems to be solved are known at the outset, so a single pro-
gram or suite of programs can be designed to provide all the
necessary functions. Most financial programming tasks fall in this
class (accounts payable, payroll, billing, etc.). Second are those
areas at the other extreme, in which few of the problems and goals

can be predicted in advance. Support for these areas must come
in the form of general-purpose programming languages that make
as few assumptions as possible about the problem goals and tech-
niques. The familiar, high-level programming languages
(FORTRAN, PL/\, Pascal, etc.) address these areas.

The third class consists of those areas that fall in between the
first two classes; areas in which enough is known in advance to
make the use of general-purpose programming languages unneces-

sarily tedious, but in which too little is known to make monolithic
does-everything-you'll-ever-want-to-do (DEYEWTD) systems possi-

ble. Software development often ûnds itself in this area.

Software support for tasks in this third class usually takes the
form of a programming environment or programs that "know" a

little about the task area, but make few assumptions beyond those

that characterize the area. The term "little language" is often
applied to such moderately general programs. Examples of little
languages range from the program awk (whích borders on being a
general-purpose programming language) through programs like bc,

lex, and make to systems like
^S

(which borders on being a
DEYEWTD). Much of the development in software engineering in
the last ten years has been in the area of'little languages; as Jon

I94 Peter S. Langston

Bentley says in [Bentley 1986], "Little languages are an important
part of the popular Fourth- and Fifth-Generation Languages and
Application Generators, but their influence on computing is much
broader."

Meanwhile,lgS2 and 1983 saw two unusual events occur in the
high-tech consumer electronics industry. First, representatives of
consumer electronics companies had agreed on a standard inter-
face for connecting electronic musical instruments together called
"MIDI."I In this intensely competitive industry, where compet-
ing, incompatible standards abound (YHS/Beta, RIAA/NIARTB,
NTSC/SECAM/PAL, to name a few), this was indeed an unusual
event. The second unusual event was the introduction of a key-
board synthesizer known as the Yamaha DX7. This was the frrst
"serious" sound synthesizer to appear with a list price below $2s
per oscillator. The DX7's low price was the result of mass-
production of the large scale integration circuit chips in it.
Thousands of DXTs have been sold. In the following six years

consumer music manufacturers and products have proliferated,
causing the cost of computer-controlled sound synthesis equip-
ment to drop even lower.

A common feature of these products, from the DX7 on, has
been the inclusion of the MIDI communication interface.
Whether the success of the MIDI standard was a result of the suc-
cess of instruments like the DX7 or vice-versa is a genuine
chicken-and-egg question. Neither would have been as successful
without the other.

Along with the plethora of digitally-controllable musical instru-
ments has come a plethora of computer software to control,
record, generate, and otherwise manipulate the digital data that
these instruments read and write. Most of this software has been
written for the hobbyist computers that have also been proliferat-
ing during this decade. Unfortunately, these computers are low
powered and support relatively primitive operating systems. As a
result, the available software is usually in the form of stand-alone
programs that must try to be DEYEWTD's (often failing to do
even one thing well), and that cannot interface with other pro-
grams directly.

l. "MIDI" is an acronym for "Musical Instrument Digital Interface."

Little Languøges for Music 195

At Bellcore we were lucþ enough to have a large selection of
powerful minicomputers running the UNIX operating system.

Although little, if any, of the commercially available music
software could be run on our systems, everything that would run
on our systems could be interfaced with everything else. All we
had to do was interface our computers to MIDI [Langston 1989a]

and then write all the software ourselves! In the process of writing
and using this music software we found ourselves doing the same

thing over and over again. So we started looking for ways to
make the common tasks easier and the little languages described
in this paper were born.

The meat of this paper is sixteen sections describing specifrc

aspects of these little languages. Three sections describe binary
formats and eleven describe AscII formats. All of the ASCII for-
mats were either developed (marked with a dagger in the following
list) or extended by the current author. Each format has one or
more associated programs that process it; some convert to other
formats and some perform transformations on the data; there are

over one hundred such programs in all (see Appendix B and the
"Little Language Characteristics" table in Section a). Although
there is not room to give more than a one-line description of each

of these programs, two of the programs are described in detail;
one is a very general program (mpp) that is a preprocessor for all
of the ASCII formats; the other is a program (lick) that performs
an unusual conversion on one of the ASCII formats.

The sixteen sections are:

Binary Formats

MIDI Standard real-time synthesizer control language.

MPU Standard time-encoded synthesizer control language.

SMF Standard time-encoded synthesizer control and music
description language.

ASCII Formats

MPPt Music preprocessor program.

MA ASCII time-encoded (low level) synthesizer control
language.

196 Peþr S. Langston

MUTRANT Ancient melody description language.

MUTf Melody/hannony description language based on
MUTRAN.

¡4t Melody/harmony/lyric description language based on
MUTRAN.

DPT

SDT

Drum pattern description language.

Melody/hannony description language.

CCCt Accompaniment (chord chart compiler) description
language.

CCt Harmonic structure (chord chart) description
language.

Gcf Guitar chord description language.

LICKT Banjo improvisation generator program.

TABt Stringed instrument music notation language.

DDMT Algorithmic composition language.

The generation of these little languages was not as monumen-
tal a task as it might sound for three reasons. First, a few other
people in the same situation have been most helpful either as col-
laborators or as sources/sinks for software efforts. These include
Michael Hawley [Hawley 1986], Gareth Loy, Daniel Steinberg,
and Tim Thompson [Thompson 1989; 1990]. Second, the
software tools available with the UNIX operating system make
software development easy. Third, creating a little language to
support a class of activities is often only marginally more work
than writing a program to perform an instance of those activities
and is certainly a more rewarding (and therefore motivating) task.

The languages described here have been in use for periods
ranging from six months to six years and have made possible pro-
jects like the algorithmic music composition telephone demo

[Langston 1986] and the algorithmic background music generator
"IMG/l" [Langston 1990] as well as dozens of other, in-house pro-
jects [Langston 1988; 1989].

Little Languøges for Music L97

2. Binary Formats

There are several machine-readable formats that encode musical

data specifrcally for use with synthesizers. These are binary for-
mats and as such they are difficult (if not impossible) for humans

to read directly. They were designed to specify the details of syn-

thesizer actions in as dense a form as possible, often packing

several ñelds into a single byte. Further, they depend on

knowledge of prior data to evaluate following data; they cannot be

interpreted from an arbitrary starting point in the middle of a
sequence (unlike a tape recording that can be played from any

point within a piece). An important limitation of these encodings

is that, in order to save space, assumptions lvere made about the

kinds of events that would be recorded (e.g. pitches would be

based on fixed chromatic scales) making extensions to other sets

of assumptions cumbersome at best.

Because of their density and the availability of synthesizers

that read them, these formats may be the best choice for program

output. All of the little languages described in this paper have

associated programs that convert them to at least one of these

binary formats. A brief description of three of these binary for-
mats is included here to provide an understanding of the range of
events we can hope to control with little languages for controlling
synthesizers.

2.1 MIDI Format

MIDI was the result of a multi-vendor task force charged with
designing a standard digital interchange protocol for sound syn-

thesizers. It has been a resounding success. Virtually all sound

synthesizer manufacturers now make their devices read and/or

write tvtIoI format. Many other kinds of devices also use MIDI
data to control their operation - mixers, echo units, light controll-
ers, etc. A whole industry exists to supply MIDI hardware devices

and MIDI software. The authoritative description of the MIDI for-
mat is the "MIDI 1.0 Detailed Specifrcation" [MIDI 1989] pub-

lished by the International MIDI Association.

198 Peter S. Langston

MIDI is not a little language in the usual sense of the term,
however, a description of it is included here because MIDI is the
lingua franca of sound synthesizers. Any music representation
that needs to be "playable" on modern sound synthesis equipment
must be convertible into MIDI.

MIDI data are represented as a serial, real-time data stream
consisting of a sequence of messages representing synthesizer
"events" such as note-start, note-end, volume change, or parame-
ter selection. MIDI messages consist of one status 8-bit byte fol-
lowed by zero, one, or two data bytes (except in the case of mes-
sages that start with a system exclusíve status b¡e, which may
have an arbitrary number of data b¡es followed by an end-of-
exclusive status byte). Status bytes have the high-order bit set
while data bytes have the high-order bit clear. The defrned values
for status bytes are shown in Figure 1.

MIDI describes "events" (e.g. hitting a key or moving a con-
trol) rather than "notes." In order to encode a "note," a pair of
"events" must be specified - a "key-on" event and a "key-off'
event. The MIDI standard defines key-on and key-off events as
having two associated data bytes: a key-number (i.e. pitch) and a
velocity (or loudness). Key-numbers range from 0 to 127,0 with
60,0 representing middle C. In this paper we will use the conven-
tion that middle C is called eeç3tt2 and the note one half-step
below it is called "82." Thus 0 represents C in octave -2 or
"C-2') and l27 ro represents G in octave 8, "G8." Velocities range
from I to l27 ro in arbitrary units with I being the slowest
(quietest) and 64,0 being mezzo-forte.

MIDI allows up to sixteen channels of data to be multiplexed
into a single stream by specifying a channel number in each status
byte (with the exception of the system messages which are global).
Synthesizers can be confrgured to accept messages on a single
channel or on all channels ("omni mode").

In order to minimize the number of bytes transmitted, the
MIDI specifrcation allows the omission of a status byte if it is
identical to the preceding status byte. Thus, a series of key-on

2. There is some confusion on this matter; the nomenclature that has been in use by
musicians and scientists for many years designates middle C as "C4." Unfor-
tunately, the Yamaha corporation chose to use "C3" for middle C and by dint of
their importance in the market many manufacturers have followed suit.

Little Languages for Music i99

Status
byte

Number
of data

Efect on
running
status

clear

none
none
none
none
none
none
none
none

Channel
(n = o-Ð
Message

8n
9n
An
Bn
Cn
Dn
En

F1
F2
F3
F4
F5
F6
F7

F8
F9
FA
FB
FC
FD
FE
FF

Key Off
Key On
Polyphonic After Touch
Control Change
Progtam Change
Channel After Touch
Pitch Bend

F0 System Exclusive

undef.
Song Position Pointer
Song Select
undef.
undef.
Tune Request
End of Sys.Excl.

Timing Clock (TCIP)

undef. (TCwME)
Start
Continue
Stop (TcIs)
undef. (clock to host)
Active Sensing
System Reset

28n
29n
2An
2Bn
lCn
lDn
2En

clear
2 clear
1 clear

clear
clear

0 clear
0 clearSystem

Message 0
0
0
0
0
0
0
0

Figure 1: MIDI Status Bytes

events only requires the key-on status byte be transmitted for the
frrst key-on event. This is called "running status." To take
advantage of running status most synthesizer manufacturers allow
a key-on event with a velocity of 0 to be used as a synonym for
key-off. Therefore, the sequence 0x90 0x3c 0x40 0x3c 0x00
represents two events, a key-on event for a mezzo-forte middle C
and a key-off event for middle C.

Figure 2 shows the MIDI data for a C major scale printed as

ASCII equivalents for the binary data, one MIDI message per line
with a comment appended. You may wonder why the MIDI data
on the left and the comments on the right don't seem to jibe very
well. If so, keep in mind that the MIDI data is shown in

200 Peter s. Langston

c5 7 select program (voice) 8 on channel 6
b5 4 7f set foot controller value to L27

on channel 6
95 3c 40 C3 key-on, channel 6, vel=64 (nezzo-forte)

3c 0 C3 key-on with vel=O => key-off
(note running status)

3e 40 D3 key-on
3e 0 D3 key-off
40 40 E3 key-on
40 0 E3 key-off
4t 40 F3 key-on
41. 0 FB key-off
43 40 G3 key-on
43 0 G3 key-off
45 40 A3 key-on
45 0 A3 key-off
47 40 83 key-on
47 0 83 key-off
48 40 C4 key-on
48 0 C4 key-off

Figure 2: MIDI Data for a C Major Scale

hexadecimal, as is common for printed versions of tttlpl data, and
although hexadecimal numbering starts at 0, synthesizer manufac-
turers number voices (a.k.a. "programs") and channels starting
with 1. (And MIDI data was not designed for human consumption
anyway.)

Audio example I on the compact disc was generated from the
data in Figure 2. The data is played three times, once with "no"
delay between notes, once with a tenth of a second delay after
every MIDI message, and once with more syncopated delays.
Since MIDI transmission occurs at a rate of about three bytes per
millisecond (see "Technical Notes on the Audio Examples") the
frrst playing takes less than sixteen milliseconds.

MIDI data is real-time; nothing in the MIDI specification tells
"when" an event is to occur; everything happens when the data is
sent. For the purpose of slaving one synthesizer to another this is
perfectly adequate; when the ûrst synthesizer makes a sound the
slave synthesizer also makes a sound; whatever controls the first

Little Languages for Music 201

synthesizer specifres the timing for both. However this is not ade-

quate when we want to store a performance in a file on a com-
puter; something must encode the timing information with the
MIDI data. Either the MPU format or the SMF format can pro-

vide the needed timing information.

2.2 MPU Format

The MPU data format gets its name from an early hardware inter-
face device manufactured by the Roland Corporation, the MPU-

401. This device interconnects a computer and synthesizers, pro-
viding timing functions and other features such as tape synchroni-
zation and a metronome. Several companies make similar inter-
faces that implement the same protocols in order to take advan-

tage of existing software.
The Roland MPU-401, when run in its "intelligent" mode,

accepts "time-tagged" MIDI data, bufers it up, and spits it out at
the times specifred by the time-tags. The time-tags are relative
delays indicating how many l2Oths of a quarter-note to wait
before sending out the next MIDI data. Notice that the MPU's
timing resolution is one 480th note. The maximum allowable

time-tag is 239,0 (EFr6). Thus, a mezzo'forte quarter-note of mid-
dle C immediately followed by a mezzo-forte sixteenth-note of the
G above it and then a forte C major chord lasting a dotted eighth
note could be encoded by the binary data shown in Figure 3.

Audio example 2 on the compact disc was generated from this
data. The same data is shown, rearranged for readability and

commented, in Figure 4.

00
00
00
43
00

3c 40
43 40
3c 56
5a 80
43 00

Figure 3: Time-Tagged MIDI Data

78 80 3c 00
le 80 43 00
00 40 56 00
3c 00 00 40

90
90
90
56
00

202 Peter S. Langston

tine status
00 90

key vel
3c 40

delay 0, key-on, key 3cru=60r0=C4, velocity 40ru=64r0

3c 00
delay 79ru=L2Oro, key-off , key 3cru=60r0=C4

00 90 43 40
delay 0, key-on, key 43ru=67r0=G4, velocity 40ru=64r0

le 80 43 00
delay leru=30r0, key-off, key 43ru=67r0=G4

00 90 3c 56
delay 0, key-on, key 3cru=60r0=C4, velocity 56ru=86r0

00 40 56
delay 0, key-on, key 40ru=64r0=84, velocity 56ru=86r0

00 43 56
delay 0, key-on, key 43ru=67r0=G4, velocity 56ru=86r0

5a 80 3c 00
delay Saru=90r0, key-off, key 3cru=60r0=C4

00 40 00
delay 0, key-off, key 40ru=64ro=84 (runniug status)

00 43 00
delay 0, key-off, key 3cru=60r0=C4

Figure 4: Time-Tagged MIDI Data Explained

The MPU also defrnes some of the undefined MIDI status
codes to represent time-related events not covered by the basic
MIDI specifrcation. Figure I includes annotations for these extra
defrnitions. The value F9,u is used to indicate the presence of a
bar line and is called "Timing Clock With Measure End"
(TCWME). The value FD,u is used to alert the host computer that
a clock tick has occurred and is called "Clock To Host." Two of
the defined status codes are given modifred meanings by the MPU
to handle other time-related events. During recording, the value
F8,u "Timing Clock" is used ín place of a time-tag and without
any MIDI data to indicate that the internal MPU clock has reached
its maximum value, 240rci this code is called "Timing Clock In
Play" (TCIP). To represent a delay of 240rc clock ticks any other
way would require four bytes.3 Similarly, during playback, the

3. This can only be viewed as a way of saving space in stored ñles since timing bytes
are never transmitted in the MIDI stream and even if they were, TCIP codes, by
defrnition, only occur when no other data is being transmitted.

78 80

Little Languages for Music 203

MPU interprets TCIP as a delay of z4}roclock ticks. If an F8,u is

received after a time-tag it is treated as a no-op with the delay

specifred by the time-tag. In some cases, the value FC,u is treated

like TCIP; it appears without a time-tag when the MPU has been

told to stop recording, but data are still arriving.
The MPU format for storing MIDI is the lowest common

denominator for musical data storage in our system. Al1 the little
languages can be converted to MPU format which then can be

"played" on the synthesizers.

2.3 SMF Format

Although MIDI was originally designed to let synthesizers be inter-

connected in performance (i.e. real-time) situations, the designers

and users of UIU quickly became awafe of the need to save tim-
ing and other information with MIDI files. Toward this end, the
..standard MIDI flle format" (SMF) was established [MIDI 1988].

The standard MIDI ûle format is far broader in scope (if not

complexity) than the MPU format. To quote from the sMF propo-

sal; "MIDI files contain one or more MIDI streams, with time
information for each event. Song, sequence, and track structures,

tempo and time signature information, are all supported. Track

names and other descriptive information may be stored with the

MIDI data."
Had the SMF format existed when our music projects started,

we probably would have used it as the principal encoding for
music data; in its absence we used MPU format. Although we are

able to convert to and from SMF, its use has primarily been for
communication with other systems. A brief description of sMF is

presented here for comPleteness.

Figure 5 gives a fairþ complete BNF grammar for standard

MIDI files. In this grammar, double quote marks """ denote

ASCII quantities, square brackets " [] " denote two-byte quantities,

double square brackets " [[] I " denote four-byte quantities, unen-

closed hexadecimal numbers denote one-b¡e quantities, and

numbers separated by a colOn ": " denote ranges. The (varnun)

construct is a way of encoding unbounded numbers that the SMF

specifrcation calls "variable-length quantities." In these, values

are fepresented with z bits per byte, most significant bits first. All

204 Peter S. Langston

<SMF file>
(header chunk)

(fornat)
(ntrks)
<div>

<ticks per beat)
<ticks per sec>
(track chunks)

(track chunk)
<length>
(trk events)

(trk event)
(delta-tine>
(varnum)
(event)

(chan event)
(status byte>
(data)
<sysex event)
(var data)
(neta-event)
<type>

(header chunk) (track chunks)
I'MThd[t t6] I (f ormat) (ntrks)
<div>
tolltllll2l
[0:65535]
<ticks per beat) I

<ticks per sec>
lO:327671
[-32768: -1]
(track chunk) I <track chunk)
(track chunks)
ilMTrkx <Iength> (trk events)
llL:42949672951 l
(trk event) I

(trk event> <trk events)
<delta-time) (event)
(varnum)
00:7F I 80:FF (varnum)
<MIDI chan event) I

(sysex event) I (meta-event)
(status byte> (data) I <data>
80: EF

00:7F I 00:7F <data>
F0 (var data) I F7 <var data)
(varnum) 00:FF I <var data) 00:FF
FF <type> (var data)
00:7F

Figure 5: Partial BNF for SMF Format

bytes except the last have bit 7 set. The (var data) construct is
simply a <varnun> byte count followed by that many data bytes.

SMF files consist of "chunks." Each chunk is a sequence of
data bytes with a header that identifies the chunk type and length.
The SMF specification includes two chunk types: header and
track.

Header chunks give global information about the frle.
(f ornat) indicates whether there is more than one track data
chunk and whether multiple track data chunks are sequential or
simultaneous; <ntrks> is the number of track data chunks; and

Little Languages for Music 205

<div> specifies the units for the time-tags in the track data (either

in parts of a quarter note or seconds).

Track data chunks consist of a stream of time-tagged events.

The events can either be MIDI channel events, system exclusive

events, or SMF meta-events. MIDI channel events and system

exclusive events are as defined in the MIDI spec [MIDI 1989],

whereas meta-events are new. There are 128 possible meta events,

l5 of them are defined in [MIDI 1988].

00 02 [[0:65535]l Sequence Number

0l <var data> Text Event

02 <var data> CoPyright Notice

03 <var data> Sequence/Track Name

04 <var data> Instrument Name

05 <var data> LYric

06 <var data> Marker

07 <var data> Cue Point

20 01 00:255 MIDI Channel Prefrx

2F 00 End of Track

5l 03 t[[0:l67772t5lll Set TemPo

54 05 00:17 00:38 00:38 00:1E 00:63

SMPTE Offset

58 04 00:FF 00:FF 00:FF 00:FF
Time Signature

59 02 -7:07 00:01 KeY Signature

7F <var data> Sequencer-Specifrc Meta Event

Since these meta-events appear following a time-tag, they have

a location in time. This gives a temporal meaning to events such

as "End of Track" beyond the (redundant) information that no
more track data will appear. For more details on any of these

meta-events refer to IMIDI 1988].

206 Peter S. Langston

3. ASCil Formats

Obviously it would be arduous in the extreme to enter a piece of
music in any of the binary formats. Some form of symbolic entry
would be much more manageable, if less compact. An ASCII
representation of the MIDI or MPU data would be a good starting
point. It doesn't take much imagination to see a parallel between
generating MIDI binary data and generating binary machine code
data; in those terms, we're talking about using an assembler.

We describe a simple music assembler in the section on "MA"
format. Such an encoding format, because it converts human-
readable ASCII entities to compact binary entities on a one-to-one
basis, is necessarily less dense than the output it generates, but it
is completely general in that any possible binary output can be
specifled. As we move to higher levels of abstraction, the sym-
bolic form becomes more dense and the output becomes less gen-
eral. V/ith these "higher-level" languages it is important to target
the specifrc problem domain so that the smaller range of possible
outputs match those required. Several specifrcation formats, each
targeted for a specifrc domain, are presented here.

Some constructs are common to all of the little languages;
these have been separated out and implemented by a music
preprocessor called mpp. Several keywords appear in many but
not all of the languages and may have different meanings in each
language. To save space (and tedium), when a keyword appears
for the frrst time it will be explained fully; later uses of it will only
explain the differences. Comment lines, for instance, are
described under MPP and not mentioned again. Appendix A is a
table showing all the keywords and the places in which they are
used.

Our description of ASCII formats will start with the preproces-
sor, mpp, then go on to the simple assembler followed by the other
formats/programs.

Little Languages for Music 207

3.T MPP

The program mpp implements ASCII data frle control constructs
used to specify logical sections, repeats, etc. in a piece of music.
Input data lines are passed to the output as specifred by control
lines (see below). Five functions are provided by mpp: comment
stripping, conditional inclusion of sections, looping over repeats,

defrned symbol replacement, and skipping (ignoring) input.
The -c option inhibits stripping comment lines and blank

lines from the input. The default action is to strip out all lines
beginning $/ith "# " (i.e. sharp sign followed by a space) and all
lines consisting of just a newline character.

The command line -s argument can be used to specify which
"section" or "sections" will be generated; sections may be num-
bered with arbitrary non-negative integers. Note that a series of
sections can be generated by specifying a list of section numbers.

Section numbers may be separated by commas or blanks (requir-
ing quoting in the shell); ranges of section numbers are specifred

by the first and last section numbers (inclusive) separated by a
hyphen.

Control lines consist of one or more ûelds. A freld is either a
sequence ofnon-whitespace characters separated from others by
whitespace, or two or more such sequences enclosed in double
quotes ("). Control lines begin with a keyword freld and may con-

tain one or more argument frelds. Control lines begin with a key-

word and may contain arguments separated by whitespace. Any
input line not recognized as a control line is considered a data line
and is passed through unchanged. The various control line for-
mats and their meanings are:

anything
Any line beginning with a sharp sign (a.k.a. "number sign,"
"pound signr" "octothorper" "hash markro' "scratch markr"
or "the bottom right button on a touch-tone keypad") fol-
lowed immediately by a <space> or <tab> character is con-
sidered a comment and is not passed through to the output
unless the -c option has been specified (see above).

#ALLRPTS
The following input is applicable to all repeats at the current

208 Peter S. Langston

nesting level (the default). The ALLRPTS control is not used
to end repeats, ENDRPT (below) does that.

#ALLSECTS
The following input is applicable to all sections (the default).
The #ALLSECTS control can be used to end sections started
by #NOTSECT and #ONLYSECT (below).

#DEFINE symbol value
Replace all occurrences of the frrst (symbol) freld with the
contents of the second (value) field. Defrned symbols are
replaced immediately after the line is read and before any
other processing. Replacements will only take place if the
entire ûeld in the file matches the symbol freld. Forward
references are permitted.

#DOSECT # [#] ...
Act as if the following arguments had appeared prefixed
with -s on the command line. This functions much like a
subroutine call. The following three command lines are
equivalent: "#DOSECT I 2 3," "#DOSECT l-3,"
"#DOSECTS 1,2-3." DOSECTs may be nested, but beware of
recursion.

#ELSE

See IFNEXT, below.

#ENDIF
See IFNEXT, below.

#ENDRPT
End the current set ofrepeats and unstack one level of
repeat nesting.

#ENDSKIP
See SKIP, below.

#rFNEXr # [#] ...
The following arguments are section numbers. The data
between an IFNEXT and an ENDIF or ELSE will be included
in the output if one of the specifred sections will be the next
one output. This is often a convenient way to specify frrst
and second endings that depend on which section will fol-
low. When an ELSE is encountered it negates the result of

Little Languages þr Music 209

the preceding IFNEXT test. IFNEXTs may not be nested,
thus there is no ELIF construct.

#INCLUDE
Interpolate the contents of the named file (the argument)
here. The file will notbe read if mpp is currently skipping
input because of section, repeat, or skip requirements; (thus
control lines in the included file that might logically end the
skipping will not do so).

#NOTRPT#[#]...
The following input should appear in all repeats (at the
current level ofrepeat nesting) except those listed as
arguments.

#NOTSECT # [#] ...
The following input should appear in all sections except
those named in the arguments.

#oNLYRPT # [#] ...
The following input should only appear in those repeats (at
the current level of repeat nesting) listed as arguments.

#oNLYSECT # [#] ...
The following input should only appear in those sections
listed as arguments.

#REPEAT #
Begin a repeated section (ended by a matching #ENDRPT).
The section will be included the number of times specifred
as an argument. Repeated sections may be nested up to 8
deep.

#SKIP
Any data or controls between this and the frrst ENDSKIP
encountered are þored. SKIP/ENDSKIP may not be nested
and take precedence over all other controls. This is largely
a debugging aid.

The order of precedence (higþ to iow) among the various con-
trol lines is:

SKIPÆNDSKIP
ALLSECT/NOTSECT/ONLYSECT

210 Peter S. Langston

IFNEXT/ELSEÆNDIF
REPEAT/ALLRPT/NOTRPT/ONLYRPT/ENDRPT

followed by all others. Pairs from one group should not span
members of a group with hieher precedence; e.g. it is a mistake to
have NOTSECT apppear between REPEAT and ENDRPT.

The example in Figure 6 demonstrates the use of the repeat
and section controls. mpp is commonly used as part of a pipeline
of commands. In makeûles or shell command files, the section(s)
argument is often defrned separately so that it can be specifred in
just one place and used in many. Figure 7 shows part of a
Makefrle used to assemble a piece. After nake f oo has been exe-
cuted, the file foo wtlt contain the merged MPU data for sections 0,

1,2,5,3, 0, l, 2,4 (in that order) from the various source frles.

% cat /tnp/x
aaa
#NOTSECT 1

bbbb
#REPEAT 3
ccccc
#NOTRPT 2
dddddd
#ENDRPT

eeeeeee
#ALLSECTS

ffffffff
#ONLYSECT 2
ggggggggg

% rpp -s0,2,L /tmp/x
aaa
bbbb
ccccc
dddddd
ccccc
ccccc
dddddd
eeeeeee
ffffffff

Little Lanwages þr Music 2ll

bbbb
ccccc
dddddd
ccccc
ccccc
dddddd
eeeeeee
ffffffff
ggggggssg
ffffffff

% rpp -s1.,2 ltnp/x
ffffffff
bbbb
ccccc
dddddd
ccccc
ccccc
dddddd
eeeeeee
ffffffff
gggsssggg
Figure 6: Example of Sections and Repeats with MPP

F00SECTS=-s0-2, 5, 3, O-2, 4
foo: foo.b.tab foo.g.gc foo.v.m

mpp $(F00SCTS) foo.b.tab I tab2mpu)bass
npp $(FO0SCTS) foo.g.gc I gc2mpu >guitar

mpp $(FOOSCTS) foo.v.n I m2npu)voice
nerge bass guitar voice)$@

Figure 7: Makefile Fragment Using MPP

3.2 MA Format

MA format started as a disassembled listing of tvtpu format. The
program da reads MPU data and produces an ASCII version with
annotation. Figure 8 shows the MA data for the familiar West-
minster Cathedral half-hour chime sequence followed by a single
super "bong" (normally the bong would not follow the sequence

2I2 Peter S. Langston

rung on the halÊhour, but its inclusion gives a pleasant resolution
and the hour sequence would have taken too much space). Every-
thing to the left of the semicolon is MPU data, everything to the
right is explanatory comment. The column of decimal numbers
gives the absolute timing in beats (quarter notes). Audio example
3 on the compact disc was generated from this data.

There are t\ryo ways to turn MA format into MPU format. The
program rø (re-assembler) inverts the effect of da, but since the
same information is multiply imbedded in the MA output (appear-
ing on both sides of the semicolon in one form or another) a deci-
sion must be made as to which value to use. r¿ chooses to believe
all the information to the left of the semicolon except the time-tag
value; this it recalculates from the absolute timing value to the
right of the semicolon. The logic for this will be explained later.
The program axtobb (ASCII hex to binary bytes) inverts the effect
of da by only paying attention to the data to the left of the

098
c

e4

3e 40
3e0
42 40
420
40 40
400
39 40
390
3e 40
3e0
40 40
400
42 40
420
3e 40
3e0
32 40
26 40
320
260

c

e4
b

e5
c

e4
c

e4
c

e4
c

e4
c

e4
0
c
0

; 0.000 0 kon I OZ1=64 D3 key on
; 0.100 1 koff [62]=0 D3 key off
; 2.000 2 kon [66]=64 F#3 key on
; 2.100 3 koff [66]=0 F#3 key off
; 4.000 4 kon I 641=64 E3 key on
: 4.092 5 koff [6a3=9 E3 key off
; 6.000 6 kon [57]=64 A2 key on
; 6.100 7 koff [57]=0 A2 key off
; 12.000 10 kon I OZ1=64 D3 key on
; L2.1'OO 11 koff [62]=0 D3 key off
; 14.000 12 kon [64]=64 E3 key on
; 14.100 13 koff [0¿]=O E3 key off
; 16.000 14 kon [66]=64 F#3 key on
; 16.100 15 koff [66]=0 F#3 key off
; 18.000 16 kon I ø21=64 D3 key on
; 18.100 17 koff [021=9 D3 key off
: 24.OOO 20 kon [50]=64 D2 key on
; 24.OOQ 21 kon [38]=64 Dl key on
; 24.1,0Q 22 kof.f [50]=0 D2 key off
; 24.tOO 23 koff [38]=0 Dl key off

Figure 8: MA Format Listing of Westminster Chimes

Little Languages for Music 213

semicolon (as a matter of fact, axtobb treats any characters other
than 0-9, a-f, A-F, TAB, and SPACE as the start of a comment that
extends to the end of the line).

W'hen a small change is needed in an MPU frle, the simplest

approach is to convert the file to MA format, edit the ASCII file
with any text editor, and then convert the frle back with either ra

or axtobb as appropriate. The most common editing operations

are deleting and inserting commands. For these operations ra will
usually be the reassembler of choice since the absolute time values

on unaffected lines would still be accurate. In situations where

whole sections need to be moved forward or backwards in time,
changing the first and last time-tags and then reassembling with
axtobb is considerably easier than changing the time values on
every affected line.

In much the same way that we can use existing ASCII text edi-
tors to manipulate MPU frles by converting to and from MA for-
mat, other ASCII software tools can be used. For example, to
make a copy of the frIe foo.mp¡¿ with all the program change (voice

change) commands deleted we might search for the mnemonic
that da uses for program change "pÍogc":

da f oo. npu I greP -v rt Progc " \
I ra >foo.nPu.coPY

Similarþ we could try to delete all key-on and key-off data for
channel three with:

da foo.mpu I grep -v rr^. t0-91 [89]2 ' \
I ra >foo.npu.copy

However, if foo.mpu contained commands using running status

they would be left in and would appear on some other channel (or

no channel at all). The command "midimode" (and many others)

can be used to ensure each command has a status b¡e, then a
pipeline like:

nidinode (foo.npu I ¿a I grep -v rr^. [89]2 ' \
I ra Xoo.¡npu.coPy

would work. As it turns out, there are specific commands to

214 Peter S. Langston

perform most of these editing operations on the MPU data
directly, but when you come up with a need that nothing else
fills...

There are other situations in which MA format can be particu-
larly useful; you may need a graceful way to create some MPU
commands inside a command stream. For instance, the following
line could appear either in a shell command flle or in a makefrle;

(echo'r0 c0 4 0 b0 4 0" I axtobb; cat foo.mpu) \
Xoonew.npu

This line will create the file foonew.mp¿l containing the commands
to select voice 5 on channel 1 and then set the foot controller to 0
on that channel, followed by the contents of foo.mpu. Another
use for MA format is as the output of a program written in a res-
tricted programming language, e.g. awk or the command line
interpreter. MPU data contains many zeroes, as far as awk is con-
cerned these are NULs; NULs are used to terminate strings and
cannot be generated as output. Figure 9 shows an awk program
that uses MA format to generate all 128 possible key-off commands
on channel I and a shell program that does a slightly different ver-
sion of the same thing.

The MA format is general in that it can express anything that
MIDI or MPU format can express; its strength is that it is com-
posed ofASCII characters and can be generated by even the

'/, cat x.awk
BEGIN { for (i=0; í<L28i i++) {

printf "0 80 %x 0\n,', i) exit)
% awk -f x.awk I axtobb >aIloff.l
7. cat x.sh
forsin01234567;do

for u in 0 1 2 3 45 6 7 I I A B C D E F; do
echo rr0 90 su 0" I axtobb

done
done

% sh x.sh >alIoff.1
Figure 9: Using MA Format to Turn All Notes Off

Little Languages þr Music 215

simplest program (or language). Its biggest drawback is that it is
unnecessarily detailed for many uses and not easy to decipher. It
only "knows about" MIDI and MPU codes, it doesn't "know" ary-
thing about music.

3.3 The MTJTRAN FamilY

Two recent languages derive many aspects of their design from a
music speciflcation language and compiler written (by the current

author) nearþ a quarter of a century ago. This language, called

"MUTRAN," has survived in one form or another with little
change.

One of the fundamental problems that any scheme for tran-

scribing music on a computer must solve is that of specifying
pitches and durations in an easily editable form Aside from being

representable in bits and bytes, the encoding needs to be easy to
learn, compact, and comprehensive. Even the standard, handwrit-

ten or printed music notation scheme only partly meets these

goals. It has a long history however, and is already understood by

most people interested in reading or writing music. Unfor-
tunately, normal music notation is a continuous, two-dimensional

notation and is not readily converted to the quantized, linear form

that digital computers impose. Rather than basing its representa-

tion on the written score, MUTRAN took as its model the

musician's verbal description of a piece; a description that is

inherently linear (although not necessarily quantized). MUTRAN's

character-based conventions for specifying pitches and durations,

aside from being representable in bits and bytes, are easy to learn

and compact (but limited). In an attempt to remedy its limita-
tions, other languages have adopted and expanded on MUTRAN

notation.
The following three sections describe the original mutran and

its direct descendants "Mut" and "M." Latet sections will also

refer back to the note formats described here.

3,3.1 MUTRAN

MUTRAN format got its name from a program of the same name

written in the mid-1960s by the current author. The MUTRAN
program read music scores encoded on punched cards and

216 Peter S. Langston

produced a program that, when executed, would cause the CpU
(an IBM 1620) to create radio frequency interference that, in turn,
would produce music on a nearby AM radio. Recognizing this
program to be a compiler, the author named it after the only other
compiler he had ever used - FORTRAN; (MUTRAN itself was
written in machine language; the author had not yet encountered
assemblers).

Although the MUTRAN program has not survived, the data
encoding scheme has, and with minor revisions has been used as a
basis for several other formats. This section is provided so
description of other formats may refer to it to defrne the basic
MUTRAN characteristics, allowing their descriptions to focus on
particular aspects or differences. Because ofthe absence ofany
known MUTRAN compiler, this description is, for the most part,
in the past tense.

MUTRAN data consisted of data records and control records.
Data records consisted of a sequence of encoded notes, with an
arbitrary number of notes allowed on each 8O-column card. Typi-
cally, each data record contained a phrase, measure, half-measure,
or other consistent time length.a Control records began with an
asterisk in column 1 followed by a keyword and other parameter
fields.

Data records contained notes with time value information,
separated by blanks. MUTRAN notes were encoded according to
the simple BNF grammar listed in Figure 10. Note that all alpha-
betic characters were upper-case; keypunches only had upper case.
Octave numbers were the so-called "scientific" numberin5; "C4"
for middle C and "83" for the pitch one half-step below it. The
time values (<tval>s) represented Whole, HaIf, Quarter, -E'ighth,
Sixteenth, Thirty-second, and sixty-fourth (.Friil) notes,
respectively.

There were relatively few control record keywords. There
were TITLE and COMMENT records, but they were ignored.5
QUARTER records speciûed the number of quarter notes per

This rather fastidious convention had some serendipitous repercussions. The musi-
cal score for an extremely abstract movie was produced by shuffling a deck ofcards
containing C. P. E. Bach's Solfegietto and playing the resulting jumble of phrases.
The sound track was a great success.

After all, what's a language without comment records?

4.

Little Languages for Music 217

: <pitch>(duration)
: (notename)(octave) I <rest>
: (letter) I <tetter)(accidental)
: 'A' l 'B' l 'c' l 'D' l 'E'
I,F'I'G'
: (sharp) | <flat>
: '+' | '+' <sharp>
: '_, | '_, <flat>
: 'Rt
: 'O' | '1' | '2' I '3' | '4'
f ,5'l'6'l'7'l'g'l'9,
: (tval) | <tval><tmod)
: 'llV' l 'H' I 'Q' l 'E' l 'S'
I,T'I'F'
: (dot) I <let>
: ' .' | '.' <dot>
: 'T, | ,8, | ,5, | '7, | '9,

Ancient MUTRAN Note Grammar

minute (in the same way that metronomes are marked). The
TIME control record allowed global scaling of tempo; the nominal
TIME value was 100 and setting it to ZOO played the piece in half
the time. Finally, MUTRAN needed to know when to stop, and
the END record provided that information.

The first measure of J, S, Bach's Well-tempered Clavier, I,
Prelude no. 1I (in l2l8 time) contains two voices, Fþre 1l is a
straight-forward MUTRAN version. MUTRAN, in an efort to
reduce keypunch effort (and to economize on cards), was content
to let everything but the <notename> default to the previous

'I.TITLE J. S. BACH Ii¡ELL-TEMPEBED CLAVIER, I,
*TITLE PRELUDE NO. 11
*COMMENT UPPER PART

FsS CsS A4S G4S A4S CsS F4S A4S C5S E-5S DsS CsS

Ð5S B-4S F4S E4S F4S B-4S D4S F4S A4S C5S B-4S A4S
*COMMENT LOWER PART

F3E A3E C4E A3E F3E A3E B-3E D4E B-3E F2Q RE

Figure ll: Sample of Earþ MUTRAN from
the Well-tempered Clavier

218 Peþr S. Langston

(Mnote)
<pitch>
(notename)
(letter)

(accidental)
(sharp)
<fIat>
(rest)
(octave)

(duration)
(tva1)

(tnod)
<dot>
<1et>
Figure l0:

value, so the same two parts would more likely have been encoded
as in Figure 12. The original MUTRAN compiler only handled
single melodic lines; there's only so much you can do with stray
radio interference from a machine whose memory cycle time was
about 5 microseconds. However MUTRAN made a hit on a local
TV news program when it played the Bach double violin concerto
with a human violinist. The violinist later commented that
MUTRAN "kept unrelenting time"; it was probably the nicest
thing she could think of to say.

3.3.2 MUT

MUT format (sometimes called "modern mutran") is a recent ver-
sion of the ancient MUTRAN language described above. This for-
mat is a very dense, easy to read notation scheme for instrumental
music (there is no provision for lyrics, see "M" format for that).
MUT is easy to transcribe and programs exist to convert it into
data that can be played directly on most sound synthesizers.

Modern mutran format (still) consists of data lines and control
lines. Each data line begins with an instrument or voice name
and contains a sequence of notes for just that instrument. Control
lines begin with a sharp sign (#) followed by a keyword and, in
some cases, one or more parameters. Control lines specify control
changes to take place after preceding lines and before following
lines of data. The data lines are affanged such that time proceeds
left-to-right, top-to-bottom (i.e. "reading order") independe ntly for
each instrument (unless #BAR or #SYNC controls intervene, see
below). Most programs will consider it an error if the accumu-
lated durations of all voices are not equal when a #BAR control is
encountered.

*TITLE JSBACH WELL-TEMP-CLAV, I, NO 9

'FCOMMENT UPPER PART
FsS C A4 G A C5 F4 A C5 E- D C D B-4 F E F B- D F A
c5 B-4 A

*COMMENT LOWER PART
F3E A C4 A3 F A B- D4 B-3 F2Q RE

Figure 12: Denser Sample of MUTRAN from
the Well-tempered Clavier

Little Languages for Music 219

MUT notes are encoded according to a simple BNF grammar

similar to that for MUTRAN. Figure 13 gives the complete gram-
mar. A quick comparison with the grammar in Figure l0
will reveal that this format has not changed very much in twenty
years.6

Figure 13:

: <pitch>(duration)
: (notename)(octave) | (rest)
: (Ietter) I <IetterXaccidental)
: 'A' l 'B' l 'C' I 'D' l 'E'
I,F'I'G'
: (sharp) | <flat>
:'#'l'#'(sharp)
: 'b' | 'b' <f lat)
: ,R'

t,_2, l,_1, | '0, | ,1, 1,2, | '9,
| ,4, | 'S, 1,6, l,T, l,g,
: (tval) I <tval><tmod)
: 'w' l 'h' I 'q' l 'e' l 's'
I 't' | 'f'
: (dot) I <1et>
: '. t | '.' <dot>
: 't ' l '3 ' l '5 ' l '7 ' l '9'
Modern Mutran Note Grammar

Octave numbers are as defrned earlier in the MIDI section;
"C3" is middle C and "B2" is one half-step below it. The time
values (<tvaÞs) represented whole, half, Etarter, øighth, sixteenth,
lhirty-second, and sixty-fourth (¡till) notes, respectively. The time
modifiers have the standard meanings. A modifrer of ". " multi-
plies the duration by 1.5; ". ." multiplies the duration by 1.75, etc.

A modifrer of "t" or "3" multiplies the durationby 2/3; "tt" or
"33" multiplies the duration by 419, etc. Modifrers of "5," "7,0' or
"9" multiply the duration by 4/5, 6/7, and 8/9, respectively (this

should be extended to allow modifrers of the form "m:n" such

that "t" is equivalent to "3:2").

6. To paraphrase Garrison Keillor: "The format that time forgot and that the decades
cannot improve."

220 Peter S. Langston

(Mnote)
<pitch>
(notename)
(letter)

(accidental)
(sharp)
<f1at>
(rest)
(octave)

(duration)
(tval)

(tmod)
(dot)
(1et)

Data lines must begin with a white-space delimited name that
has been defrned by appearing in the most recent #VOICES control
line. Following the name are an arbitrary number of notes in
MUT format with " l" (vertical bar) characters interspersed to
indicate measure boundaries ("bar lines"). The effect of a vertical
bar is identical to that ofthe #BAR control except no synchroniza-
tion checking is done. Thus, the two examples in Figure 14 arc
truly identical (since a single voice can't have synchronization
problems with itself).

MUT format allows control lines to be defined as needed;
many of them will be ignored by any particular program. Com-
monly used control keywords include:

#ARrrc #.# ft.#j ...
The ARTIC control specifies the articulation with which the
notes are to be played. An argument of 1.0 makes the notes
connected (legato), while an argument of 0.25 makes the
notes sound for only the first quarter of their time value
(staccato). If there are fewer arguments than voices, the last
argument will be used for the extra voices; thus a single
argument will set the articulation for all the voices, but they
can all be set individually if necessary. The default value is
usually 0.8 (for all voices).

#BAR
A measure ends here. No arguments are used. In scoring
programs, abar line is generated; in programs that produce
MPU data, a Timing Clock With Measure End code is gen-
erated. In most programs, a check is made to ensure that all
voices are in synchronization (have equal cumulative
durations).

bass AOq

bass AOq
#BAR

bass Dlq
#BAR

Figure 14:

Alq C#lq C#2q I Dlq D2q, BOq E1q I

A1q C#lq C#2q

D2q, BOq Elq

Equivalent MUT Representations

Little Languages for Music 22t

#CHAN # [#] ...
This control assigns channels to the various voices (default
is channel l). A decimal number argument in the range 1 to
16 is expected for each voice.

#METER # #
The METER control has two arguments that are the
"numerator" and "denominator" (respectively) of the time
signature. For example, "METER 3 4" would specify waltz
time. These are used primarily by scoring programs.

#SoLo vl [v2J ...
This control specifres coarse volume information for each

voice. A single character argument, chosen from the follow-
ing list, is expected for each voice (separated by whitespace):

This voice is silent (key velocity = 0)

S This voice is soft (key velocity = 2L)

M This voice is of medium volume (key velocity = 64)

L This voice is loud (key velocity = 106)

A decimal argument selects velocity explicitly 10..1271
Note that "S", "M", aûd "L" divide the velocity range into
three roughly evenly spaced levels, while "-" mutes the
voice entirely. The name SOLO was chosen as a reference to
the "solo" buttons on a mixing console.

#SYNC
When this control is encountered, all voices will be syn-

chronized, aligning with whichever voice has the greatest

cumulative duration at the moment. Thus, following a sec-

tion with particularþ tricþ timing by a #SYNC control will
assure synchronization (before the #BAR check occurs).

#TEMPO #
The TEMPO control expects a single, numeric argument
representing the number of quarter notes per minute
(related to M.M.).

#TITLE the title of the piece
The TITLE control is used by programs that give some spe-

cial handling to the title of the piece (e.9. scoring programs).

#TRANS # t#l ...
The TRANS control is used to specify transpositions for

222 Peþr S. Langston

scoring. An argument is required for each voice. The tran-
spositions are expressed in scale steps; thus "-7" rvould
transpose down an octave.

#VOICES namel [name2J ...
The VOICES control defines the number of voices and asso-
ciates a name with each one. Each voice is represented by
an argument that can be any combination of characters.
.Whereas scoring programs will use the names provided here
when printing part scores, other programs may need this
control to determine how many voices are involved. There-
fore, this control should precede all data and any controls
that expect an argument per voice.

It should be noted that the music preprocessoÍ, mpp, defrnes
keywords to handle conditional inclusion of sections, repeats, and
file inclusion for languages like MUT. See the section on Mpp.

The first measure of Prelude #11 in the Well-Tempered Clavier
could be expressed in modern mutran as shown in Figure 14
(audio example 4 on the compact disc). The choice of "left" and
"right" as voice names is purely arbitrary. Voice names may con-
tain any non-whitespace characters and may be up to 3l charac-
ters long although it is common to keep them shorter than a tab
stop (8 characters).

#TITLE J. S. Bach ltrlell-Tenpered Clavi-er, f , Prelude no. 11

#VOICES left right
first ¡neasure
right F4s C4s A3s G3s A3s C4s F3s A3s C4s Eb4s D4s C4s
left F2e A2e C3e Ã2e F2e A2e
right D4s Bb3s F3s E3s F3s Bb3s D3s F3s A3s C4s Bb3s A3s
Ieft Bb2e D3e Bb2e Flq Re

#BAR

Figure 15: Sample of Modern Mutran from
the Well-tempered Clavier

Figure 16 shows a shell command frle that generates nine
measures of reggae rhythm section consisting of guitar on channel
3, bass on channel 15, and drums on channel2. The output is
MUT data. The command "pickl" simply chooses one of its argu-
ments (randomly) to output. The argument will be followed by a

Little Languages for Music 223

line feed unless the "-n" option is specified. By specifying altema-

tive material for the timbale, snare drum, and bass parts we've

added enough variation to break up the potential repetitiveness

while ensuring that all possible sequences will sound good. Audio
example 5 on the compact disc is two sequences generated by this
shell frle (it's hard to appreciate how effective this little shell pro-

gram is without hearing the results). BV lengthening the list in the

"f or key in. . ." line, longer pieces can be composed. Adding
more clauses to the "if " statement would allow gfeater harmonic
variety. If you added if clauses for many other chords and

changed the "f or key in. . ." line to read:

for key 1a $*; do

you would have a little language of your own for generating reggae

accompaniments.

echo \
''#VOICES HIHAT TIMBALE SNARE BD Gl G2 G3 BASSII

echo \
"#CHAN222233315r'

echo \
,,#s0L075785554x

echo \
"#ARTTC 0. 1 0. 1 0. 1 0. 1 0 .2 0.2 0.2 lrr

forkeyinEAEAAAEA; do
echo I'HIHAT Rq A2h A2qrl

echo -n ITTIMBALE rr

pickl -n ilRhil nRhx rrRhrt nC4htt ttRq C4qt C4ettr \
"C4q Rqt C4et'l

pickl -n I'C4q" il C4qt C4etrril C4qt C4st C4st" \
Rqt C4st C4strl

pickl u Rqu u Rqu u C4qu tr C4qt C4et" \
rr Ret C4et C4etrl

echo -n I|SNARE rr

pickl i'Rh Db2hrr rrRh Db2h" "Db2h Db2h" I'Rh E2hr' \
rtRh E2hrt ttE2h E2hrr

224 Peter S. Langston

echo -n rrBD rr

pickl t'Rh Alhrt t'Rh A1h'r "Rh Ab1h" \
rrRq Rqt Ablet Ablhl

if Itt$key" = rrgrr]' then
echo rrGl Rq B2qt B2et Rq E3qt E3etrl
echo rrG2 Rq E3qt ESet Rq G#3qt G#3et'r
echo I'GB Rq G#3qt G#3et Rq B3qt B3et[
echo -n I'BASS ESqt tr

pickl "E3et ESqt E3et E2qt Rbtil \
rrE2q ESet E2q Rq"

else
echo rrGl Rq
echo rrG2 Rq
echo rtGS Rq
pickl -n "BASS

l'BASS

pickl rrRet C#3et
I'A3et A2et

C#3qt C#3et Rq B2qt B2et[
E3qt E3et Rq D#3qt D#3et"
ABqt A3et Rq F#3qt F#3et"
Rq A2et t' \
Rq A2et I' ITBASS A2ht 't

D#3q B2qt' \
B2q D#3q'r

fi
echo tr#BARrl

done
echo \

"HIHAT C3w:TIMBALE E2w:BD Alw:BASS E2w:#SYNC" | \
tr n:,, ,,\012,,

Figure 16: Shell command frle to generate Reggae
in Modern Mutran

3.3.3 M

M format is an earlier variant of MUTRAN format. It is particu-
larly well suited to notation of multipart scores with lyrics (e.g.
four-part harmonizations) and is generally designed to be easy for
humans to read and edit, although it is not as dense as MUT for-
mat. Filters exist to produce printed scores (both full and indivi-
dual parts) from M format, and to play M files on MlDl-equipped
sound synthesizers (as well as some other, non-MIDI devices).

Like MUT format, M format consists of control lines and data
lines; control lines comprise an initial keyword followed by argu-
ments. The control keywords are almost identical to those in
MUT; they are:

Little Languages for Music 225

#ARrrc #.# [#.#] ...
Same as in MUT (Page 221).

#BARSame as in MUT (Pæe 221\.

#CHAN # t#l ...
Same as in MUT (Page 222').

#cPQ #
This control expects a single argument that sets the number

of "clocks per quarter" note. This value must be chosen

such that every note encountered can be represented by an

integral number of clocks; e.g. the presence of eighth notes

requires that CPQ be a multiple of 2; dotted quarters require

CPQ to be divisible by 3; eighths and dotted quarters require

CPQ to be a multiple of 6, etc. Fortunately this complicated
control is only required for output to Votrax PSS speech

synthesizers and is ignored by all other known programs.

#METER # #
Same as in MUT (Paee 222).

#SoLo vI [v2J ...
Same as in MUT (Page 222\.

#TEMPO #
Same as in MUT (Paee 222).

#TITLE the títle of the Piece
Same as in MUT (Page 222).

#TRANS # [#] ...
Same as in MUT (Paee 222).

#VOICES namel [name2J ...
Same as in MUT (Paee 223).

In addition to these, programs may defrne controls for their
own use. It is recommended that such controls consist of the

number sign followed immediately (with no intervening whi-
tespace) by upper-case characters. mpp, the music pre-processor

defrnes several useful macro controls; see the description of MPP.

Unlike MUT format, data are arranged such that time proceeds

downward with each part represented by a column of data. The

frrst column is the lyric and either contains one of the special sym-

bols "-" oÍ "1", or any string of characters containing no

226 Peter S. Langston

whitespace. "-" is understood by most programs to be a place-
holder and indicates that there is no associated lyric and often no
sound at all (rests are a good example). "/" is understood by most
programs to be a placeholder and indicates that although there is
no associated lyric there is some sound produced (e.g. instrumen-
tal sounds, especially drums). All columns but the frrst contain
notes encoded in the format used by modern mutran (described
under "MUT") with "-" added as a silent (durationless)
placeholder.

#TITLE
#METER

#VOTCES

#TRANS

#CHAN

#SOLO

Pic
-nic
tine
for
#BAR

ted
-dy
bears

#s0L0
the
tit
-t1e
#BAR

ted
-dy
bears
are
hav
-ing
a
love
-1y

Teddy Bear's Picnic
44
Bass Bari Tenor Soprano
7700
t234
7778
D3q D3q D3q D3q
D3q D3q G3q B3q
C#3q E3q G3q A#3q
D3q G3q G3q B3q

C3qt E3qt GSqt E4qt
B2et E3et G3et BSet
G2q. G3q B3q D4q
Rqt Rqt Rqt Rqt
5556
DSet DSet GSet B3et
C#3qt ESqt G3qt A#3qt
D3et G3et GSet BSet

C3qt E3qt G3qt E4qt
B2et E3et G3et BSet
G2qt GSqt BSqt D4qt
G2et D3et GSet B3et
C3et G3et C4et E4et
DSet F#3et BBet D4et
B2et DSet GSet BSet
C#3qt D#3qt F#3qt A#Sqt
DSet E3et G3et B3et

Little Langaages for Music 227

#BAR

#s0L0 6
day F#3qt
to F3et
-day E3h
-ay
-Rq

668
A3qt B3qt D4qt
G#3et A#3et Db4et
G3q B3q C4h
F#3q A3q
Rq Rq Rq

#BAR

Figure 17: Example of M Format

Figure 17 is the beginning of the frle tbp.m which contains a

simple example of M format. Audio example 6 on the compact
disc was generated from tbp.m. The control lines at the beginning
establish general parameters for the various programs that may be

used to process the frle. Scoring programs will title the piece as

indicated, assign names to the four parts, and show the bass &
bari(tone) voices transposed up an octave (7 steps). Programs that
generate sound will set the tempo to 150 beats per minute, make

the soprano voice louder than the rest, and put each voice on the
specified MIDI channel (if vttol or MPU output is being
generated).

3.4 DP

DP format allows particularþ dense encoding of drum rhythms in
a form that is similar to that commonly used by drummers. As a
result it is easy to read. It can be edited on any ASCII terminal
and programs exist to play it on most drum machines or syn-

thesizers that can make drum sounds.
Drum patterns are commonly printed in a notation loosely

based on common practice notation ("normal" music notation).
A staff line is provided for each instrument and the usual shapes

are used to denote time values with dynamic markings above the
staff or below the notes.

To adapt this format for computer use, the dynamic markings
replace the notes and spacing indicates timing. This works well
for percussion instruments that ignore note durations (i.e. the time
between MIDI key-on and key-off events), but when this format is
used for duration sensitive instruments, it is worth knowing that

228 Peter s. Langston

durations are set to the current quantum (see #QUANT control,
below) multiplied by the current articulation (see #ARTIC control,
below).

DP control lines include an initial keyword possibly followed
by arguments. The control keywords are:

#ARTIC #.#
Same as in MUT (page 221) except only one argument is
used to set the durations ofall notes generated.

#BARLEN #
This control speciûes the number of MpU clocks per meas-

ure. The default is "#BARLEN 480."

#GAIN channel/key multiplier
The GAIN control allows güobal modifrcation of key veloci-
ties on an instrument-by-instrument basis. The first argu-
ment identiûes an instrument (see the description of
channel/key in the discussion of data format, below). The
second field is a multiplicative factor to be applied to every
key velocity for this instrument. The default value for all
possible channel/key combinations is "#GAIN chan/key 1.0."

#QUANT timevalue
A single argument specifres the duration associated with
each note symbol. The argument may be a decimal number
or one of whole, half,, quarter, eighth, or sixteenth.
"#QUANT 16" makes each note or rest a sixteenth note
long. "#QUANT 8" is the default.

#ROLL char vel rate
This control defines special pattern characters to represent
multiple drum hits (e.g. for snare rolls). Three arguments
are required. The first is the pattern character being
defrned; (should not be 0, l, 2, 3, 4, 5, 6, 7, 8,9, or -). The
second argument is the velocity for the strokes in the roll
encoded as '0' through '9' (see description of data lines).
The last argument is the rate at which the strokes should be
repeated, using the same scheme as the argument for
#QUANT. For example, the character '-' can be defrned to
produce thirty-second notes with a MIDI key velocity of 28

by the following:
#RoLL - 2 32

Little Languages for Music 229

If used in a section with "#QUANT 8" specifred, four notes
will be generated for each "-" symbol in the pattern. The
#TUPLE control provides another approach to drum rolls.

#SYNC
The data for each instrument is buffered up as an indepen-
dent stream with its own clock. Thus, each instrument can
be represented by several consecutive input lines and, when
output, all the instruments will be merged, each starting at
time zero ("the beginning"). Sometimes, however, you wish
to flush the buffering and resynchronize the instrument
clocks (e.9. when a piece is too long to flt in the buffers in its
entirety). lVhen the SYNC control is encountered in the
input, all bufered data is output and the clocks for all
instruments are set to the highest clock value so far. This
allows an instrument that only appears late in a piece to be
synchronized with the other instruments without having to
be represented by rests throughtout the entire beginning of
the piece. It also allows very long pieces to be processed

without overflowing the buffers.

#TUPLE char vel mult
The TUPLE control defines special pattern characters to
represent drum hits at a rate faster than the current
#QUANT setting. Three arguments are required. Like
#ROLL, the first is the pattern character being defrned;
(should not be 0, l, 2, 3, 4, 5, 6, 7, 8,9, or -). Unlike #ROLL,
the second argument is the actual MIDI velocity for the
notes, encoded as'1'through'127'. The last argument is the
rute multiplier for the repeated strokes; if the argument is
"5", then frve notes will be generated for each symbol. For
example, the character'=' can be defrned to produce notes
with a velocity of 56 at double the current rate with the fol-
lowing line:

#TUPLE = 56 2
If used in a section vvith "#QUANT 8" specified, two six-
teenth notes will be generated for each "=" symbol in the
Pattern.

The controls defined for the program mpp are useful in DP
files. In particular, the #DEFINE control can be used to associate

230 Peter S. Langston

symbolic names with channel/key pairs and the #INCLUDE con-
trol can be used to refer to libraries of such symbol defrnitions.'

DP data lines require two frelds (separated by whitespace): a
channel/key freld and a pattern ûeld. Any further frelds are
ignored as comments.

The channeVkey field defines the instrument to be played and
consists of a channel number (in decimal), a slash, and a key
number (in hexadecimal, decimal, or as a note name, e.g. "Eb3").
5/0x3d, 5/61, and 5/C#3 are all equivalent formats for specifying
key 6l,o on channel 5. This freld may be specified using a sym-
bolic name specified earlier in a "#DEFINE" line (if mpp
preprocesses the file).

The pattern freld is formed from the digits'0'through'9', the
character'-', and any "#ROLL" or ..#TUPLE" pattern characters
defined. The digits represent key velocity with the generated velo-
cities being l, 14,28, 42, 56,71,85,99, ll3, and 127 (going from
'0' to '9'). A minus character, '-', represents silence.

The controls defrned for the music preprocessor mpp (see the
description of MPP) are useful in DP files; in particular, the
#INCLUDE control can be used to reference sets of drum
defrnitions for specific drum synthesizers.

Figure 18 is an example of eight measures of a latin samba
rhythm (Samba Batucada) coded in DP format. Note that only
four measures are written out; the mpp repeat controls ("#REPEAT
2" and "#ENDRPT") are used to double the length. Audio exam-
ple 7 on the compact disc was generated from this data. For illus-
tration purposes some of the drums have been defrned in mpp
#DEFINE lines. Typically, they would all be defrned in a separate
flle referenced with the mpp #INCLUDE control line. A com-
parison with the standard notation for this drum pattern (which
covers a full page) [Sulsbruck 1982] will demonstrate the readabil-
ity of this format.

-1.5 ,SD

Files in SD format contain melodic information in "scale-degree"
form. SD format is designed to be easy for humans to read and
edit and is particularþ well suited to notation of melodies that
only use notes from a particular 7-note (or fewer) scale. Most

Little Languages for Music 231

#DEFINE Surdo 2/0x32 (T0M2)

#DEFINE Caixa 2/49 (SD2)

#DEFINE Pratos 2/Db3 (CHINESE (cynbal))
#REPEAT 2
t2341.2341.234L234
Surdo 7O-46--570-46--570-46--570-46--5
2/56 64546454645464546454645464546454

Chocalho (SHAKER)

2/5t 7-7-7-77-7-7-77-7-7-7-77-7-7-77-
Tanborin (RIM1)

4/7 t 72267226722672267226722672267226
Pandeiro (TAMBO)

Caixa 63636336363636636363633636363663
4/73 6---6---6--66-6-6---6---6--66-6-

Caixeta (TIMBL)
4/75 6-----336-----436-----436-----33

High Agogo (AcOcH)

4/74 --336----6-36-----436----6-36---
Low Agogo (AcOcL)

4/Ox6d --7 ------5--------6------5-
High Cuica (CUICH)

4/Oxâc 4- - -54-4- - -45-4-4- - -54-4-- -45-4-
Low Cuica (CUICL)

Pratos 6------------70-6- --70-
#ENDRPT

Figure l8: DP Format for Samba

tonal (as opposed to atonal) music meets this criterion. It is com-
mon among musicians to describe notes or melodies in terms of
scale degrees, partly because of its compactness ("5" is quicker to
say than "B flat'o), partly because its key independence avoids
problems for musicians playing transposing instruments, and
partly because it seems more natural to focus on the function of
the note in the key rather than on its absolute pitch. The SD for-
mat shares all these advantages.

SD format consists of control lines and data lines arranged
such that time proceeds from left to right in equal sized steps with
each part represented by one or more lines of data. SD control

232 Peter S. Langston

lines comprise an initial keyword followed by arguments. The
control keywords recognized are:

#CODING symbols
The CODING control associates symbols with scale degrees.

It defines 21 symbols;7 for scale degrees with downward
motion guaranteed;7 for scale degrees with shortest motion
guaranteed (the usual symbols); and 7 for scale degrees with
upward motion guaranteed. The default coding defrnition is
equivalent to: "#CODING abcdefgl234567 ABCDEFG". Thus
"a","1", and "A" are equivalent except that while "l" will
select the root (frrst degree) ofthe current scale that is
closest to the last note, "a" will choose the root below the
last note, and "4" will choose the root above the last note.
See also the #INIT control and the description of the "^'n
and "v" data characters (in the discussion of the note ûeld)
for other ways of controlling the direction of motion.

#INIT note [noteJ ...
This control specifies the initial pitch associated with each
voice in mutran timeless note format, which consists of a
pitch class and an octave number (e.9. "C3" for middle C).
Since data in ,SD format may specify choosing the direction
of motion that yields the shortest jump from the previous
note, there must be a previous note from which to measure.
At the beginning of the piece there is no previous note;
#INIT specifres an imaginary previous note. #INIT can also
be used in the middle of a piece to force large jumps up or
down (also see the description of the note field, below).

#METER # #
Same as in MUT (paee 222).

#QUANT timevalue
Same as in DP (paee 229).

#SCALE note [note] ...
The SCALE control defrnes the pitch classes associated with
the (up to) seven scale degrees. It is followed by a comma-
separated list of pitch classes in either numeric or symbolic
form (0 = C, I : C#,... 11"= B). The default scale is a C
major scale, i.e.: "#SCALE C,D,E,F,G,A,B".

Little Languages lor Music 233

#VOICES namel [name2J ...
Same as in MUT (paee 223).

In addition, any control line not mentioned above (i.e. a line
starting with a number sign followed by other, non-blank charac-
ters) is allowed as part of the input and is passed through to the
output unchanged (thereby allowing controls like #ARTIC, #BAR,
#CHAN, #CPQ, #SOLO, #TEMPO, #TITLE, and #TRANS to be
passed to programs that read M format). Further, mpp,the music
pre-processor deñnes several useful macro controls; see the MPP
description.

SD data lines require two flelds (separated by whitespace): a
voice name freld and a note field. Any further fields are ignored
as comments. The voice name freld deûnes the voice with which
to associate the note freld data and consists of a name that must
have already appeared in the preceding #VOICES control line.

The note freld is composed of any non-whitespace characters.
Specifically these include the symbols defrned in the #CODING
control line, the tie charactor "(", the three special symbols " 1",
"^", aÍrd "v", and finally, all other non-whitespace characters.
The tie character "(" lengthens the previous note by the QUANT
duration. The character " l" is a placeholder and is ignored;
unlike any other character, it takes no time. It is often convenient
to use " l" to demarcate measures (for readability). The character
"^" revises the program's idea of the last note played for this
voice upward by one octave, thus ensuring that the next note will
be interpreted an octave higher than it would otherwise. Note,
however, that the "^" takos time and generates a rest. The char-
acter "v" revises the program's idea of the last note played for this
voice downward by one octave, thus ensuring that the next note
will be interpreted an octave lower than it would otherwise. The
"v" also generates a rest. All other non-whitespace characters
represent rests; the most common choice is to use minus, "-", but
some people prefer the period ". ".

Figure 19 is a simple example of a three-voice scale-degree
encoded harmony. Audio example 8 on the compact disc was
generated from this data. The comment line gives the chord
structure in scale degrees (l : tonic, 4 : subdominant, 5 : dom-
inant) with periods marking the quarter-note beats in the eight

234 Peþr S. Langston

#TITLE Departure Tax
#VOICES PauI Peter Scott
#SCALE G,A,B,C,D,E,F#
#INIT F#3 A3 C4
1 1 5 4.5 5

.5 1 4.5.1
Scott 45565(54345165432t7-7 QTL76I7(--34454 \

(43234565 423 1. 1. - 1. (t t L7 6 rT ç - |

Peter 23343(3212354321765-5(5565465 (--L2232 \
(2L7 L234327 L65 - 5 (5565465 (- - |

PauI 7L1.1.t(t757l32t76542-2(2232L32(--57777 \
(65457 1,2L75543-3 (3332132 (- - |

Figure 19: "Departure Tax" in SD Format

measures. To move this piece to another key would only require
changing the #SCALE and #INIT lines.

Since the three parts in "Departure Tax" consist entirely of
notes that lie in the scale and almost all the notes have the same
duration (eighth notes), SD format is especially appropriate. The
few quarter notes are handled by tying two eighth notes together
with the tie symbol "(".

Figure 20 is a representation (in standard music notation) of
the M format output generated by running the SD example in the
previous frgure through the program sd2m. The M format output
was then run through an awk program, m2p.awk, which produced
a pic frIe that uses a set of standard macros to print music. The
pic frle was then massaged by hand to beam the notes and add
chord symbols (m2p.awk doesn't know about them yet).

Figure 20: Output from SD Data in Figure 19

Little Languages þr Music 235

3.6 CCC

Chord charts are a succinct way of expressing the harmonic struc-
ture of a piece of music. Files in CCC format are ASCII encoded
chord charts arranged to be easily read and edited by humans and
computers alike. By consciously mimicking the chord charts used
by musicians, little special training is required to enter CCC data
and the programs that convert CCC files to other formats can be
used to give quick auditory feedback for editing.

The format for chord charts includes control lines and data
lines; CCC control lines are distinguished by an initial keyword.
Keywords include:

#ARTTC style
Same as in MUT (page 221) except in addition to the
numeric arguments three symbolic style arguments are
defrned: staccato, normal, and legato. Staccato makes each
chord last l/4 of the time between chords. Normal makes
each chord last 415 of the time between chords. Legato
makes each chord last the entire time between chords and
does not retrigger any notes it doesn't have to; e.g. if two
succeeding chords both have C4 as the low note then C4 will
not be resounded, just held. Legato will not hold notes
from one input line to the next, however. "#ARTIC nor-
mal" (the default) and "#ARTIC 0.8" are equivalent.

#CHORD name note note ...
This control defines the individual notes in a particular
chord. The name field is just that, it can be any collection
of characters except "1" oÍ whitespace characters. Thus
"C", "Cm", "Cm7(b9)", and "ugly_Zappa_mess" are all
legal chord names (but do remember that these will be the
names you use in the chord sequences later in the file).
Chord names may be up to 15 characters long. The note
frelds can be in any one of three formats: decimal, hexade-
cimal, or mutran timeless note format (described under GC);
e.g. 60, x3c, x3C, X3c, X3C, and C3 are all equivalent.
Octave numbers may range from -2 to 8, although notes
below C#-2 and above G8 are not allowed. Use '#' for sharp
and 'b' for flat.

236 Peter S. Langston

#QUANT timevalue
Same as in DP (page 229) except the setting of quantum
defines the length associated with each chord. "#QUANT
quarter" (the default) and "#QUANT 4" aÍe equivalent. A
fractional value is also permissible; "#QUANT 1.5" will
make each chord have the duration of a whole note triplet.

#SPEED tímevalue
#SPEED is a synonym for #QUANT.

Any line that is not recognized as a control line (does not
begin with "#") is treated as a data line containing chords to be
played. Chord names must be separated from each other by whi-
tespace characters (i.e. tabs or spaces) and will be interpreted left
to right, top to bottom. The special chord name "/" is taken to
mean the last chord played.

Figure 21 is an example of a simple chord chart. Audio exam-
ple 9 on the compact disc is a simple interpretation of this data as
a guitar accompaniment (with some vibes giving an idea of how
the melody goes). Unlike this simple example, however, many
chord charts require dozens of chords. A simple expedient is to
create files that contain only Chord commands and use the mpp
#INCLUDE command to refer to them. Standard files exist for

Empty Bed Blues
#CH0RD C C4

#CH0RD C7 C4

#CHORD F C4

#CHORD G7 D4
#QUANT quarter
#ARTIC staccato
#REPEAT 8
c / /c7 F
c / c7/ c
F/// F

c/// c
c7/ / / F

c lp / c
#ENDRPT

E4 G4 C5

E4 G4 BbA
F4 A4 C5

F4 G4 84

/ a7/
/ c7/
/ c7/
///
/ c7/
/ c7/

Figure 2l: "Empty Bed Blues" in CCC Format

Little Languages for Music 237

block piano chords and for guitar chords. Once again, the func-
tions provided by the music preprocessor program, ffiPP, are use-

ful in CCC frles (note the #REPEAT/#ENDRPT construction in
the example).

3.7 CC

CC format is an extension to CCC format to allow it to be used for
generation of accompaniments and melodic lines. Like CCC, this
format uses both control lines and data lines. The format for data

lines is identical in the two formats, however the control lines are

different. The control keywords used in CC format are:

#CHORD name class transPositions
The #CHORD control defrnes harmonic structure by refer-
ence to a structure type and a list of (transposition) transfor-
mations to be carried out on it. The name freld is any col-
lection ofcharacters except whitespace characters (the spe-

cial name "/" is disallowed). As in CCC format, "C",
"Cm", "Cm7(b9)", and "ttúy-Zappa-mess" are all legal

chord names. The type fleld selects from a small repertoire
of harmony structures, "tri" for major and minor triads,
"dom7" for dominant seventh and other four-note har-
monies, "augS" for harmonies with an augmented frfth, and
"dim5" for harmonies with a diminished frfth. The transpo-
sitions freld consists of twelve comma-separated signed
integers that indicate the transposition for each of the
twelve pitch classes. See the example below for clarifrcation.

#PART name
The #PART control line can be used to indicate something
of the phrase structure of the piece. The name can be any

sequence of non-whitespace characters. Typically the name
will either describe the function within the piece (e.g.

"verse") or the generic pattern from which the following
chords are derived (e.g. "turnaround3"). Accompaniment
generation and melody generation programs may use this
information to deduce intermediate level structure.

#QUANT tímevalue
Same as in CCC (paee 237).

238 Peter S. Langston

#STYLE name
This control is used to choose among the different composi-
tion algorithms. Accompaniment generators and melody
generators endeavor to produce output that matches the har-
monic data and fits the style specifred here. As of this writ-
ing, ten styles are defrned: 'obebop," "bluegrass," "boogie,"
"classicalr" "marchr" "mozaÍtr" "sambar" "sequencer"
"swing," and "tonerow." About twenty-five more styles are
planned.

Any line that does not start with a sharp sign is treated as a
data line containing chords to be played. Chord names must be
separated from each other by whitespace characters (i.e. tabs or
spaces) and will be interpreted left to right, top to bottom. The
special chord name "/" ís taken to mean the last chord played.

Title 62L79I525
#STYLE swing
#INCIUDE " /rt/psL/mLdj'/etc/accagc. ccrl
#QUANTUM quarter
#PART lgrva
Bb/ Bo / na / FT / Bb / Bo / na / F7/
#PART lgrvb
Bb/ Bb7/ Eb / Gb7/ Bb / F7 / s / F7/
#PART lgrva
Bb/ Bbo/ Cn / FT / Bb / Bbo/ Cn / F7/
#PART lgrvb
Bb/ Bb7/ Eb / to / Bb / Cn FT Bb/ / /
#PART lgrb
D7/ An7/ DT / DT / cT / / / Dn7/ c7/
c7/ cr / cr / c7 / Cn7/ / / rz / / /
#PART fgrva
Bb/ Bbo/ Cm / FT / Bb / Bbo/ Cm / F7/
#PART lgrvb
BÌo/ Bb7/ Eb / Eo / su / F7 / Bb / / /

Figure 22: CC Format Chord Chart Created by IMG/I

Figure 22 shows a CC file generated by the program IMG/I
[Langston 1990] to specify a one-minute long swing composition
to be played at a tempo of 128 beats per minute. The "# Title"

Little Lønguages þr Music 239

line contains the creation date expressed in seconds since mid-
night JanuãW l,1970 GMT (used to seed the random number gen-

erator for creation of the chord chart). No "#CHORD" lines

appear in this file; the file mentioned in the #INCLUDE line con-

tains #CHORD definitions that describe the transformation from
the key of C to all the appropriate chord harmonizations. Fig-

ure 23 is an excerpt from /u/psl/mídi/etc/accagc.cc containing all
the #CHORD lines referenced in the chord chart in the previous

frgure.
The definitions for'oBb," "8," "Cm," and "Eb" are based on

triad harmony, i.e. based on the frrst (tonic), third (mediant), and

fifth (dominant) scale degrees. For "Bb" everything is transposed

down a whole-step from the C major prototype. The harmoniza-

tion will be based on Bb, D, and F (a whole-step down from C, E,

and G) and a (C major based) accompaniment that uses an A note

will be transposed to use a G note in its place. For "Cm" only
the third and sixth are transposed down a half-step from the C

major prototype. The harmonization will be based on C, Eb, and

name tyPe transPositions
#CHORD Am7 donT -3,-3,-3,-3,-4,-3, -3,-3,-3,-4,-3,-3
#CHORD Bb tri -2,-2,-2,-2,-2,-2,'2,-2,-2,-2,-2,-2
#CHORD Bb7 dom7 -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2
#CH0RD Bbo dom7 -2,-2,-2,-2,-3,-2,-2,-3,-2,-2,-3,-2
#CH0RD B tri -1,-1,-1,-1,-L,-L,-1,-1,-1,-1,-1,-1
#CH0RD Bo donT -1,-1,-1,-t,-2,-t,-L,-2,-L,-7-,-2,-L
#CH0RD C7 donT 0,0,0,0,0,0,0,0,0,0,0,0
#CHORD Cn tri 0,0,0,0,-1,0,0,0,0,-1,0,0
#CHORD Cn7 domT 0,0,0,0,-1,0,0,0,0,-1,0,0
#CHORD D7 domT 2,2,2,2,2,2,2,2,2,2,2,2
#CHORD Dn7 domT 2,2,2,2,I,2,2,2,2,L,2,2
#CHORD Eb tri 3,3,3,3,3,3,3,3,3,3,3,3
#CHORD Eo dom7 4,4,4,4,3,4,4,3,4,4,3,4
#CHORD F7 donT 5,5,5,5,5,5,5,5,5,5,5,5
#CHORD Gb7 donT 6,6,6,6,6,6,6,6,6,6,6,6
#CHORD G7 donT 7 ,7 ,7,7,7 ,7,7,7,7,7 ,7 ,7

Figure 23: Excerpt from an #INCLUDEd CC File

240 Peter S. Langston

G and an accompaniment that uses an A note will be transposed
to use an Ab note in its place.

All the other defrnitions in Figure 23 are based on four-note
dominant seventh harmony. The deûnitions for "8b7", "C7",
"D7" ,

o'F1", "Gb7", and "G7" are simple transpositions of the C7
based harmony in the prototype. The definitions for "Am7",
"Cm7", and "Dm7'o are transpositions that flat the third and sixth
of the C7 based harmony in the prototype.

With this simple mechanism a small collection of prototypes
(four per style) can be used to provide hundreds of harmonic
structures. The program acca luses chord charts in the CC format
and these harmonic structure definitions to assemble complete
accompaniments (e.g. bass, guitar, and drums) from a small set of
canned prototypes. Similarly, the program accl uses CC format
chord charts to define harmonic structure within which it com-
poses melody lines and harmonizations.

Audio examples l0 through 12 on the compact disc \ryere gen-
erated by IMG/I. The accompaniments were specifred as CC data
(generated by mkcc and interpreted by acca). The flexibility
gained by being able to encode the harmonic structure without
specifying any stylistic requirements should be demonstrated by
Example 13 on the disk. It is the short CC file shown in Figure 24
interpreted frrst as boogie-woogie, then as samba, and finally as
bluegrass.

3.8 GC

Files in the GC format give speciflc instructions on providing
guitarJike accompaniment (although they can also be used to pro-
vide other kinds of chording accompaniment as well). GC
separates the specifications of the harmonic structure and the

#QUANT quarter
c / / /F7 / / / c / / /
F7/ / / F7 / / / c / / /
D7/ / / c7 / / / c / c /
Figure 24: Short, Generic CC Format Chord Chart

cr/ / /
A7/ / /c///

Little Languages for Music 241

rhythmic structure of an accompaniment. This allows indepen-
dent experimentation with either aspect with little effort.

Programs exist to convert this format to synthesizer data that
provides the specifled accompaniments. There are also programs

that use GC data to defrne the harmonic structure of an original
instrumental solo. See the following section on the lick program
for an example.

Basic to the understanding of GC format is the concept of a
"picking pattern." Picking patterns are sequences of events that
occur at evenly-spaced times within the basic time interval. The
basic time interval, set by the #QUANT control, is the time allot-
ted to each line of GC data. Each event is a part of the chord to
be played at the specified time. Events are specifred by reference
to the frelds in a data line, thus "1" represents the note in the frrst
freld,'02" represents the note in the second freld, and "l-99"
represents the notes in all the frelds.

A common guitar pattern called "split" involves hitting a low
string (the "bass note") waiting half a beat and then strumming
the upper strings (the "chord"). The whole pattern would take
one beat. This pattern is specified by "#PICK split I 2-99." In
frngerpicking patterns the basic time interval might be subdivided
into quarters with a single string being played in each subdivision
(e.g. "#PICK fingers I 4 2 3"). At any time the current picking
pattern determines how many subdivisions each basic time inter-
val is given.

While the picking pattern governs the onset of notes, their
duration (and thus their stopping time) is determined by the
length of their subdivided time interval and the "articulation"
with which they are being played. An articulation of I will cause

notes to be sustained through their entire time subdivision, mak-
ing them contiguous with no intervening silence. An articulation
of 0.5 will make silences between the notes that are as long as the
notes themselves. Values larger than I may also be useful; for
example, if "#PICK split" is played with an articulation of 2,the
bass note and chord will overlap each other.

Control lines begin with a keyword and may contain argu-
ments separated by whitespace. The various keywords and their
meanings are:

242 Peter S. Langston

#ARTTC #.# ft.#l ..
This control requires one or more parameters to specify the
duration of notes as a fraction of the time allotted to each
part of the chord. If more than one parameter is given, then
they will be used in rotation, starting with the frrst. It is
common to specify as many articulation parameters as there
are subdivisions in the current picking pattern. The follow-
ing controls set the rotation back to the frrst: #ARTIC,
#MULT, #PICK, #QUANT, #SPEED, #STYLE. Note that arti-
culations greater than I can cause notes to hang over the
end of the time allotted to each input line except the last.
So if "#PICK split" and "#ARTIC 2 2" have been specified,
the chord notes will last halfway through the next pattern up
until the end when there will be no next pattern to
overhang.

#BARLEN #
Same as in DP (paee 229).

#CHORDTONES name note[,noteJ...
This control is used by programs wishing to know the har-
monic structure of the piece (see the description of hck
below for an example). Two parameter ûelds, separated by
<space> or <tab>, are required. The frrst ûeld is a chord
"name" and may be any combination of ¿,SCn characters
not including whitespace characters. The second field is a
comma-separated list of pitch classes in either numeric or
symbolic form (0 = C, I : C#,... 11 : B).

#METER # #
Same as in MUT (page 222) except the time signature will be
used to reset BARLEN (based on 120 clocks per quarter
notes) and the METER parameters can be fractional.

#MULTIPLICITY #
This control requires a parameter to specify the number of
repeats of each following chord line. This greatly shortens
pieces containing long sequences of repeated chords.
"#MULT" is a synonym for "#MULTIPLICITY."

#PICK name t#l ...
The PICK control requires a name parameter and has
optional parameters. If it appears with just a name

Little Languages for Music 243

paramster it invokes an already-defrned picking pattern. If
it appears with further parameters it defines (or redefrnes)

the named picking pattern. Each optional parameter is
either a number or a range of numbers (separated by a
hyphen) indicating the notes to be played; "1" represents the
frrst note on the data line; "2-99" repfesents all the notes on
the line except the frrst, and so on. The number of optional
parameters defrnes the interval subdivision for the pattern.
A common picking pattern is defrned by: "#PICK AltBass I
3-99 2 3-99" which means that a piece with #QUANT set to 2
will generate four eighth-note time subdivisions.

#QUANT timevalue
Same as in DP (page 229) except the duration being defrned
is that for a line of data. If "#QUANT 4" is specified, the
time interval represented by a line of input data is a quarter
note. Changing picking patterns will change how this inter-
val is subdivided, but not its overall length. The QUANT
argument may be a floating-point number; thus "#QUANT
2.667" will give dotted quarter notes (approximately).

#SCALE note[,noteJ...
This control is used by programs wishing to know the scalar
structure of the piece. It is followed by a comma-separated
list of pitch classes in either numeric or symbolic form
(0 = C, I : C#,... ll : B). A chromatic (dodecaphonic)
scale could be defined by:
"#scALE 0,1,2,3,8,F,F#,G,4b,9, I 0, I l "

#SPEED timevalue
SPEED is a synonym for QUANT.

#STRUM #.#
STRUM sets the delay (in quarter-notes) between notes
played in a chord. If STRUM is set to 0.025 and a six-note
chord is played, the flrst note will be played one thirty-
second note ahead of the last (5 * 0.025 quarter notes). See

the description of #PICK for additional information.

#STYLE name
This control is a convenient way to specify the accompani-
ment figure to be used; it invokes a predefrned style. This

244 Peter S. Langston

control will set picking pattern, strum value, articulation
value(s), and velocity value(s) to those defrned by the style.

#STYLEDEF name
This control defrnes a style. It requires a single name
parameter by which the style will be invoked. The style that
is defined includes the current picking pattern, strum value,
articulation value(s), and velocity value(s). A typical usage
is to create a separate flle containing the defrnitions of
several styles and then include it in data files with the music
preprocessor #INCLUDE statement.

#vELOCrrY # [#] ...
This control requires one or more decimal parameters to
specify the key velocity with which each part of the chord
will be played. If more than one parameter is given, then
they will be used in rotation, starting with the frrst. The
#MULT, #PICK, #QUANT, #SPEED, #STYLE, and #VEL con-
trols set the rotation back to the frrst ("#VEL," "VOLIJME,"
and "VOL" are all legal synonyms for "#VELOCITy"). The
key velocity parameters may range from I to 127; a common
default is 64. If the PICK pattern has metric subdivisions
then specifying multiple key velocity parameters may be
particularþ useful, e.g. "#VEL 80 48 48" will accent the frrst
beat of each waltz pattern.

Any line that begins with a sharp sign but is not recognized as
a control line is considered a comment. Further, any line begin-
ning with a sharp sign followed by a space (i.e. "# ") will never be
recognized as a control line and will thus always be considered a
comment line.

In addition to the controls listed above, the controls defined
for the program mpp are useful in GC frles. For instance, files
containing alarge repertoire of style definitions can be referenced
with the mpp #INCLUDE control.

GC chord lines consist of notes encoded in mutran "timeless"
format (without time values) separated by spaces or tabs. Fig-
ure 25 gives the BNF for the timeless note format. Note that the
character "-" functions differently from the way it does in M for-
mat (where it's a silent placeholder with no duration); in GC for-
mat it is a synonym for o'R" and effectively has duration.

Little Languages þr Music 245

<note>
(snote)
(Ietter)

(accidental)
(sharp)
<fIat>
(rest)
(octave)

: (snote)(octave) I <rest>
: (letter) I <letter)(accidental)
: ,A' l 'B' l ',C', l ',D', I 'E',
I,F'I'G'
: (sharp) I <flat>
:'#'l'#'(sharp)
: 'b' | 'b' <f 1at>
: ,R'

:'_1, l,O, 1,1, 1,2, l'g'l r4'

l '5', l '6', l '7', 1 ',8' l 'g',
Figure 25: BNF for Mutran Timeless Note Format

Pecusa tValtz, (c) psl 6/87
#PICK att 1 3-99 2 3-99
#ARTTC 1.5 1.8 1.5 1.8
#vEL 64 80 64 80
#STRUM 0.0125
#METER 4 4
#scALE 7,9,1-O,O,2,3,5,6
#QUANT 2
#CH0RDT0NES Gn 7 ,t0,2
G2 D3 Bb3 D4 G4

G2 D3 Bb3 D4 G4

#CHORDT0NES Adin 3,6,9,0
Eb3 C3 C4 Eb4 Gb4

A2 Gb2 C4 Eb4 Gb4

#CH0RDT0NES Gn 7 ,L0,2
G2 D3 Bb3 D4 G4

G2 Bb.2 Bb3 D4 G4

#CHORDTONES D7 2,6 ,9 ,O
D3 A2 A3 C4 F#4
D3-
Figure 26: Example of GC Format

Figure 26 is a fragment of a bluegrass backup guitar-chord file.

the frrst few statements defrne a picking pattern and the other ele-

ments of a style that is called "AltDrive" in one of the standard

GC library frles. The last data line in this fragment introduces a

246 Peter S. Langston

rest that lasts for one and a quarter beats (a half note per line
minus the dotted eighth duration of the O:).

3.8.1 LICK

The lick program produces banjo improvisations to fit a specifred
set of chords expressed in the GC format. It implements a tech-
nique that uses specifrc information about the mechanics and
common practices of five-string banjo playing to compose instru-
mental parts that follow a specified chord progression and are par-
ticularly suited to (i.e. easy to play on) the banjo.

The 5-string banjo is one of the few musical instruments of
American design. Even so, it is an adaptation of an African
instrument formed from a gourd, a stick, and one or more gut
strings. Figure 27 is a schematic diagram of a frve string banjo.

The 5-string banjo is commonly played in one of two tvays,
"Clawhammer style" in which the strings are struck with the tops
of the frngernails on the right hand and plucked with the pad of
the right thumb, and "Scruggs style" (named after Earl Scruggs,
the first popularizer of the style) in which the strings are plucked
with the thumb and frrst two ûngers of the right hand, usually
wearing metal or plastic plectra ("picks") on all three fingers. In
both styles the left hand selects pitches by pressing the strings
against the fingerboard causing the metal frets in the neck to stop
the strings at specified points that produce chromatic pitches; this
is called "fretting" the strings.

The lick program simulates Scruggs style playing. In this style,
the right hand typically follows a sequence of patterns. The most
common of these patterns are 8 notes long and consist of

DrAP¡rRAcM (HEAD)

STRINGS

FRETTED NECK

Figure 27: 5-string Banjo

Little Languages for Music 247

pennutations of the three playing frngers. It is uncommon for the

same frnger to be used twice in a row because it is easier and

smoother to alternate frngers. The most common pattern is the

"forward ro11": thumb, index, ring, thumb, index, ring, thumb,

ring (orT I R T I R T R). Manybanjo parts are composed of
only two or three basic patterns artfully arranged to allow the

melody notes to be PlaYed.
The mechanics of banjo playing impose certain restrictions on

the sounds that can be produced. At most ûve distinct notes can

be produced at once and certain note combinations cannot be pro-

duced at all. Sequences of notes on the same string will be slower

and sound different from sequences that alternate between strings;

and so forth. Much of the sound that we associate with the banjo

is a necessary result of these constraints. Lick generates alatge
number of possible solos and then uses these constraints to judge

which of the solos is the most "banjoJike" (i.e. easy to play on the

banjo).
Lick proútces both MPU format output frles that can be

played by the synthesizers and "tablature" frles that can be read

by humans (and also by machines, see the description of tng
format).

Figure 26 in the previous section shows the beginning of the

guitar chord file for "Pecusa Waltz" in GC format. Figure 28

shows the tick output for the chords in Figure 26 converted to

standard music notation (via M format and pic) from the MPU

format output. The chords for this piece are somewhat atypical

for 5-string banjo music,T but, even when constrained to use only

Gd. Àdia

Figure 28: "Pecusa Waltz" Lick Output

7. Nor is it typical for a piece ii 4t4 to be called a waltz, but . . '

248 Peter S. Langston

"forward rolls" for a right hand pattern (as in this example), the
result is quite credible.

The algorithmic music composition demo, narrated by two
voice synthesizers named "Eedie & Eddie" and described in
Langston [1986], involves composing music for listeners who call
in through the public telephone network. Eedie & Eddie's demo
uses /ick to compose banjo improvisations for two different pieces
(one in the "long" version of the demo and one in the "normal"
length demo). The fragment shown here (audio example 14 on the
compact disc) comes from the "normal" length demo. In example
14 the banjo plays it twice through, once slowly and then once at a
more nonnal pace. The frnal audio example contains a full rendi-
tion of this piece. The banjo improvisations seem to get the most
enthusiastic listener reception of all the composition techniques
used in the telephone demo.

3.9 TAB

Tablature is a musical notation system. (According to the Ameri-
can Heritage Dictionary, Second College Edition: "An obsolete
system of notation using letters and symbols to indicate playing
directions rather than tones"). "Tab" is in common use today by
teachers of stringed musical instruments, especially in folk or
popular music. When a piece requires playing the G above mid-
dle C, there is only one way to play it on a piano, but there are 5

ways on the banjo, 6 on the guitar, and many more on the pedal
steel, all with different timbral characteristics, decay, etc.

In the attempt to simulate the playing of an instrument on
which there is such a choice, knowing how the sounds are pro-
duced allows greater realism in the generated notes (e.g. letting
"open" strings ring longer, or letting a string ring until it is used
for another note). Further, tablature can be transcribed in an
ASCII format quite easily.

The major change required to make tablature easy to tran-
scribe is "turning it sideways" so that it reads top-down instead of
the conventional left-to-right. Each string is represented by either
a number, indicating the position at which the string is 'ofretted"
or "stopped," a left parenthesis, indicating a "held" note (essen-
tially a tie), or a vertical bar to indicate that the string is not

Little Languages þr Music 249

played. The strings are usually numbered from "1" on the right
(the string with the highest pitch) increasing to the left. The left-
most string in guitar tab would be the "sixth" string (the string
with the lowest pitch). Thus a C major scale on the guitar could
be notated as shown in Figure 29 (audio example 15 on the com-
pact disc). Note that the initial C note, played on the fifth string,
is held through the following 2 notes by the ties ("(") in the
second and third lines. The optional letters at the left indicate the
frnger used to pick the string, T = thumb, I : index, M = middle,
R=ring,andP=pinþ.

Control lines comprise an initial keyword possibly followed by
arguments. Tab format files can have other information embed-

ded in them for the programs that take them as input. For
instance, almost all programs require the "#TUNING" control
(described below).

The common control keywords are (in alphabetical order):

#ARTIC #.#
Same as in MUT (page 221) except only one argument is
used to set the durations ofall notes generated.

#BARLEN #
Same as in DP (page 229'¡.

#CHAN # [#] ...
This control assigns channels to the strings (default is usu-

ally channel 1). A decimal number argument in the range 1

to 16 is expected for each string.

#TUNING
T
I
M

T
I
M

I
M

El A1

ls
l(
t(
ll
tl
tl
tl
tl

Figure 29: C Major Scale in TAB Format

D2

I

0
2

3

E3B2G2

0
2

I

I

0
1

250 Peter S. Langston

#METER # #
Same as in GC (page 243).

#NUr # t#l ...
This strange control expects an argument per string that
defrnes the string length. The most common example of an
instrument that would need something other than the
default (all zeros) is the 5-string banjo which has one string,
(the "fifth string") shorter than the rest. A 5-string banjo
piece would probably have, at the beginning:

#TUNING G4 D3 G3 83 D4
#NUT50000

#QUANT timevalue
Same as in DP (page 229) except the argument specifres the
number of tablature lines per measure and can be fractional;
thus "#QUANT 1.5" would make triplet whole notes (i.e.
three tablature lines will take two measures' time).

#SPEED timevalue
SPEED is a synonym for QUANT.

#TUNTNG # t#l ...
This control assigns pitches to the strings and is often used
to determine how many strings are involved. A pitch name
or decimal number argument is expected for each string,
separated by whitespace. A guitar in standard tuning would
be represented by either of:

#TUNING E2 A2 D3 G3 83 E4
#TUNTNG 40 45 50 55 59 64

Note that the "sixth" string, i.e. the lowest pitched string, is
at the left, as if you were facing the guitar while it is being
held neck-up.

#VELOCITY #
Same as in GC (page 245) except a single argument specifres
the MIDI key velocity to use for each note played.

In addition to these, programs may define controls for their
own use. It is recommended that such controls consist of the
number sign followed immedíately (with no intervening whi-
tespace) by upper-case characters. In particular, the controls
defined for the music preprocessor mpp are useful in tab files.

Little Languages for Music 251

3.10 DDM

Files in DDM format contain probablistic instrument descriptions

for programs that use a composition technique called "stochastic

binary subdivision.o' Since this technique can be used to generate

pieces of arbitrary length from a single file, this format could, in
theory, be considered infrnitely compact. Of course the music
generated by these routines can become boring in a frnite amount

of time; but even so, a great deal of useful musical output can be

generated from quite a small DDM file.

Stochastic binary subdivision was originally designed to create

drum patterns, but was later extended to create melodies. The

library routine sbsd7 generates a single measure of drum pattern

or melody by generating a set of simultaneous patterns and then

combining them. Its input is a list of "instruments" (which may

be different kinds of drums, or different notes for a pitched instru-

ment) with associated parameters defrning such characteristics as

MIDI channel, loudness, and minimum note resolution. In brief,
the algorithm does the following. For each participating instru-
ment, an interval of time starting with one measure is recursively

subdivided into two equal parts with a musical event (e.9. drum
strike or a musical note) being placed at each subdivision. This

continues until the program decides, based on the density proba-

bility and minimum resolution for that instrument, that the subdi-

vision has gone far enough. The subdivision process is carried out

independently for each instrument and then the results are com-

bined using a priority structure that only allows one instrumentos

event to happen at a particular moment.
The library subroutine sbsdinit) reads instrument parameters

from an instrument description file (typically with a file name end-

ing in ".ddm") and creates an internal data representation to
drive the sbsd} routine. Instrument description frles contain

instrument lines and control lines. Instrument lines have the

format:

Channel/Key# Density: Up-beat : Resolution:
Duration:VelocitY Conment

The parameter fields in the instrument lines have the following
meanings:

252 Peter S. Langston

Channel
The MIDI communication scheme is multiplexed into six-
teen channels. MIDI synthesizers can choose to accept only
the data on a particular channel or the data on all channels
("Omni" mode). The channel number specifred (in decimal)
here will determine the channel over which the output for
this instrument is sent.

Key#
While melodic synthesizers associate key numbers with
pitches (e.g. middle C is 60, the B below it is 59, etc.), drum
synthesizers associate key numbers with instruments. The
association is specifrc to each synthesizer or drum machine;
Yamaha drum machines usually use 45 for the bass drum
and 52 for the snare drum while the Alesis HRl6 uses 35

and 38 (respectively) for them. To generate melodic output
this parameter should be either a MIDI key number in the
range 13 to 127 (C#-1 to G8) or a scale delta in the range -12

to 12. The effect of scale deltas will be discussed below.
The Key# can be specified as hexadecimal (prefixed with
"0""), decimal, or by note name, e.g. "8b3".

Density
At each step in the recursive subdivision a pseudo-random
decision is made as to whether to subdivide further. This
parameter defines the probability that subdivision will
occur. Density is expressed as a percentage; a value of 0
assures no subdivision, while a value of 100 guarantees sub-

division at every level (until stopped by Resolution, see

below).

Up-beat
If Up-beat is "D", the musical event will be placed at the
beginning of each time subdivision; if Up-beat is "IJ", the
musical event will be placed at the first time when a subdi-
vision did not occur. Thus, two instruments that only differ
in the Up-beat parameter will have different fates; if, for
instance, they both have Density set to zero, one will gen-

erate a note on the first beat of the measure (the "down
beat") while the other will generate a note in the middle of
the measure (the "up beat" in a two-beat world).

Little Languages for Music 253

Resolution
To avoid the possibility of endless subdivision, and to allow
a small degree of level-sensitive control over the Density
parameter, Resolution defrnes the time length at which no
further subdivisions will be allowed to occur. It is expressed
in fractions of a measure, e.g. a Resolution of 4 represents a
quarter note.

Duration
Most drum synthesizers use only the key-down events
(onsets) of notes and ignore the key-up events, thereby
ignoring the duration. Some, however, use both. Setting
Duration to a value greater than 0 will give the note a dura-
tion of that many sixty-fourth notes; e.g. 24 will make a dot-
ted quarter-note duration. It is perfectly legal for Duration
to be larger than 64lResolution; however, any note that is
generated before the Duration has expired will end the note
early.

Velocity
The speed with which a key is pressed down is called its
velocity. Most synthesizers use this information to control
loudness. The range of legal values for Velocity is I (vanish-
ingly quiet) to 127 (mucho forte).

Comment
Any text past the Velocity freld is considered comment and
ignored.

Eedie's basic drun rhythm
2/45
2/52
2/57
2/5t
2/48
2/54
2/55
2/59
2/62
2/57

8O: D:2:0:96
80:U:2:0:96
80: D: 8:O:I27
50:U:8:0:64
50:D:8:0:80
40: U: 8:0:64
40:U:8:0:64
67:U:8:0:80
80:D:8:O:72
80: D: 16:0:96

Bass drum
Snare drum
Closed hi-hat
Rim shot
Ton-ton
Hand clap
Cowbell
Open hi-hat
Ride cynbal
Closed hi-hat

Figure 30: DDM File for Telephone Demo

254 Peter S. Langston

Figure 30 shows the frle drum.ddm as used in an algorithmic
music composition telephone demo [Langston 1986]. Audio
example 16 on the compact disc was generated from this DDM
file. Because the bass drum definition appears first and it has Up-
beat specified as "D" it will always play the downbeat (beat l) of
the measure. Because it has Resolution set to 2 (half notes) it will
only be able to play on beats I and 3 of the measure. Because it
has Density set to 8090 it will play on the third beat 80q0 of the
time. Because the snare drum has the same parameters as the
bass drum except for Up-beat, it vt'ill play on beats 2 and 4 800/o of
the time and on beat 3 4% of the time (the snare drum tries 200lo of
the time, but 800/o of the time the bass drum already has it).

Figure 31 is a notated form (produced via M format and pic)
of eight measures of drum rhythm generated from the file in the
preceding frgure. The specifred probabilities were realized, for the
most part. Of the 5 measures generated (not counting the 3 meas-

ures that were repeats) the bass drum played on the third beat in
4, i.e. exactly 8090 of the time. The snare drum played on beats 2
and 41000/o of the time and never played on the 3 beat (it only
had one chance).

DDM format can also be used to generate melodies. If an
instrument's Key# is specified as a number less than or equal to
12 it is considered a scale offset rather than an absolute key
number. The value given as Key# can also be a negative number.
Thus the output becomes a series of relative scale motions. Both
types of specification (relative and absolute) can be intermixed.
Indeed, the relative specifications need some absolute value to

RidÞ
chdhat

f,,P,"j
h"t

co*u"u

Snre
lom

tsâss

ffi-rî*'

Figure 3l: Sample Output From DDM File in Figure 30

JJJJJ

Little Languages for Music 255

start with; in the absence of anything else the starting point
defaults to middle C.

Two controls are implemented to facilitate relative motion.

#SCALE note[,noteJ...
The #SCALE control defrnes the pitches that can be gen-
erated. It is followed by a comma-separated list of pitch
classes in either numeric or symbolic form (0 : C, | : C#,
. . . 1l : B). Any relative motion will be interpreted in
accordance with the specified scale. The default values form
a dodecaphonic (I2-tone) scale.

#LIMITS low,hígh
The #LIMIT,S control line contains two comma-separated
decimal numbers that are taken to be the low and high lim-
its for pitches generated by relative motion (this avoids sub-
sonic and supersonic notes). The default values are C-2
and G8.

A DDM frle that uses relative motion is shown in Figure 32.
This frle is similar to the one used in the algorithmic composition
telephone demo to generate Eedie's "scat solo." The #SCALE line
defines an A "blues pentatonic" scale (with the added flat 5) and
the #LIMITS line cuts offnotes below Cl and above C4.

Figure 33 shows eight measures of music generated from the
frle in Figure 32. Note that the program repeated each measure it
had generated; the default is to allow at most one repeat of each
measure (see the description of the "-r" option below). Audio
example 17 on the compact disc was generated from the DDM frle
in Figure 32, while example 18 was generated from a similar DDM

#SCALE A,C,D,Eb,E,G
#LÏMÏTS C2,C5
1/Ag 50:D:2:32:64 A above niddle C, mezzo-forte
1/E3 50:D:4:16:56 E above niddle C, nezzo-piano
L/+2 35:D:8:8:48 up two scale steps, piano
t/-2 35:U:8:8:48 down two scale steps, piano
t/+L 6O:D:16:4:72 up a scale step, forte
L/-L 65:U:16:4:64 down a scale step, mezzo-forte
L/O 33:U:8:8:60 repeat previous note, mezzo-piano

Figure 32: DDM File for Melody Generation

256 Peter S. Langston

Figure 33: Sample Output From DDM File in Figure 32

file that has a scale specification of "#SCALE A,B,C,D#,E,F,G#."
For example 18 the MPU output was piped through the scat frlter
and sent to a DECTalk speech synthesizer (the drone part is played
by a human and included for "atmosphere"). Notice that all the
lines request durations that are only as long as their minimum
resolutions. Since most instruments will not subdivide down to
their minimum resolution there will be some rests in the output;
(not a bad idea for something that is to be sung).

In addition to the #SCALE and #LIMITS control lines, the
#DEFINE and #INCLUDE control lines of mpp make reference to
libraries of drum definitions convenient. Definitions of
Channel/Key# symbols set up for use with op format will work
with DDM files as well.

Stochastic binary subdivision programs recognize several com-
mand line options to control the generation process:

-b Generate the specifred number of measures ("bars"). The
number of measures is treated as an unsigned number, thus
if -b-I is specifred, a virtually infrnite number of measures
will be produced (actually only 232-t).

-debug
Print an ASCII version of the generated pattern on the stan-
dard output instead of sending MIDI output there. In this
graphic output the results of the subdivision for all instru-
ments is shown. It differs from the normal MPU format
output in that the MPU output can contain no more than
one instrument event at each sixty-fourth note (selected by
precedence criterion from among those instruments that
generated a note at that time), whereas the ASCII output
shows all the subdivisions generated. When "-debug" is
specified, the random number seed is also printed on stderr.

Little Languages for Music 257

-mformat
Generate output in M format on the standard output,
instead of sending MPU output there. The M format output
represents the same notes that would be in the MPU output
except that all notes are associated with MIDI channel l.
W'hen "-mformat" is specified, the random number seed is

also printed on stderr.

-r Set the maximum number of repeats allowed to the specifled

number. If the maximum number of repeats, N is greater

than l, then each time a measure is generated a repeat count
is also generated. The choice is made from a uniform distri-
bution ranging from 0 to N-1. The default is -r2 (i.e. each

measure could appear twice).

-s Set the random number seed to the specifred value.

Without this argument the random number seed is set to the
number of seconds that have elapsed since midnight, Janu-

ãry 1,1970 plus the process id of the current process; (the

process id is added to avoid having two runs within the
same second produce the same output). Setting the random
number seed allows reproducibility.

4. Summary

We have described sixteen "little languages" to perform tasks

relating to music. Tables in the appendices give control keyword
usage and a list of programs for these languages. The diagram in
Figure 34 shows most of the language interconversions for which
programs exist. The table in Figure 35 lists the languages along

with standard frle name endings, related formats, and some

strengfhs and weaknesses for each. In this table, "pic" refers to
macros for music printing using the pic troffpreptocessor, "vtx"
refers to data for the Votrax PSS speech synthesizer, and "dt"
refers to data for the DECTalk DT01 speech synthesizer.

Letter codes appearing in the "strengths'o column refer to
noteworthy advantages of the entry, while codes appearing in the

258 Peþr S. Langston

Figure 34: Little Language Conversion Flow

"lacks" column indicate important features lacking.s In particu-
lar, the "8" code appearing in both columns for CC is meant to
indicate that although a large style repertoire is possible, only a
few styles have been implemented so far.

Not shown in this table are several little languages that, while
not designed with music in mind, have proven extremely helpful
in music projects (including the implementation of little languages

themselves and the creation of music project documentation).
Were these not already generally known by the UNIX community
they would have been described in this report. Most notable
among these are: awk[Aho et al. 19791, make [Feldman 1979], pic

[Kernighan 1984], sh, and tbl lLesk 19761.

8. Thus, code "D" is taken for granted and only appears ifit's lacking.

Little Languages for Music 259

CC

ccc
DDM
DP

GC

M
MA
MIDI
MPU
MUT
MUTRAN
SD

SMF

TAB

file

type
.cc
.ccc
.ddm
.dp
.gc

.m

.ma

.midi

.mpu MIDI, MA, M, SMF, dt

.mut MPU, M
? IBM 1620binary
.sd M
.mf MPU
.tab MPU

strengths lacks

A,B,C,E,F E,H
A,B,F E

A,B,C F,H
A,B,F H
A,B,F H
B,F H
B,F,H A
A,G,H B,C,F
A,G,H B,C,F
A,B,F H
A,F D
A,B,F H
G,H,I B,C,F
B,F,I H

converts directly to
MPU
MPU, GC
MPU, M
MPU, MA
MPU, MA, TAB
MPU, pic, vtx
MPU, MIDI
MPU, MA

A - Dense; compact encoding of data
B - Easily edited by ASCII text editors
C - HighJevel conceptual description
D - Processing software exists
E - Large style repertoire
F - Easily read (understood) by human musicians
G - Standard; allows communication with other software
H - General; expresses anything expressable with MIDI
I - Encodes subtleties beyond keyboard capabilities

Figure 35: Little Language Characteristics

5. Finale

The final three audio examples associated with this paper are
"production numbers" of various sorts. The pieces are intention-
ally prosaic in style (with the possible exception of the "interpre-
tive" introduction to Pecusa Waltz). It was felt that the success or
failure of the tools would be easier to judge in examples based on
accessible, easily recognized musical styles than it would be with
more abstract, "experimental" forms.

Example 19 is a piece entitled "Starchastic 12264" produced
from a small set of DDM frles. The frrst few measures as well as

the final chord sequence are "canned" (i.e. encoded in a shell frle
in MA format); the rest is generated algorithmically from four
DDM frles totaling just over 900 characters. The bass line is

260 Peþr S. Langston

generated by a single DDM file containing two sections (one for
the four hyperactive measures at the beginning and one for the
rest of the piece). The drum part uses two files (one for the basic
o'trap set" part and one for the "latin" solo in the middle). All
the melodic lead lines are generated by a single DDM file. A com-
mented listing of the four DDM files appears in Appendix D. The
number in the title was the process id for the shell frle that assem-

bled the piece.

Example 20 is a rendering of the evocative lament "Some Vel-
vet Morning" (written by Lee Hazelwood and popularized by Mr.
Hazelwood and Nancy Sinatra) performed by "Eedie & Eddie and
the Reggaebots." The bass and guitar parts were generated from
MUT format files, not unlike those generated by the shell program
described in the section on MUT. The drum part was entered as a
DP frle. The assembly of the instrumental parts was coordinated
by the program make. The "vocal" parts were entered in M for-
mat and converted to Dectalk speech synthesizer coding by the
programs m2mpu and sing (with liberal applications of the pro-
gram mpp). They were then edited digitally to provide more pre-
cise synchronization (see technical notes).

The final audio example (#21) is a rather unorthodox bluegrass
treatment of a song about love, mysticism, chaos, and poetic non-
conformity called "Pecusa Waltz" (mentioned earlier under GC

and LICK). The peculiar introduction represents the heat death of
the universe (in 22 seconds on frddle, banjo, and bass - no mean
feat). The "a capella" verse that follows is sung in parallel minor
thirds (by humans); the piece was originally written to be sung by
a single singer through a device known as a "harmonizer" that
generates parallel harmonies such as these.

There follow solos played on (synthesized) banjo and fiddle,
and verses and choruses sung by humans. Some of the parts were
entered as explicit notes using TAB, DP, MA, and M formats, and
some were entered as general instructions or constraints using GC
format. All but two of the banjo parts were composed using lick.
Programs llke cntlseq were used to control recording levels and
sound effects.

Although the piece is in 414 time, it is called a waltz in an
effort to deny the rigidity of accurate classification. The name
"Pecusa" refers to a volcanic island in the Pacific Ocean on which

Littte Languages for Music 261

it is difficult to think of human actions as having much
significance in the cosmos.

Acknowledgements

Gareth Loy of UCSD and Michael Hawley of Next Computers (at
Lucasfilm at the time) provided the initial version of the MPU
kernel device driver and generally shared music software with us
(e.g. Gareth's disassembler program, da, has been the helpless sub-
ject of many hours of code mutilation).

Gary Habennan provided critical feedback on the music tools
and the music they produced along with numerous practical
suggestions. Brian Redman talked me into trying to get voice syn-
thesizers to sing harmony in the first place and suggested the Iæe
Hazelwood tune as a suitable victim. Karen Anderson sang all the
difficult vocal parts on Pecusa Waltz,leaving the easy one for me.

I also wish to thank Al Aho, Jon Bentley, and Brian Kernighan
whose pursuit and popularization of the little language idea has
given many people useful tools and a name for what they are
doing.

262 Peter S. Langston

Appendix A

Control Keyword Usage

#

#ALLRPTS

#ALLSECTS

#ARTIC ,

#BAR

#BARLEN

#CHAN

#CHORD

#CHORDTONES

#CODING

#cPQ
#DEFTNE

#DOSECT

#EI,sE

#ENDIF
#ENDRPT

#ENDSKIP

#GAIN
#IFNEXT
#INCLUDE
#INIT
#LIMITS
#METER

mpp mut m dp sd ccc cc gc tab ddm
mpp
mpp

mpp
mpp
mpp
mpp
mpp
mpp

mpp
mpp

mut m dp
mut m

dp
mut m

dp

sd

mut m sd

mut m

coc gc tab

gc tab
tab

coc cc
gc

sd

#MULTIPLICITY
#NOTRPT mpp
#NOTSECT mpp
#NUT
#oNLYRPT mpp
#oNLYSECT mpp
#PART

#PICK
#QUANT
#REPEAT mpp
#ROLL

#SCALE

#SKIP mpp
#soLo

ddm
gc tab
gc

tab

cc
gc

dp sd ccc cc gc tab

dp
sd gc ddm

Little Languagesþr Music 263

Cont¡ol Keyword Usagc

#SPEED ccc gc tab
#sTRrrM gc
#STYLE çç gc
#STYLEDEF gc
#SYNC mut dp
#TEMPO InUt rn
#TITLE rnut M
#TRANS mut m
#TLINING tab
#TUPLE dp
#VELOCTTY gc tab
#VOICES mut m sd

264 Peter S. Langston

PROGRAM

Appendix B:
Little Music Language Tools

OUTPUT DESCRIPTION

accl

adjust

allnotesoff

axtobb

bars

bbritrs

bbtoax

bs

ccc

ccc2gc

ched

chmap

chpress

cntl

cntlseq

mpu

CLA

mpu

CLA

midi,mpu,smf

cc,MOUSE

ccc

ccc

mpu

mpu

CLA

CLA

CLA

mpu

mpu

mpu

mpu

nidi,mpu,smf

mpu

mpu

ma

cc,mpu

mpu

gc

mpu

mpu

mpu

mpu

mpu

AMC of stylized
accompaniments
AMC of stylized
melody lines
MMF to retime a piece
from a click track
UTG MIDI commands to
clear stuck notes
assemble MIDI/MPU/SMF
ûles
MMF to cut and paste

measures
AMC using the "riffology"
technique
convert MIDI/MPU/SMF
ñles to MPU assembler
AMCGI to video
background music
chord chart compiler -
produce accompaniments
convert chord charts to
guitar chord frles
graphic editor for
MPU data
MMF to map MIDI
channels
UTc MIDI channel
after-touch
UTG MIDI continuous
controller messages

UTG sequences of
controller or aftertouch
messages

Little Languages for Music 265

PROGRAM INPUT OUTPUT DESCRTPTION

countin mpu mpu MMF to trim leading
silence intelligently

da midi,mpu ma MIDI/MPU disassembler

ddm ddm m,mpu AMC of drum rhYthms
& melodies

ddmt MOUSE ddm,mpu AMCGI of drum rhythms
& melodies

dpZma dp ma convert drum pattern ûles

to MPU assembler

dp2mpu dp mpu convert drum pattern frles

to MPU data
dxTbut CLA mpu UTG YamahaDXT

button pushes

dxTtune CLA mpu UTG DX7 tuning
commands

ekn CLA cc,mpu AMC for network testing
fade MOUSE mpu graPhic MIDI mixer

controller
frlter mpu mpu MMF to invoke filters

on parts of an MPU
data stream

fract mpu mpu AMC MMF to Perform
fractal interpolation

gc2ma.awk gc ma convert guitar chord files
to MPU assembler

gc2mpu gc mpu convert guitar chord ûles

to MPU assembler
grass cc mpu AMC of bluegrass music

inst CLA mpu UTG MIDI Progfam
change commands

invert mpu mpu MMF to Perform
pitch inversion

julia CLA mpu AMC based on Julia sets

just mpu mpu MMF to quantize timing
keyvel mpu mpu MMF to maniPulate

key velocities
kmap mpu mpu MMF to remaP MIDI

key numbers

266 Peter s. Langston

PROGRAM OUTPUT DESCRIPTION

kmx

libnote

lick
m2mpu

m2mut

m2p.awk

mack

mecho

merge

mfm

mg

midimode

mirbut

mirpar

mirset

mixer

mixer-sa

mixplay

mjoin

mkcc

MOUSE

TEXT TEXT

mpu,tab
mpu

mut

pic

TEXT

mpu

mpu

mpu

midi

mpu

mpu

mpu

mpu

mpu

mpu

/dev/mpu

mpu

cc

mpu graphic MIDI patch
bay controller
maintain descriptions of
voice libraries
AMC of banjo solos
convert M ñles
to MPU data
convert M ûles
to MUT frles
convert M frles to pic
macros fior scoring
check MPU assembler frles
for errors
MMF to delay and echo
selected MIDI data
MMF to combine MPU
data streams
graphic wavesample
editorþenerator
read raw MIDI
through MPU-401
MMF to defeat
"running Status"
UTG Ensoniq Mirage
button pushes

graphic interface to
geVset Ensoniq Mirage
parameters
getlset Ensoniq Mirage
parameters
graphic MIDI mixer
controller front end
graphic MIDI mixer
controller, stand-alone
combine MIDI & MPU
data and play it
MMF to join overlapped
notes
AMC chord chart
generator

Little Languages for Music 267

gc

m

ma

mpu

mpu

mpu

midi

mpu

CLA

mpu

mpu

MOUSE

MOUSE

midi,mpu

mpu

CLA

PROGRAM OUTPUT DESCRIPTION

mozart

mpp
mpu2m

mpu2midi

mpu2pc

mpu2smf
mpuartin

mpuclean

mpumon

mustat

mut2m

mut2mpu

muzak

notedur

numev

p0l

pbend

pbendseq

pharm

phonemes

CLA

*

mpu

mpu

mpu

mpu
midi

mpu

mpu

vmstat

mut

mut

TEXT

mpu

mpu

grammar

CLA

CLA

mpu

TEXT

mpu

smf
midi

mpu

ma

mpu

m

mpu

mpu

mpu

TEXT

mpu

mpu

mpu

mpu

TEXT

*

m

mpu

midi

AMC based on the
musical dice game
music frle preprocessor

conYert MPU data
to M format
convert MPU
to untimed MIDI
calculate pitch change
track from MPU data
convert MPU to SMF
read and frlter raw MIDI
from MPU-401
MMF to condense
MPU data
split MPU data stream
into MPU and MA
streams
audio operating
system monitor
convert MUT files
to M frles
convert MUT ñles
to MPU data
converts ASCII text
to notes
MMF to manipulate
note durations
provide statistics about
an MPU file
AMC based on 0L
system grammars
UTG MIDI pitch-bend
commands
UTG interpolated
sequences of vttol
pitch-bend commands
MMF to add parallel
harmonization
converts ASCII text to
ASCII phoneme codes

268 Peter S. Langston

PROGRAM OUTPUT DESCRIPTION

play

pseq

record

retro

rtloop

scat

sd2m.awk

select

slur

smf2mpu

stats

sustain

sxmon

sxmpu

sxstrip

ma

/dev/mpu

mpu

mpu

mpu

mpu

sd

mpu

mpu

CLA

mpu

smf

mpu

mpr¡

midi

midi,mpu

mpu

/dev/mpu

mpu

mpu

mpu

mpu

mpu

midi

DT

m

mpu

DT

mpu

mpu

mpu

TEXT

mpu

ma

midi,mpu

mpu

mpu

CLA

play MPU data throt'gh
the MPU-401
AMC of logo sound
sequences
assemble MPU
assembler frles
input interface
to MPU-401
MMF to generate

retrograde melody
MMF to repeat sections of
MPU data
convert MPU to timed
MIDI (in "real-time")
convert MPU data to scat
for voice synthesizer
convert SD frles
to M ûles
MMF to extract speciûed
events from MPU data
generate voice commands
from MPU data &
phonemes

UTG MIDI prog¡am
change and sample data
MMF to substitute
pitch-bend for key-off/on
convert SMF data
to MPU data
provide statistics about
an MPU frle
MMF to convert sustain
pedal to note duration
monitor system exclusive
MIDI data from MPU-401
send/capture MIDI system
exclusive dumps
MMF to strip system
exclusive ccommands

rpt

srng

sinst

Little Languages for Music 269

PROGRAM OUTPUT DESCRIPTION

txportamento midi

txput

txvmrg

urnecho

ump

unjust

vegplot

velpat

tab2mpu

tempo
tmod

tonerow

transpose

trim

tshift

txeld

txget

txload

tab

mpu
mpu

CLA

mpu

mpu

mpu

midi

mpu

midi

midi

midi

midi

mpu

mpu

midi

mpu

mpu

mpu
mpu

mpu

mpu

mpu

mpu

mpu

midi

mpu

mpu

mpu

midi

midi

midi

mpu

SUN

mpu

convert TAB files to
MPU data
MMF to change tempo
MMF to apply a
tempo map
AMC of l2-tone
sequences
MMF to transpose
pitches
MMF to remove silent
beginnings & endings
MMF to shift MPU data
in time
load voices/performances
into TX/DX edit buffer
read voices/performances
from TX/DX synths
load and try
TX/DX voices
set portamento
parameters in TX/DX
synths
store voices/performances
in T)VDX synths
UTG 32-voice TX8l6
dumps from l-voice
dumps
loop back MIDI data
through a serial port
convert MPU data to
MIDI through a serial port
MMF to add random
variation to timing
UTG plots of
D){7/TX7lrx8l6
envelopes
MMF to apply a velocity
pattern to key-on events

270 Peter S. Langston

PROGRAM DESCRIPilO'ÀI

vget

vmod

voxn¡rme

vpr

vp-ut

mldi

midi

mpu

TEXT

TEXT

mpu

midi

read voices fron
DX7ÆX7/TX8r6
MMF to apply a dynamio
(volume) map
UTG names for
D){7fr){7nx8l6 voic€s
I.IIG parameter listings
from DX7ÆX7|TX8I6
voices

midi mpu store voices rn
DxTrT)('.ItTx'St6

Abbreviations used in the table:
AMC algorithmic music eomposition
AMCGI aþorithmic music composltion with a graphic interface
CL,A oommand line arguments
DT eommands for the DECTalk DTCOI speech synthesizer
MIUF MPU tO TT¡IFU ûIter
MO.USE graphic input
SUN Suntools graphic output
TEXT general ASCII text
U:fc *utility to generate-

LittJe la.nstwges for Mwíc 27 |

Appendix C:
Technical Notes on the
Audio Examples

One of the reasons sometimes given for preferring records to com-
pact disks is the lack of cover art, technical details, and liner notes
in the compact disk's smaller format. In that this paper could be
viewed as a massive set of liner notes for less than 20 minutes
worth of compact disk, I would be remiss indeed to leave out the
technical details.

Some details apply to all (or almost all) of the audio examples;
rather than mention them over and over, I'll include them here
and ignore them in the individual descriptions.

In all the examples the MIDI data was generated and manipu-
lated on a Sun Workstation (both a 386i and a 3/160 were used at
various times) and output through a Roland MPU-401 interface to
a bevy of MlDl-controlled equipment. The sounds generated by
the synthesizers were mixed on a Ramsa rWR81l8 mixing board
and recorded in stereo on a Sony PCM2500 digital audio tape
recorder at a samplihg rate of ¿gk. In most of the examples a lit-
tle reverberation was added using a Lexicon PCM70 effects proces-
sor. In a few of the examples a slight 60/120 Hz hum can be
heard, resulting from having the computer equipment on a
different phase of the three-phase electrical power than the syn-
thesizer equipment. This was later corrected but it sneaked
through on a few examples (my apologies).

Many of the technical notes mention the tempo at which the
associated example was played. In most cases where no mention
is made, the tempo was 100 quarter notes per minute, commonly
specified as "M.M. 100."e

Note that the page numbers given in the references below refer
to the page on which the audio example is frrst mentioned (and
not to any figures that may be named in the reference).

9. The German inventor Johann Nepomuk Maelzel devised the metronome in the earþ
nineteenth century. It's a minor point, but "M.M." stands for "Maelzel Metronome"
not "metronome marking" as often supposed.

272 Peter S. Langston

l. C major scale (three times) from MIDI data in Figure 2,
page 201- 0:10. In this example the data is first played in its pure
MIDI form, without any timing information; as a result, the notes
are separated by about 2 milliseconds (3 MIDI bytes to turn the
note on and 3 bytes to turn it off at a rate of 31,250 bits per
second or 0.32 milliseconds per b¡e). For the second and third
playings, the MIDI data was converted to MA form, time-tags were
added with the text editor vi, and the result was assembled with
axtobb (thereby converting it to upU format). The synthesizer
used here is a Yamaha DXTII; the voice used is ..Dual piano."

2. Tiny example of l,lpU data shown in Figure 3, page 202 -
0:03. This little snippet is played on a yamaha TXgl6 using all
eight modules to produce the various different aspects of the
piano sound (e.g. "Hammer Noise," "LJpper Octave Ring,'o ..Bass

End," and so on). The tempo used is M.M. 70.

3. Westminster chimes (from MA example in Figure g,
page 213) - 0:20. This example is played on a yamaha DXTII
using a modification of a voice that appeared on the frrst memory
cartridge supplied with the original DXT called ..TUB ERUPT." A
brief note (as in our example) sounds like a tubular bell, while a
held note generates a swelling tone.

4. First measure of Prelude #ll of the well-Tempered clavier,
from MUT data (Figure t4, page ZZ3) - 0:06. Although the brevity
of this example makes it sound a little awkward, it is indeed, the
first measure of Prelude ll. Novice musicians may count what
seems to be two measures or 314 time, but it is a single measure of
l2/8. The voice used is "Dual Piano" on a yamaha DX7II, the
tempo is M.M. 200 (two hundred eighth notes per minute).

5. Two reggae vamps generated (in MUT) by the shell file in
Figure 16, page 224 - 0:32. This audio example is, literally, the
result of two consecutive executions of the shell frle. The two
MUT data files created by the shell file were fed to mut2mpu creat-
ing two MPU frles that were then concatenated (using cat) and.
played (using play). The drum sound comes from a yamaha RX5
drum machine; the guitar sound is from an Ensoniq Mirage with a
standard electric guitar sample; the bass sound is from a yamaha

Little Languages þr Music 273

TX8l6 (it was run through a YAMAHA SPX90 effects processor

using the "symphonic" patch to make it sound more electric).

6. "Teddy Bear's Picnic" from M format data in Figure 17,

page 228 - 0:09. Four TX8l6 modules, each running a diferent
horn voice ("Mellow Horn 1," "Mellow Horn 2," "BÍight Horn
1," and "Bright Horn 2"), were used to give some spatial separa-

tion to the parts; the bass and lead are in the center of the sound
freld while the tenor and baritone are on opposite sides. Note the
dynamics change in the second line, reminiscent of barbershop
styling (this example was stolen from the vocal affangement used

by the band "Metropolitan Opry"). The tempo here is 80 beats
per minute.

7. "Samba Batucada" from DP data in Figure 18, page 231 -
0:12. There are hundreds of diferent variations of the Samba; this
one is a classic variation known as "Batucada," learned from
Birger Sulsbruck's excellent book [Sulsbruck 1982]. The tempo is
M.M. 190.

8. "Departure Taxo'from SD data in Figure 19, page 234 -
0:14. Although this particular arrangement was written for two
mandolins and a violin, none of the available synthesizer voices

created a credible mandolin for melodic playing (later examples

successfully use guitar voices to simulate mandolin chording, how-
ever), so the instrumentation was changed to a combination that
could only be realized with synthesizers. Each part is played by
two instruments (the usual name for this is "stacking"\, ã guitar
and a vibraphone. For each part, the timing of the notes was

slightly randomized to simulate the slight variations characteristic
of human playing. The high part ("Scotto') was played on an
Ensoniq Mirage (loaded with the "Nylon Guitar" sample from
their disk 6.0) on the left channel and a DXTII "Stereo Vibra-
phone" voice (on both channels). The lead part ('"Peter") was

played on two Ensoniq Mirages (loaded with the "Nylon Guitar"
sample), one on each stereo channel, and a DXTII "Stereo Yibra-
phone" (on both channels). The low part ("Paul") was played on
an Ensoniq Mirage (loaded with the "Nylon Guitar" sample) on
the right channel and a DXTII "Stereo Vibraphone" (on both
channels). In reality, only three synthesizers were used, a Mirage

27 4 Peter s. Langston

playing the high and lead parts into the left channel, a Mirage
playing the low and lead parts into the right channel, and a DXTII
playing all the parts into both channels. The result is that the
high and low parts are on opposite sides with the lead part in the
middle and slightly louder than the others.

9. "Empty Bed Blues" accompaniment from CCC data in Fig-
ll;re 21, page 237 - 0:31. The mix on this example is intentionally
heavy on the guitar (or light on the vibes) to focus attention on
the accompaniment generated from CCC data. The vibes part was
simply added by hand to give an idea of the reason for wanting an
accompaniment (i.e. as a "serving suggestion"). The guitar sound
is a combination of a TX816 guitar voice ("Electric Guitar") with
a little bit of acoustic piano (TXSI6 "Piano R") to add body. The
vibes voice is from a DXTII ("Stereo Vibraphone").

10. IMG/I boogie-woogie accompaniment from CC data,
page 241- 0:33. IMG/I actually generates an entire boogie-woogie
piece including a piano right-hand part, but it is turned down in
this example to let the part that was directly generated from CC
data come through more clearþ (although the right-hand part is
composed to fit the CC data, the data does not uniquely defrne it).
The drum part is played by an RX5 drum machine; the bass part
("Funk Bass 3") and piano left-hand part ("Acoustic Piano r") are
played by a TX816; the piano right-hand part is played by a DXTII
using the "Rich Grand Piano" voice. The tempo is M.M. 178.

11. IMG/I samba accompaniment from CC data, page 241 -
0:48. IMG/I offers a choice of three different rhythm parts for the
samba; a single-drummer trap-set, a small latin rh¡hm section,
and a full-blown, Desi Arnaz latin percussion section. This exam-
ples uses the small latin rh¡hm section played on an RX5 drum
machine. The bass and piano sounds are generated using the
same synthesizers and voices as the previous example. The
melody line is played on the DXTII's "Stereo Yibraphone" voice.
All the parts derive from a CC data file generated by IMG/I (using
the program mkcc); the piano, bass, and drums are deterministic,
while the melody is simply constrained to frt the CC data.

12. lMcll bluegrass accompaniment from CC data, page 241 -
0:29. The bluegrass banjo turns out to be a difficult instrument to

Little Lønguages þr Music 27 5

simulate with a synthesizer (it as, after all, a cross between a gui-
tar, a drum, and a salad bowl). Its nonlinear response to both
volume and pitch changes, combined with its bright overtone
spectrum, make it a difficult instrument to reproduce with a sound
sampler as well. Nonetheless, the banjo sound used here is a sam-
pled voice played on the Ensoniq Mirage (it is described further in
$21 of these technical notes). The guitar and bass voices are "Old
Spanish" and "Funk Bass 3" on the TX8l6.

13. Three styles of accompaniment generated from CC data in
Figure 24, page 241 - l:05. The voices and synthesizers used for
the boogie-woogie part of this example are identical to those used
for the previous boogie-woogie example. The samba part uses the
same voices as the previous samba example except a flugelhorn
voice on the Korg Ml is used in place of the vibraphone voice on
the DX7II. The bluegrass part also uses the same voices as the
previous bluegrass example. One of the exciting aspects of using
parametric aþrithms to compose music is the ability to mix
parameters from different styles. IMG/I generated the CC data in
Figure 24 to meet a specifrcation for a short piece of boogie-
woogie. It was then simply relabeled (using a text editor) as

"samba" (and then "bluegrass") and given back to IMG/I to inter-
pret. In this case the harmonic structure frt well into the other
styles and the resulting music was appropriate to each style.

14. "PecusaWaltz" fragment in Figure 28, generated from GC
data, page 249 - 0:18. This example is played using the sampled
banjo voice on the Ensoniq Mirage. The two speeds were
achieved by playing the frle (lick}.lab) with varying tempo
specifications: play ¿93 lick}.lab; play -t146 lick0.lab. Ãs in much
arpeggiated music, different kinds of motion seem to predominate
at different speeds; at the slow speed a linear melody with repeats
is heard, while at the faster speed the impression is of multiple
voices moving in syncopated counterpoint.

15. C major scale from TAB data in Figure 29, page 250 - 0:03.
This example is played on the DXTII using a rather squeaky guitar
setting that combines two guitar voices, "Titeguitar" (the
squeaker) and "PickGuitat." Much of what distinguishes a really
believable synthesizer sound from an unconvincing one is the

27 6 Peter S. Langston

so-called "stuf in the voice. "Stuf includes the breathy chiff
sound that starts a flute note or the thump of the hammer striking
a piano string. Two important pieces of "stuff for a guitar are the
pick noise (provided by "PickGuitar") and the squeak of frngers
changing position on the fingerboard. "Titeguitar" provides such
a squeak, but it appears everywhere regardless of whether any
frnger motion would be required or not. This should not be
surprising since the synthesizer can't tell how you intend the
"fingering" to be. One of the advantages of the TAB data format
is that you can specify some of this information. Then by control-
ling two synthesizers, one that squeaks and one that doesn't, you
could accurately simulate this important "stuff."

16. Drum part generated from DDM data in Figure 30,
page 255 - 0:22. Note that the audio example is different from the
sample output shown in Figure 31 although both are described by
(and were generated from) the DDM frle in Figure 30. This exam-
ple was played on an RX5 drum machine at a tempo of M.M. 100.

17. Melody generated from DDM data in Figure 32, page 256 -
0:21. Ãgain, the audio example is different from the notated
example (Figure 33), but it is derived from the same DDM ûle.
This is played on the DXTII's "Stereo Vibraphone" voice at a
tempo of M.M. 100.

18. Scat part generated from DDM data with an "indian"
scale, page 257 - 0:30. The drone is a modification of a standard
DX7 sitar voice; the modifrcation makes the sound have a longer
decay time. I felt a little strange playing this part since it's cus-
tomary for sitar players to have one of their students play the
drone for them at concerts - it put my relationship with Eedie in
a ne\ry light. Her part is "played" on a DECTalk DTC0I speech
synthesizer.

19. "Starchastic 12264" generated from DDM data, page 260 -
2:30. The trap-set drum sounds were produced by a Yamaha RX5
drum machine and the latin sounds were produced by a Yamaha
RX21L. The bass was generated by a single Yamaha TX8l6 syn-
thesizer module using the voice "Funk Bass 3." The frrst lead
voice is a trumpet sound ("Trumpet") from a Korg Ml syn-
thesizer. The second lead sound comes from a pair of TX8l6

Little Languages for Music 277

modules (one on each stereo channel) using the "Plucked 1" and
"Plucked 2o' voices.

The drum parts were generated by the program ddm. Dunng the
latin drum solo the output from three executions of ddm are
merged, one using the trap-set specification file and two using the
latin specifrcation file. This means that at most there can be three
drum sounds at once (i.e. three one-armed drummers could play
this part, in theory). The bass part was also generatedby ddm,
using mpp to select the appropriate sections of the specification
frle to use for each part. Melodic lines were also generated by
ddm, in some cases as four bar phrases that are repeated later.
See Appendix D for a listing of the DDM frles used.

20. "Some Velvet Morning" performed by Eedie & Eddie and
the Reggaebots, page 261 - 3:16. Although the DECTalk speech
synthesizers do an amazingjob of making credible speech from
ASCII text (a difficult task) and can even imitate much of the
characteristics of singing, their timing control is too crude to syn-
chronize well with music. The vocal parts for this piece were
recorded digitally on a Macintosh computer equipped with
Digidesign's AudioMedia digital sound hardware and software.
They were then edited with a cut-and-paste editor and combined
into a stereo pair of tracks. The instrumental parts were then
recorded onto the same machine and merged with the vocal parts
(instrumentation the same as for the reggae vamp example).
Finally, the result was played back and recorded on the DAT
recorder. Thus, the vocal parts started out as ASCII and VttOI
data, were converted to audio by a DECTalk, were converted to
44.1KHz digital by AudioMedia, were converted back to audio by
AudioMedia, were converted to 48 KHz digital by the DAT
machine, were converted back to audio to be mastered, were con-
verted back to 44.1 Y:Ílz digital on the compact disk, and will be
converted back to audio by your compact disk player. It will be
amazing if there's anything left of them.

Eddie's voice is based on the standard DECTalk voice "Perfect
Paul." Paul's voice was altered by setting the pitch range to the
maximum (250) and raising the average pitch to 160 Hz. Speech
rate is usually set to 220. Eedie's voice is based on the voice

278 Peter S. Langston

called "Beautiful Betty" with the pitch range raised to 200. Eedie
and Eddie are distant ancestors of the shipboard computers
manufactured by the Sirius Cybernetics Company [Adams l97O].

As mentioned in the main body of text, the bass and guitar parts
were specified as MUT format frles (one and three pages, respec-
tively, with comments) and the drum part was specified as a Dp
format file (two pages with comments). Both the lyrics and the
musical information for the vocal parts was specified by M format
frles with liberal use of the music preprocessor mpp to carry out
the slice-and-dice affangement without needless replication of lyr-
ics or music.

The major programs used in assembling this piece were: bars (to
cut out selected measures, àla head and tail), chmap (to move
MPU data among MIDI channels), cntl (to set controller values for
parametric instrument voices), dp2mpu (to convert Dp to MpU
format for the drums), inst (to include automatic voice selection
in the instrumental files), m2mpu (to convert M to MpU format
for the vocals), make (to keep all the pieces up to date), merge (to
combine tracks of MPU data), mpp (to perform macro replace-
ment, repeats, and sectioning), mut2mpu (to convert MUT to MpU
format for guitar and bass), phonemes (to convert lyrics to
phonemes), and síng (to convert phonemes and MPU format to
DECtalk coding).

21. "PecusaWaltz" in the long form, page 261- 3:33. The
lead vocal was sung by the author while the two harmony parts
were sung by Karen Anderson (from the Canadian Ethno-
confusion group "the Nyetz"). The vocal parts were recorded on
a Fostex Model 80 tape deck and synchronized with the MIDI
playback using the Roland MPU-401 interface's tape sync signal.
Mixing levels were controlled by Iota Systems MidiFaders, in turn
controlled by MIDI data generated by cntlseq. The wind sounds
and the vocal chorusing at the beginning were provided by an
Eventide H30008 Harmonizer (MIDI controlled).

The banjo voice was created by digitally "sampling" the author's
banjo (an Epiphone "Professional" tenor banjo that has been con-
verted into a five string) on an Ensoniq Mirage sampler; only
three digitally recorded notes were used to generate all the sounds

Little Languages þr Music 279

used for the banjo part. The melodies for two of the banjo parts
(a verse and a chorus each) were generated from TAB files, all the
rest of the parts were improvised by the lick program, using the
GC files that generated the guitar accompaniment to define the
harmonic structure. The bass voice used the Mirage acoustic bass

sample and was specified as TAB data. The guitar used the voice
"Guitar 1" on the Korg Ml synthesizer and was specified as GC

data. The mandolin used the voice called "Jazz Guitar" on the
TX8l6 and was also specified as GC data. The fiddle used the
TX816 voice "Fiddle" and was specifred as a combination of tue
and TAB frles. Some of the strange sounds at the beginning are

the result of pitch bend commands sent to the ûddle voice. Syn-

chronization of the vocal parts while recording was provided by
melodic data encoded in M format and a click track specified as

DP data (that the particularþ alert listener may be able to hear
leaking onto the vocal track in one or two spots).

The tempo starts out at M.M. 145 and accelerates smoothly to
M.M. 155 in the middle of the piece using tmod to generate the
accelerando.

280 Peter S. Langston

Appendix D:
DDM Files þr "starchastic $8"

H(5 trtrap-setrr Drum part
2/45 80:D:2:0:96801
2/49 80:U:2:0:96SD2
2/52 50:D:4:0:64S01
2/57 50:U:4:0:80HHC
2/46 45:U:8:0:64RfM2
2/47 45:D:8:0:112 T0M4
2/54 45:U:8:0:64CLAPS
2/55 50:U: 8:0:64 C0WBELL
2/59 50:U:8:0:64HHO
2/62 60:D:16:0:48 RIDEcup
2/57 80:D: t6:O:72 HHC

il(2ll rrlatinrr Drun Solo
4/65 40:D:2:0:90C0Nc0
4/69 50:U:2:0:65TIMBL
4/64 50:D:4:o:72C0NGL
4/67 60:U:4:0:68BONGL
4/79 30:D:8:0:48WHST2
4/68 33:U:8:0:70B0NGH
4/72 40:D:8:0:64COWBL
4/66 67:U:8:O:72C0NGM
4/74 80:D:8:0:70AGoGL
4/70 50:D:16:0:80 TIMBH
4/69 60:U:16:0:65 TIMBL
4/65 50:D:16:0:48 CoNGO

4/64 65:U:16:0:48 coNcl
4/76 33:D:16:0:33 CUICL
4/77 33:U:16:0:68 CUICH
4/75 60:D:16:0:64 AGOGH

4/73 75:D:16:0:64 cLAvE
4/78 50:U:16:0:52 WHST1

Little Languages þr Music 281

Minor Key Bass Line
#SCALE C,D,Eb,E, G, A

#IIMITS EO,C3
3/A1. 33:D:2:4:64root
3/El, 33:U: 2:4:64fifth
3/+1. 40:D:4:4:56up 1 step
3/-1. 45:U:4:4:56down 1 step
#ONLYSECT O

3/C2 33:D:8:4:56third
3/+Z 50:D:8:4:56up 2 steps
3/-2 50:U:8:4:56down 2 steps

Lead Lines
#SCALE C,D,Eb,E,G,A,B
#LIMITS 82.C5
L/A3 33:D:2:L5:72 root
1./83 60:D:2:L5:64 fifth
L/O 50:D:4:31:56 repeat note
1./-1, 50:D:8:3t:72 down 1 step
1./+1. 50:U:8:31:64 up 1 step
1./G3 25:U:4:31.:64 leading
t /+2 3O: D : L6 7 :72 up 2 steps
t/-2 3O:U:1.6:7:64 down 2 steps
t /+t 40:D: t6 7:48 up 1 step
1./-t 40:U:1.6:7:48 down 1 step
1,/ O 40 : U : 1.6 :7 : 48 repeat not e

282 Peter S. Langston

Appendix E:
Lyrics for the Examples

Some Yelvet Morning
Lee Hazelwood

Some velvet morning when I'm straight.
I'm gonna open up your gate.
And maybe tell you'bout Phaedra.
And how she gave me life.
And how she made it end.
Some velvet morning when I'm straight.

Flowers growing on a hill.
Dragon flies and daffodills.
Learn from us, very much.
Look at us, but do not touch.
Phaedra is my name.

Some velvet morning when I'm straight.
I'm gonna open up your gate.
And maybe tell you'bout Phaedra.
And how she gave me life.
And how she made it end.
Some velvet morning when I'm straight.

Flowers are the things we know.
Secrets are the things we gro\ry.
Learn from us, very much.
Look at us, but do not touch.
Phaedra is my name.

Some velvet morning when I'm straight.
Flowers growing on a hill.

I'm gonna open up your gate.
Dragon flies and daffodills.

And maybe tell you'bout Phaedra.
Learn from us, very much.

And how she gave me life.
Look at us, but do not touch.

And how she made it end.
Phaedra is my name.

Some velvet morning when I'm straight.

@ I-eeHazelwood Music Co. ASCAp

Little Languages for Musíc 283

Pecusa Waltz
Peter Langston

The high seas have almost run dry
Mount Everest is down to a molehill

(my oh mY)

The hot sun has started to swell,
and I'11bet it's damn near

freezing down in hell.

The high seas have almost run dry
Mount Everest is down to a molehill

(my oh mY)

The hot sun has startod to swell,

and I'll bet it's damn near
freezing down in hell.

The cows, the cows are all coming home

and then this universe will start fading'

But love, sweet love is our metronome
so waltz me Pecusa'til then.

A Big Bang is coming around
but we'll drown it out with a whimper,

(what a sound)
So make love and soar until you burst

Of four horsemen whY not
pacify the ñrst?

The cows, the cows are all coming home
and then this universe will start fading'

But love, sweet love is our metronome
so waltz me Pecusa'til then.

The high seas have almost run dry
Mount Everest is down to a molehill

(my oh mY)
The hot sun has started to swell,

and I'11bet it's damn near
freezing down in hell.

The cows, the cows are all coming home

and then this universe will start fading'

But love, sweet love is our metronome
so waltz me Pecusa 'til then.

@ 1988, Peter Langston

284 Peter S. Langston

Appendix F:
List of Audio Examples

t. C major scale (three times) from MIDI data in Figure 2,
page 201 - 0:10

2. Tiny example of VtpU data shown in Figure 3, page 202 - 0:03

3. Westminster chimes (from MA example in Figure 8,
page 213) - 0:20

4. First measure of Prelude #11 of the Well-Tempered Clavier,
from MUT data (Figure 14, page 223) - 0:06

5. Two reggae vamps generated (in MUT) by the shell file in Fig-
ure 16, page 224 - 0:32

6. "Teddy Bear's Picnic" from M format data in Figure 17,
page 228 - 0:09

7. "Samba Batucada" from DP data in Figure 18, page 231 - 0:12

8. "Departure Tax" from SD data in Figure 19, page 234 - 0:14

9. "Empty Bed Blues" accompaniment from CCC data in Fig-
ure 21, page 237 - 0:31

10. IMG/I boogie-woogie accompaniment from CC data,
page 241- 0:33

11. IMG/I samba accompaniment from CC data, page 241- 0:48

12. IJ|'{G/I bluegrass accompaniment from CC data, pa1e 241 -
0:29

13. Three styles of accompaniment generated from CC data in
Figure 24, page 241 - l:05

14. "PecusaWaltz" fragment in Figure 28, generated from GC
data, page 249 - 0:18

15. C major scale from TAB data in Figure 29, page 250 - 0:03

16. Drum part generated from DDM data in Figure 30, page 255 -
0:22

Little Lønguages for Music 285

17. Melody generated from DDM data in Figure 32,page 256 -
O:21

18. Scat part generated from DDM data with an "indian" scale,
page 257 - 0:30

19. "starchastic 12264" g€nerated from DDM data, page 260 -
2;30

20. "Some Yelvet Morning" performed by Eedie & Eddie and the
Reggaebots,pege 261 - 3:16

21. "Pecusa lValtz" in the long form, prye 26L - 3:33

286 Peter S.I¡ngston

References

A. V. Aho, B. W. Kernighan, and P. J. Weinberger, AWK - A pattern
scanning and processing language, Software Practice &. Experience
9:267-280,1979.

J. Bentley, Programming Pearls, Communications of the ACM, 29(8):7tt-
72t, t986.

S. Feldman, Make - a program for maintaining computer programs,
Software Practice & Experience 9:255-265, 1979.

M. Hawley, MIDI Music Software for UNIX, Proceedings of the USENIX
Summer'86 Conference, 1986.

B. W. Kernighan, PIC - A Graphics Language for Typesetting, AT&T Bell
Laboratories Computing Science Technical Report No. I16, 1984.

P. S. Langston, (201) 644-2332. Eedie & Eddie on the Wire, An Experi-
ment in Music Generation, Proceedings of the USENIX Summer '86
Conference, 1986.

P. S. Langston, Six Techniques for Algorithmic Composition, Bellcore
Technical Memorandum #ARH-01 3020, 1988.

P. S. Langston,IINIX MIDI Manual, Bellcore Technical Memorandum
#ARH-O15440, 1989.

P. S. Langston, Getting MIDI from a Sun, Bellcore Technical Memoran-
dum #ARH-016282, 1989a.

P. S. Langston,IMG/I - An Incidental Music Generator, Bellcore Techn-
ical Memorandum #ARH-016281, 1990. Submitted to Computer
Music Journal.

M. E. Lesk, TBL - A Program for Setting Tables, Bell Laboratories Com-
puting Science Technical Report #49,1976.

[MIDI 1988] Standard AtU Files 1.0, The International MIDI Associa-
tion, 5316 W. 57th St., Los Angeles, CA 90056, 1988.

IMIDI 19891MIDI t.0 Detailed Specirtcafion, Document version 4.1, The
International MIDI Association, 5316 W. 57th St., Los Angeles, CA
90056, 1989.

B. Sulsbruck, Latin-American Percussion, Den Rytmiske Aftenskoles For-
lag,1982.

T. J. Thompson, Keynote - A Language for Musical Expressions, AT&T
Bell Laboratories Technical Report, 1989.

Little Languages for Music 287

T. J. Thompson, Keynote - A Language and Extensible Graphical Editor
for Music, Proceedings of the USENIX Wínter '90 Conference,1990.

lsabmitted Dec. 28, 1989; revísed Feb. 22, 1990; acceptedApril 27, 19901

288 Peter S. Langston

