
A Comparison of Basic CPU
Scheduling Algorithms for
Multiprocessor UNIX

Stephen Curran and Michael Stumm

University of Toronto

ABSTRACT: In this paper, we present the results of
a simulation study comparing three basic algorithms
that schedule independent tasks in multiprocessor
versions of UNIX. Two of these algorithms, namely
Central Queue and Initial Placement, are obvious
extensions to the standard uniprocessor scheduling
algorithm and are in use in a number of multipro-
cessor systems. A third algorithm, Take, is a varia-
tion on Initial Placement, where processors are
allowed to raid the task queues of the other proces-
sors. Our simulation results show the difference
between the performance of the three algorithms to
be small when scheduling a typical UNIX workload
running on a small, bus-based, shared memory mul-
tiprocessor. They also show that the Take algo-
rithm performs best for those multiprocessors on
which tasks incur overhead each time they migrate.
In particular, the Take algorithm appears to be
more stable than the other two algorithms under
extreme conditions.

@ Computing Systems, Vol. 3 'No. 4'Fall 1990 551

I. Introduction

In this paper, we consider ways to organize and manage the ready
tasks in a shared memory multiprocessor. The uniprocessor UNIX
kernel uses a single priority queue for this purpose: A task is
added to the ready queue behind all tasks ofhigher or equal prior-
ity, and the CPU is allocated to the task with the highest priority
which is at the head of the queue. For the shared memory mul-
tiprocessor case, we consider three basic scheduling algorithms in
a simulation study, and compare their behavior and performance
in scheduling a UNIX workload of tasks. We focus on bus-based
multiprocessors that incur extra overhead each time a task is
migrated from one processor to another. Many existing multipro-
cessors belong to this class, including the Encore Multimax
[Moore & al. 1986], the Sequent Symmetry [Lovett & Thakkar
19881, and the DEC Firefly [Thacker et al. 1988]. Two of the
scheduling algorithms we study are obvious extensions of the
method used in the uniprocessor case:

. Central Queue (CQ): All processors of the multiprocessor
share a single ready queue. (This requires that accesses to
the queue be synchronized).

. Initial Placement (IP): Each processor has its own separate
ready queue and only executes tasks from its own queue.
When a task is first created, it is permanently assigned to
one ofthe processors.

The problem with Initial Placement is that a load imbalance may
occur, where some processors are idle with nothing to execute,
while other processors are busy and have tasks in their ready
queues. Any load imbalance will result in poorer task response
times. With Central Queue, the load is always perfectly balanced,
since an idle processor will execute any available task. However,
the probability is high that a task will execute on a different pro-
cessor each time it is dispatched; that is, it will be migrated. For
many multiprocessors, each task migration incurs overhead both
for the task being migrated and the rest of the system, increasing
average task response times if the Central Queue algorithm is
used.

552 Stephen Curran and Michael Stumm

These two algorithms represent opposite ends of a spectrum,
where Initial Placement has no migration overhead and unbal-
anced loads, and Central Queue has migration overhead but a per-

fectly balanced load. A third algorithm, which is a variation of
Initial Placement, lies between these two extremes:

. Take (TK): Each processor has its own separate ready
queue, and tasks are initially assigned to the queue of one of
the processors. Each processor executes tasks from its own
queue whenever possible, but raids the queues of the other
processors when its own queue is empty.

Of these algorithms, Central Queue will perform best if there is no

migration overhead, but we show that the Take algorithm per-

forms better than both the Initial Placement and Central Queue
algorithms under most operating conditions on those systems that
have migration overhead. Although the difference between the
three algorithms is relatively small, the behavior of the Take algo-

rithm is much more stable than the other two algorithms under
extreme conditions. Initial placement performs worse than the
other two algorithms because of load imbalances. Central Queue
performs poorly when the load is high, due to the overhead of the

large number of migrations that occur. In addition, Central

Queue gives poor response to low priority tasks under high loads.

The Take algorithm performs well, because it resorts to task

migration (with its associated overhead) only when load imbal-
ances occur and does not migrate tasks when there is little benefit
in doing so.

This paper is theoretical in the sense that the results are

obtained from simulation studies instead of from measurements

of real systems. Nevertheless, we believe that the results we

present are of practical value. All three algorithms we study are

practical in that they are simple and have been implemented; two

of them are used in most of the existing multiprocessors today.
Moreover, we use measurements obtained from a real UNIX sys-

tem to derive the simulator's input parameters. Finally, although
we don't derive absolute performance predictions for specific sys-

tems and workloads, we study the relative performance of the
three algorithms across a broad range of architectures and work-

loads and analyze how changes in the system or workload affect

CPU Scheduting Algorithms for Multiprocessor IINIX 553

performance. This allows us to study the behavior of the algo-
rithms under different circumstances.

The following section describes the different sources of migra-
tion overhead in order to assess the cost they inflict. In Section 3,
we describe in detail the simulation model, the input parameters,
the scheduling algorithms, and the performance metric used. Sec-
tion 4 presents the results of simulating a baseline system, and
Section 5 extends these results by considering other workloads
and system parameters.

L I Related Work

A number of papers exist that describe how scheduling is per-
formed in existing multiprocessor operating system implemen-
tations [Black 1990; Kelley 1989; Lovett & Thakkar l98B; Russel &
Waterman 19871. All of these systems implement variants of the
Central Queue algorithm.

Two additional studies are concerned with the overhead of the
scheduling algorithms themselves. wendorf I l9s7] concludes that
scheduling decisions should only be made on a (small) subset of
the processors in a multiprocessor. Ni and Wu [19S9] analytically
studied several scheduling algorithms to show the effects of con-
tention to the ready queue on the performance of the algorithms.
In this paper, we assume that the overhead for the scheduling
algorithms is negligible and that there is no contention for the
ready queue(s). These are reasonable assumptions, given the sim-
plicity of the algorithms and the small number of processors being
considered here.

Much of the early multiprocessor scheduling research focused
on scheduling parallel programs on systems dedicated to the par-
ticular application; see Gonzalez ft977l lor a survey. It is still an
open question how to schedule parallel programs in general mul-
tiprogramming environments. This is an area of active research
lZhou 1990; Leutenegger & Vernon 1990; Black 1989; Tucker &
Gupta 1988; Ousterhout l982l.In this paper, we do not consider
parallel programs, but only consider the scheduling of independent
tasks.

Considerable effort has also been spent studying network-wide
scheduling issues IStumm 1988; Zhou 1988; Livny & Melman

554 Stephen Curran and Michael Stumm

19821. For example, Leland and Ott [1936] show that for the
UNIX workload they investigated, the use of migration can

improve the performance of large tasks by up to 25o/o. In contrast,
Eager et.al. [1988] use an analytical model to show that there is no
major performance gain in using migration if a good initial place-

ment load balancing algorithm is already being used. These

results are not directly applicable to shared memory multiproces-
sors, however. In a multiprocessor, state information can be kept
in shared memory and is quickly accessible by all processors.

Also, the overhead of task migration is on the order of mil-
liseconds on a multiprocessor but on the order of seconds in a dis-
tributed system.

2. Task Migration Costs

Migration costs can come from three sources in a modern shared
memory multiprocessor:

l. the loss of cache context when a task moves from one pro-

cessor to another,

2. the overhead required to keep data consistent across multi-
ple caches, and

3. the processing overhead that affects the performance of the
system as a whole.

In this section, we consider each of these cost sources in more
detail.

2.1 Cache Context Loss

Many of today's multiprocessors have a per-processor memory
cache both to reduce bus traffic and to improve the average

memory access time. A task, executing on a processor with a

cache, can accumulate a considerable amount of context close to
the processor in the form of cache entries. When a task restarts

after a pause, some of its cached data may (depending on the type
of cache) still be present at the cache of the processor it last ran
on, and therefore, will execute faster if it is run on that processor.

If it is migrated to a new processor, it will have little or no cache

context and must build up its context through cache misses. This

CPU Scheduting Algorithms for Multiprocessor 1NIX 555

causes a decrease in the execution speed of the task itself and
causes an increase in bus traffic which slows down the system as a
whole.

How much cache context is lost when a task migrates depends
on many factors, including the architecture of the cache subsys-
tem, its structure and size, the degree of associativity, the charac-
teristics of the transients (the building and decaying of the con-
text), the number of other tasks executing on the processor, the
length of time since the task last ran, and the time the task exe-
cuted on the processor from which it is migrating. The amount of
cache context lost is limited by the task's working set. It should
also be noted that for some systems there may be no extra over-
head for migrating a task. This is the case for all systems, for
example, where the cache must be invalidated on each context
switch.

2.2 Cache Consistency Overhead

After a task migrates from one processor to another, its data may
be present in two caches at the same time. If this is the case then
data that is local to a task will appear to be shared to the system,
requiring a mechanism to ensure that the caches stay consistent.
Cache consistency comes with a cost, whether it is performed in
hardware or software. In systems without hardware cache con-
sistency support, the operating system can invalidate the cache
when a task is migrated. The cache of either the destination pro-
cessor or the processor on which the task last executed can be
invalidated, depending on how the caches operate. Ifa cache
write-back protocol is used, the cache of the old processor must be
flushed and invalidated to ensure that all of the tasks' data
modifications are reflected in main memory before it is loaded
into the new cache. If, on the other hand, a cache write-through
protocol is used, invalidating either processor's cache is accept-
able. A cache flush can take hundreds of cycles in real systems.

Even if caches are kept consistent by hardware, cache con-
sistency overhead is still possible. On some systems, the con-
sistency mechanism may cause additional bus traffic. This is the
case, for example, on the DEC Firefly multiprocessor [Tacker et
al. 1988]. The Firefly uses an update scheme, where each

556 Stephen Curran and Michael Stumm

modification to data present in more than one cache is broadcast
(across the bus) to all caches so that they can update their cache

entries. (In contrast, when a data item is present in only one

cache, a write-back scheme is used with no extra bus traffic). On
other systems, the consistency mechanism may slow down cache

access on other processors. For example, in some multiproces-
sors, the processor may be prevented from accessing the cache

while a snoopy invalidation or update is occurring.

2.3 System Migration Overhead

System Migration Overhead refers to the overhead of migration
that affects the performance of the entire system. As described

above, System Migration Overhead generally occurs in two forms.
First, migration may increase contention for the system bus,

because of increased bus traffic due to more frequent cache misses

when a task starts executing on a new processor. This causes an

increase in the average memory access time for all tasks, reducing
the execution speeds of all tasks in execution. Secondly, addi-
tional bus traffic may be necessary to keep the caches consistent.

For example, we have observed the bus on the Firefly multipro-
cessor to saturate at l00o/o utilization when running four small
independent programs on the Firefly; the bus was being used

entirely for cache updates that would not have occurred if the

tasks had not migrated.
In addition to these two forms of System Migration Overhead,

a more subtle, third form can occur on some architectures, where

certain operations can be optimized if it is known that task migra-
tions will not take place. For example, consider a system where

all memory is globally accessible over the bus, but is partitioned
across the processor boards such that local memory can be

accessed faster than memory located on other processor boards.

If migration is not permitted on such a system, then the operating
system will always try to allocate faster, local memory to a task so

that the vast majority of accesses will be handled locally. On the
other hand, if migration is permitted on this type of system then
the number of accesses to local memory decreases since it is no
longer possible to keep a migrating task's memory local without
copying it. the number of remote memory accesses therefore

CPU Scheduting Algorithms for Multiprocessor IJNIX 557

increases, as does the bus traffic and the average memory access
time, with the attendant system-wide processor performance
degradation.

3. The Simulator

Our event-driven simulator models a workload of UNIX-like tasks
executing on a small, bus-based, shared-memory multiprocessor.
The system model consists of four components: the hardware, the
workload, the scheduling algorithms and the task priority models.
Figure 3.1 depicts the queueing network model implemented by
the simulator. The figure shows both the hardware of the system
(processors and the I/O subsystem) and the path tasks take as they
pass through the system.

This simulator is initially used to simulate a Baseline System,
defined by two sets of input parameters. The first set describes
the hardware model and includes, for example, the cost of task
migration and the speed of the processors. The other set defines
the workload that is executed on the system. The parameters used
in the Baseline System tests defrne a particular system running a
particular workload and the simulator makes numerous simplify-
ing assumptions, so it is natural to question the parameters and
the results of the simulation. For this reason, we analyzed the
sensitivity of the results of our Baseline System tests by indepen-
dently varying the input parameters to determine if and how each
affects the performance of the scheduling algorithms. Most often,

Task
Arrival

Rate

Number of CPUs
Exiting
Tasks

Figure 3.1: The queueing network model implemented in the simulator.

558 Stephen Curran and Michael Stumm

Number of I/O Bursts

CPU Burst Lengths I/O Pause Lengths

we found that changes in the input parameters do not change the
results in a significant way. For example, when simulating slower
processors, the behavior of the algorithms remains similar to that
of the Baseline tests, although the relative differences become
more pronounced. Similarly, changes in the number of proces-
sors, the size of the CPU quantum, or the length of the I/O pauses

did not have much effect on our results. (See Curran [1989] for
details). We therefore believe that the results of the Baseline Sys-

tem tests are valid across a large range of architectures and work-
loads, including workloads typically found in software develop-
ment, text processing and computer aided design. Those cases

where changes in input parameters produce interesting results are

described in Section 5.

In the rest of this section, we describe in detail the assump-
tions made in the simulation model, the input parameters, the
scheduling algorithms, and the performance metrics used in this
study. The casual reader may want to skip to Section 4.

3.1 Assumptions

In our hardware model, all processors are homogeneous, and each

can schedule and execute tasks. Tasks can execute on any proces-

sor and can move from one processor to another whenever they
are dispatched (subject to a migration cost penalty). For simpli-
city, the I/O subsystem is assumed to be merely a delay; there is
no queueing for I/O. The queueing delays are modeled in the
length of the I/O pauses.

The simulator workload is represented by a set of tasks execut-
ing an alternating series of CPU bursts and I/O pauses. New tasks

arrive in the system at a given arrival rate. A task's characteristics,
including its priority, the number of CPU bursts it will execute,

and the length of each CPU burst and I/O pause, are generated

based on a set of configurable workload model parameters. A task
executing on a processor proceeds until its current CPU burst has

completed or until one CPU quantum of 100 ms. completes. The
distribution of CPU bursts and I/O pauses are taken from meas-

urements of existing UNIX systems (as described in Section 3.2).
For the initial simulations, a simplified priority model is used,

where all tasks are of the same priority. Later, in Section 5, we

CPU Scheduling Algorithms for Multiprocessor (:NIX 559

consider a more realistic task priority model and determine how
the scheduling algorithms are affected by the use of tasks running
at multiple priority levels.

Migration costs are controlled by two parameters, the Task
Migration Costs (TMC) and the System Migration Costs (SMC).
The TMC parameter represents the migration cost to the task
itself, and is therefore a penalty applied to the task being
migrated. The penalty is a fixed amount of time added to the first
CPU burst following a migration. The System Migration Cost
parameter controls the magnitude of the system-wide processor
performance penalty that results from the use and support of
migration. The SMC represents a reduction in the speed of all of
the processors in the system, and is implemented by increasing the
length of all CPU bursts by a fixed percentage when a migration-
based algorithm is used. This distribution of migration costs
models the bulk of the migration costs from the sources described
in Section 2.l. Some of the System Migration Overhead costs
(such as contention for the system bus) are dependent on the rate
at which tasks migrate. In our model, the SMC parameter is a
fixed value that is applied if the scheduling algorithm supports
migration, regardless of whether migration is actually occurring
or not.

3.2 Input Parameters

A number of input parameters are used to define the Baseline Sys-
tem and come from several sources. First, the hardware charac-
teristics and migration costs are based on a multiprocessor we our
currently building and is representative of many existing systems.
In this system, we assume there are four 20 MIPS processors. Ini-
tially, we assume a TMC of 1 ms, which is added to the length of
a task's next CPU burst each time it is migrated, and we assume a
SMC of 50/0, which is added to all CPU bursts when a migration-
based scheduling algorithm is used. Laher, we vary these parame-
ters to study their effects.

The workload parameters are based on measurements we per-
formed on a (single processor, 3 MIPS) CVAX-based UNIX sys-
tem to obtain CPU burst and I/O pause distributions, using a
clock with a microsecond resolution. As an example of the data

560 Stephen Curran and Michael Stumm

Length
of

CPU
burst

8to16s lt

4to8s 46

2fo 4 s 9l

Ito2s ll9

5l2mstols 281

256 to 512 ms 323

128 to 256 ms 667

64 to 128 ms 2100

32 to ó4 ms 2866

16 to 32 ms s290

8to 16ms 15734

4to8ms 23433

2to4ms

Ito2ms 11972

512 us 1o I ms 3692

256 to 512 us I 30ó

128 to 256 us 6l 53

64 to 127 us 24

tl
10 100

ll
1000 10000

62563

I

r00000

CPU bursts

Figure 3.2: Distribution of CPU burst lengths

obtained from these measurements, Figure 3.2 depicts the CPU

burst length distribution for all processes that executed on the sys-

tem for a period of 90 minutes, during which one user was active

developing software (mainly editing) using the X window system,

while a 4.2 BSD kernel was remade in the background. More pre-

cisely, a CPU burst of a task is measured as the total time it is
executing on a processor (in either user or kernel mode) from the

time it is added to the ready queue after an I/O pause, until it

CPU Scheduting Algorithms for Multiprocessor IINIX 561

executes sleep in the kernel to begin another I/O pause. (Note
that both axes in the figure have logarithmic scales). One can
observe that most of the CPU bursts are relatively short, i.e.
between 2 and 4 milliseconds. A feü CPU bursts are longer (in
the 8-16 second range); they occur at the beginning ofthe kernel
make and when vmunix is linked.

During other periods, we ran more computationally intensive
applications, including several instances of formatting this paper
(with grap, pic, eqn, tbl and troff), a PGA routing application, and
Spice, a circuit simulator (the last two belonging to CAD pack-
ages). The distribution of CPU bursts for these applications was
found to be very similar. For example, troff had a slightly higher
proportion of longer bursts, and Spice had an additional single
large (60 min.) CPU burst. The PGA router did not have a higher
proportion of long CPU bursts (as we initially expected it would)
because of high paging activing due to the high memory demands
of that application.

We also ran our simulator with workload numbers obtained in
earlier studies by Mullender IMullender 1985] (for CPU burst
lengths) and Zhou lZhou 19881 (for I/O pause lengths), with
results that supported the ones we obtained in our baseline tests.
Since these studies are based on older, VAX-based systems, we
also adapted the workload parameters to match more modern, fas-
ter technology by scaling processor speed appropriately.

3.3 Simulator Performance Metrics

The selection of a meaningful performance metric for comparing
the simulation runs is a difficult issue. Two metrics commonly
used in similar studies are processor utilization and response time
[Eager et al. 1988; Leland & Ott 1986]. We decided not to base
performance quality on processor utilization, because utilization
may not accurately reflect the perforrnance of migration-based
scheduling algorithms; processor utilization may increase due to
the extra processing time inherent in migration and not because of
an increase in the amount of useful work being achieved. The
task response ratio appears to be a more appropriate metric for
our purposes. We therefore present our result in terms of the
Global Response Ratio (GRR) [Leland & Ott 1986]. GRR is

562 Stephen Curran and Michael Stumm

calculated as the ratio between the tasks' actual response times
and the time they would need to execute if there were no over-

head:

GRR
) Elapsed Time

2 rask rlme

The Task Tíme is the sum of the length of all I/O pauses and

CPU bursts of a task (before migration costs and queueing time
are added). The Elapsed Time is the Task Time plus overhead,

consisting of migration costs and time spent queueing for access

to the CPU. The summations are over N tasks, the number of
tasks in the simulation run.

GRR effectively weighs the performance of each task by the

size of the task and hence is less sensitive to the performance of
individual small tasks. This is appropriate, because of the large

number of small tasks relative to large tasks in most workloads,
and because the performance of larger tasks is more noticeable to
the user than that of smaller tasks; i.e., the difference between

having the response time go from 0.5 seconds to 1 second and

having the response time go from I hour to 2 hours. Moreover,
to ensure that improvements in the performance of larger tasks do

not hurt the smaller tasks, a second response ratio measure (also

from i,eland & Ott [1986]), the Average Per-Task Response Ratio
(APR),

APR !-S'El!ps-ed Jime
N z¿ Task Time

where all tasks are weighted equally, was also calculated for all
simulations.

3.4 Scheduling Algorithm Details

V/e consider three CPU scheduling algorithms: the Initial Place-

ment, the Central Queue, and the Take algorithms. \ù/e describe

the three algorithms and some of the details of our implemen-
tations. Later, we consider several variations of our implemen-
tations.

CPU Scheduling Algorithms for Multiprocessor UNIX 563

3.4.1 Initial Placement

Under the Initial Placement (IP) algorithm, tasks arriving in the
system are placed on the leastloaded processor in the system
(according to some implementation dependent metric), where they
remain until they complete. Each processor maintains its own run
queue in priority order, with tasks of the same priority scheduled
in a round-robin fashion. In our implementation, the least-loaded
processor is the one with the fewest tasks that are ready to run or
blocked on I/O.

3.4.2 Central Queue

Under Central Queue (CQ), all tasks are scheduled in strict prior-
ity order using a single, system-wide task queue. Tasks of equal
priority are scheduled in round-robin order. A task migration
occurs each time an idle processor retrieves a task from the queue
that last executed on a different processor.

In our implementation of the CQ algorithm, an optimization
is performed to reduce the number of migrations in a lightly
loaded system. If the processor that last executed a task when the
task becomes ready is idle, then the processor is selected to con-
tinue executing the task. (This optimization is implemented in
the Topaz operating system [Thacker et al. 1988]).

3.4.3 Take

Under the Take (TK) algorithm, tasks arriving in the system are
initially assigned to the least-loaded processor (according to some
implementation dependent metric). As with IP, each processor
maintains its own run queue in priority order, with tasks of the
same priority scheduled in round-robin fashion. If a processor
becomes idle (its run queue is empty), it checks the run queues of
all other processors and migrates a task from the heaviest-loaded
processor (according to some implementation dependent metric)
to its own run queue and executes it.

The least- and heaviest-loaded processor in our TK implemen-
tation are the processors with the fewest and most ready tasks,
respectively. In a practical implementation, a counter per proces-
sor keeps a count of the number of tasks in the queue, eliminating
the need to lock the queues while their lengths are compared.

564 Stephen Curran and Michael Stumm

4. The Baseline Tests

In this section we analyze the performance and behavior of the
Baseline System. The first issue we consider is how load affects

the performance of the algorithms. Figure 4.1 (left) depicts the
results of the Baseline System tests for all three scheduling algo-

rithms, as the Offered Load is varied from 0.3 to 0.95. The
Offered Load parameter controls the task load on the system. It
can be thought of as the expected utilization of the processors,

and is set by appropriately setting the arrival rate of tasks into the

system. More formally, the Offered Load is defined as

Mean -CPU -Burst -Length x Bursts -per -Task x Mean -Task'Arrival -Rate

Number-of -Processors

Three significant results arise from these tests. First, the
difference between the three algorithms is small under most load
conditions, always less than 100/0. Second, for the most part, the
migration based algorithms outperform the non-migration based

IP algorithm. Third, the performance of the CQ algorithm is poor
at very high loads. We discuss the latter two results in the follow-
ing sections.

.6

Offered Load

Figure 4.1: GRR and normalized GRR of
Baseline system versus Offered Load

CPU Scheduling Algorithms for Multiprocessor |NIX 565

4.1 Comparing IP and the Migration-
Based Algorithms

To clarify the magnitude of the performance difference between
the algorithms, the second graph of Figure 4.1 shows the GRR
results for the same tests normalized by the GRR results for the
IP algorithm (NGRR). From the graphs, we see that there is little
benefit in using migration at low loads, because of the limited per-
formance improvement. As the load increases, the difference
between IP and the migration-based algorithms first becomes
larger, but then levels off or even decreases at high loads. Based
on the GRR, the largest migration benefit - about 60/o - is
achieved under the TK algorithm.

The differences in performance are primarily due to load
imbalances that occur under IP. To verify this, we monitored Idle
Waste, which is defined as the aggregate time processors are idle
while there are ready tasks waiting in other queues. Idle Waste is
relatively small (less than l5o/o) at both low and high loads. At
low loads the load imbalance is small, because there are few tasks
in the system, and at high loads it is low, because there are usually
enough tasks to keep all of the processors busy. At medium loads,
however, more than 25o/o of the processing power of the system is
wasted as a result of load imbalances. It is for this reason that the
migration-based schemes perform better than IP at that load level.
(A similar result was found in a distributed systems study by
Livny and Melman [19821).

4.2 Central Queue at High Loads

The Baseline System tests also expose the poor performance exhi-
bited by the CQ algorithm at high loads. In Figure 4.1, the CQ
data points at Offered Loads of 0.9 and 0.95 are missing, because
the system saturated at those loads (i.e. the task load exceeded the
system's processing capabilities). The reason for this behavior can
be found by monitoring the number of migrations performed
under CQ as the load increases. Figure 4.2 shows the migration
rate (i.e. the proportion of task dispatches that result in migra-
tions) as the Offered Load increases. The migration rate increases
for both TK and CQ while the Offered Load is increased to 0.7.

566 Stephen Curran and Michael Stumm

Migration
Rate

Offered Load

Figure 4.2: The number of migrations per task dispatch
versus Offered Load

As the Offered Load moves beyond 0.7, however, the migration
rate under CQ continues to increase, but it levels off and begins to
decrease for TK. The migration rate under TK decreases at very
high loads, because tasks are only migrated when a processor is
idle and processors are idle less often as the load increases. At
these loads, TK will tend to behave more like Initial Placement:

tasks are placed on a processor on entry into the system and typi-
cally remain there because processors are rarely idle. This is a
positive attribute of TK, since migrations that occur when all pro-

cessors are busy are of little use.
rWhen CQ scheduling is used, processors always take the task

at the head of the global run queue. For a migration to be

avoided, the task to be selected must have last executed on the
processor that selects it. The probability that a processor looking
for work is the same processor that last executed the head-of-
queue task is relatively small, resulting in many migrations. The
migration rate is reduced at low loads, because tasks are returned
(without migrating) to the same processor they last ran on, if that
processor is idle when the task becomes ready. At higher loads,

however, the processors are busy much of the time, and tasks are

therefore assigned to processors more or less at random. Since

migration increases the length of the task's next CPU burst (by 1

ms. in the Baseline System), the load is increased by the aggregate

migration overhead.

CPU Scheduting Algorithms for Multiprocessor |NIX 567

To verify that migration overhead causes the poor perfor-
mance of the CQ algorithm at high loads, the tests were repeated
with the Task Migration Cost parameter reduced to zero. This
models an environment where tasks can move from processor to
processor with no overhead. The simulation results confrrm that
the performance of the CQ algorithm is much improved over the
original results at high loads (see Figure 5.1), although the migra-
tion rate remains essentially the same.

In an attempt to correct the inferior performance of CQ at
high loads, several variations on the algorithm were implemented.
Instead of always selecting the task at the head of the run queue,
some number of tasks on the queue are scanned in the hope of
finding a candidate for execution that does not require migration.
The number of tasks searched is controlled by a Search Length
parameter, the value of which ranges from one (equivalent to the
original CQ algorithm) to infinity, where the entire queue is
scanned (essentially equivalent to the TK algorithm). The new
versions of CQ demonstrate better high load characteristics than
the original CQ algorithm, and the improvement increases as the
Search Length parameter increases. However, since the modified
CQ algorithm tends toward the TK algorithm as the Search
Length increases, CQ's performance never exceeds that of TK at
high loads. Moreover, the overhead of the modified CQ algorithm
itself will become significant with a large search length, as the load
and, hence, queue size increase. Since access to the queue must
be synchronized, the modified CQ requires that the processor hold
the queue while a search of the queued tasks is performed. (In the
original CG, a task could be retrieved from the queue in a very
short, fixed time).

5. The Deviations from the Baseline
System

In this section, we consider how changes to the input parameters
of the Baseline System affect the results. For a more detailed
analysis and discussion, see Curran [1989].

568 Stephen Curran and Michael Stumm

5.1 Varying Task and System Migration
Costs

We simulated the system with the Offered Load set at 0.7, while
varying the Task Migration Cost from 0 to 4 ms. The System

Migration Cost parameter was held at 50/0, as in the Baseline Sys-

tem tests. The results of the tests, shown in Figure 5.1, show again

that the CQ algorithm is severely affected by the magnitude of the
migration penalty. While the TK algorithm is only minimally
affected by the change in the TMC parameter, the system

saturates under CQ, when the migration cost rises above 2 ms.

Observe that TK is better than IP even when migration costs are

quite high.
We now consider the effect of varying the magnitude of the

System Migration Cost. Figure 5.2 shows the GRR results of the
TK and CQ algorithms compared to the IP GRR, as the system

migration costs are increased from 0 to 20o/o for varying levels of
Offered Load. As the system migration overhead increases, the
benefit of using a migration-based strategy over Initial Placement
decreases. From the graphs, it is also obvious that the impact of
the migration penalty on the performance of the algorithm
increases with the load. The migration costs affect both the time
tasks spend at the CPU and the time they queue for the CPU

Task Migration Cost (ms.)

Offered Load: 0.7

Figure 5.1 The Affect of Task Migration Costs

-IP

CP(l Scheduling Algorithms lor Multiprocessor UNIX 569

waiting for other tasks to execute. The extra time at the CPU is
insignifrcant (in our case, about 3o/o of the average task time).
However, the extra time tasks wait in run queues can be
signifrcant and, since queueing time increases with load, the
penalty of the reduced system performance also increases with
load.

5.2 The Effects Varying the Workload

The workload of the Baseline System was derived by extrapolating
results of uniprocessor studies to the expected environment of a
modern multiprocessor. Inevitably, there will be differences
between the workload of uniprocessors and that of the multipro-
cessors we are studying (and in fact, between one uniprocessor
and the next). For example, intuitively, we expect more
processor-intensive tasks to run on multiprocessor systems. To
simulate these types of tasks we added a processor-intensive work-
load to the original Baseline System workload. Most of the param-
eters of the new processor-intensive workload are identical to
those of the Baseline System workload with the exception of the
average CPU burst length which is roughly three orders of magni-
tude larger for the Processor-Intensive workload.

In simulating the combined Baseline and processor-intensive
job classes, a fixed Offered Load of 0.7 was applied to the system,

f'--:::
===-

Offered Load

Central Queue Algorithm

.6

Offered Load
Take Algorithm

Figure 5.2: The Effects of System Migration Cost on CG and TK

570 Stephen Curran and Michael Stumm

and the proportion of the load on the CPU coming from the
processor-intensive tasks was varied from 0 to 75010. This

represents a range of how a system might be used: from running
only interactive tasks (the original Baseline Workload), to a sys-

tem where most of the load comes from processor-intensive jobs.

Figure 5.3 shows the GRR results of the simulations, as a function
of the fraction of the Offered Load that comes processor-intensive

tasks. As can be seen, processor intensive tasks primarily affect the
performance of IP and only to a much lesser extent the other algo-

rithms.
The poor performance of the IP algorithm with processor

intensive tasks is due to the way our implementation of the algo-

rithm bases its placement decisions on task counts (as opposed to
the load tasks place on the system). While this policy is acceptable

if all of the tasks are of similar size, a problem develops when the

task size variance is large. A single processor-intensive task in our
simulation utilizes virtually all of the resources of a processor,

while the average Baseline System task utilizes only a small frac-

tion. Obviously, a processor executing a single processor-intensive

task will usually have a significantly higher load than the other
processors. When the task placements are based on task counts,

the overJoaded processor will also have to execute its share of the

smaller tasks, further accentuating the load imbalance.

Proportion of Load from the

Processor-Intensive Job Class

Offered Load: 0.7

Figure 5.3: The Effects of large tasks

CPU Scheduling Algorithms þr Multiprocessor zNIX 57 |

To verify this, we modified the implementation of IP to count
the processor intensive tasks as being 25 times as large as the
tasks from the Baseline workload (assuming it is possible to iden-
tify such tasks on arrival into the system) when deciding where to
place a task. This has the effect that processor-intensive tasks are
given virtually exclusive use of a processor for their execution.
Once they are assigned to a processor, new tasks are assigned to
other processors (unless all of the other processors have task
counts of 25 or more). The only Baseline System tasks that com-
pete with processor-intensive tasks are the ones present on the
processor when the processor-intensive tasks began executing, but
they are small so the conflict time is typically short. The results
simulations (not shown) indicate that the modifrcations improve
the performance of the IP algorithm to the range expected from
previous studies, where IP performs slightly worse than the
migration-based algorithms: a difference of from 5 to 100/0.

The modified IP algorithm is, however, not without problems.
The additional functionality introduces a considerable degree of
complexity to an otherwise simple algorithm. The cost of imple-
menting a job class detection scheme is not insignificant, since the
mechanism requires additional processing on every context
switch.

The Central Queue algorithm is not subject to the same imbal-
ance as IP, since by using a single queue, the load is always bal-
anced among the processors, regardless of how the load is distri-
buted among the tasks. Under TK, if a processor-intensive task is
executing on one processor, the tasks queued behind it will be
migrated to other processors as they become idle. (Since the
Offered Load is far from 1000/o in these simulations, there should
be plenty of processing power available to execute all of the tasks).

5.3 The Effects of Supporting Task
Priorities on Scheduling

In the simulations presented so far, all of the tasks had the same
priority and task queueing was on a frrst come, first serve (FCFS)
basis. In the majority of real systems, however, tasks are assigned
priorities and, when multiple tasks are queued for execution, the
task with the highest priority is selected. In this section, we how

572 Stephen Curran and Michael Stumm

introduction of task priorities affects performance.
For this purpose, we introduced a simple task priority model

to the simulation model. The scheme uses four priority levels,

roughly analogous to System high and low priority and User high

and low priority tasks. Each task is assigned a priority on arrival
in the system, with a given proportion of tasks assigned to each

priority level. No effort is made to differentiate between the

characteristics of tasks running at different priorities.
The scheduling algorithms are changed to support priorities as

follows. In the IP algorithm, the processor selected to execute a

new task now is the processor with the least number of tasks

(ready or blocked) of equal or higher priority than the new task.

This is a greedy algorithm in that the task is placed on the proces-

sor where it has the fewest number of tasks to compete with,
regardless of the number of lower priority tasks it will interfere
with.

The TK algorithm was modified such that when a new task

arrives in the system, it is placed on the processor with the fewest

waiting tasks of equal or higher priority. Again, the task is placed

on the processor where it should get the fastest service, regardless

of how many lower priority tasks exist. Also, when a processor

becomes idle, it searches for the processor that has the most wait-
ing tasks of the current highest priority in its run queue and

migrates one of those tasks.
The CQ algorithm need not be changed, since it already sup-

ports true priority scheduling on a system-wide basis. (By

definition, it is the only algorithm to provide such support. The
other algorithms only implement priority scheduling within
separate queues and not on a system-wide basis).

To test the performance of the three algorithms in handling a

workload of prioritized tasks, a series of tests were run using the

Baseline System parameters with 100/0 of the tasks assigned to
Priority Level 1 (the highest priority), 20o/o to Level 2, 50o/o to
Level 3 and the remaining2}o/o assigned to the lowest priority,
Level 4. This means that half the tasks are "normal" user tasks, a

few are low priority user background tasks (Level 4), while the

remainder are higher priority system tasks.

Of primary interest in these tests is how close the separate

queue algorithms (IP and TK) perform relative to the true priority

CPU Scheduling Algorithms þr Multiprocessor LINIX 57 3

scheduling of the CQ algorithm. To see what direct effects priori-
ties may have on IP and TK, they were first compared to CQ
under the assumption that migration was free (i.e. both the cost
per migration and the processor performance degradation were
removed). Perhaps surprisingly, TK performed comparably to the
CQ algorithm within each priority class. The GRR for TK was at
most l0lo worse than that of CQ. As expected from our earlier
tests, IP performed significantly worse than the migration based
algorithms. The relative performance of all of the scheduling algo-
rithms is therefore unaffected by the use of task priorities.

GRR

GRR

Offered Load
Priority Level I

Offered Load
Priority Level 3

Offered Load
Priority Level2

Offered Load
Priority Level4

Figure 5.4: The performance of the scheduling algorithms
at different priority levels

57 4 Stephen Curran and Michael Stumm

In the second set of priority tests, the Baseline migration costs
(1 ms. TMC and 50/o SMC) are included and the same tests are

repeated. The results are depicted in Figure 5.4. For the high
priority tasks, the results are similar to the case where niigration is

free. However, the GRR of the low priority tasks under CQ is far
higher than that of TK and, in fact, worse than that of IP under
very high loads.

Why do the low priority tasks under CQ incur so much over-
head? These tasks are at the end ofthe ready queue, and their
execution is delayed not only by the execution time of all tasks

ahead of them, but also by the aggregate migration overhead
caused by all tasks ahead of them. At high loads, the higher
migration rate with its attendant overhead further increases the
load on the system, causing an increase in the average number of
tasks waiting in the queue, as discussed in Section 4.1. The fact
that the poor performance of the low priority tasks under CQ
does not occur when migrations are free verifies that migration
costs combined with the increased migration rate are the chief
performance difficulties.

To reduce the migration rate under CQ, the algorithm was

modified to allow a processor looking for work to scan all of the
top priority tasks in the ready queue to find one that could be exe-

cuted without a migration. (If no such task can be found, then
the task at the head of the queue is selected for execution). With
this modification, a task of the current highest priority is still
always selected (i.e. true priority scheduling is retained), but tasks

are no longer scheduled in strictly FCFS fashion. The simulation
results (not shown) indicate that the modifications have the desired
effect - the response ratio of the low priority tasks improve, to a
level only slightly worse than those under TK. With this modifica-
tion, CQ again performs up to 10/o better than TK for the high
priorities, and the migration rate is reduced from 300/o to 24o/o.

Of course, in systems with many priority levels (such as

UNIX), such a change is not realistic while retaining true priority
scheduling, since it is unlikely there will be multiple tasks to
choose from at any one priority level. However, by deviating
slightly from true priority scheduling and grouping priority levels

together and employing the same strategy on a group level, similar
results can be achieved.

CPU Scheduting Algorithms for Multiprocessor IINIX 57 5

6. Concluding Remarks

A number of factors were found that affect the performance of the
scheduling algorithms. First, the processor load impacts the per-
formance of the scheduling algorithms studied. Under low loads
(less than 50o/o utllízation), all of the algorithms perform compar-
ably. At higher loads, the migration-based algorithms perform
better than the non-migrating Initial Placement algorithm, because
of a more equally balanced load.

Second, the cost of migratioz affects scheduling algorithm per-
formance when the load on the processors is high. When the task
migration cost is high, the performance of the Central Queue algo-
rithm deteriorates because of its tendency to frequently migrate
tasks at high loads. The Take algorithm migrates tasks less fre-
quently at high loads and, as a result, is less sensitive to changes
in task migration costs. System migration costs also affects perfor-
mance. At low or medium loads, the effect of system migration
costs is negligible, because the tasks'CPU times are dwarfed by
their I/O time. However, at high loads, queuing becomes a
significant factor in the time it takes a task to complete, making
the system migration costs much more signifrcant.

Finally, changes in the workload affect performance. The Ini-
tial Placement algorithm is sensitive to the introduction of
processor-intensive tasks to the job mix, while the migration-
based algorithms, Central Queue and Take, are not. With the
introduction of prioritized tasks, the Central Queue algorithm
gives low-priority tasks a poor response, while priorities have little
impact on the IP and Take algorithms.

Overall, we found the difference in performance between algo-
rithms to be relatively small, usually less than 1070. Although the
Initial Placement algorithm performs consistently worse than the
migration-based algorithms, it performs adequately at loads below
0.5. It deteriorates faster than the migration-based algorithms as
the load increases (up to a load of 0.8). Initial Placement also
performs poorly when there is a large variance in the size of the
tasks. For example, two very large tasks that happen to have been
assigned to the same processor will compete with each other for
the processor's cycles, even though other processors may have

57 6 Stephen Curran and Michael Stumm

become idle in the mean time. This problem can be avoided by

using load measures that are more closely tied with the actual util-
ization of the processors by each task. However, such schemes are

slower (require more processing overhead) and more complicated

to implement.
The primary benefit of using Central Queue scheduling is its

adherence to pure priority scheduling, a feature unique to the

algorithm. Although in most situations CQ's performance is com-

parable to that of the TK algorithm, the algorithm performs much

worse in some circumstances. In particular, CQ performs poorly

under high loads and when the cost per migration is high. This is

a direct result of the algorithm's high migration rate when the

load is high. It is not surprising that the algorithm provides the

best service for high priority tasks, since the central Queue algo-

rithm is the only algorithm that employs system-wide priority

scheduling. However, its handling of low priority tasks can be

poor under high loads, when most of the migration overhead is

passed on to the low priority tasks.

The performance of the Take algorithm is as good or better

than the other algorithms under all conditions studied. Perhaps

the key attribute of the algorithm is that at high loads, its migra-

tion rate decreases. Somewhat surprisingly, Take schedules high

priority tasks almost as well as CQ (within L or 2o/o in the simula-

tions), even under conditions favorable to CQ (i'e. when migra-

tions are free). Therefore, although the Take algorithm does not
provide true system-wide priority scheduling, it appears to pro-

vide performance very close to that of cQ for the scheduling of
prioritized tasks, in practice.

In conclusion, of the algorithms we studied, we found the

Take algorithm to be the most suitable for scheduling a UNIX

workload on small-scale, shared-memory multiprocessors. It is
easy to implement and it performs best under most operating con-

ditions. Although the difference between the performance of the

three algorithms is relatively small, the behavior of the Take algo-

rithm appears much more stable than the other two algorithms

under extreme conditions.

CPU Scheduling Algorithms for Multiprocessor IINIX 577

References

D.L. Black, Scheduling support for concurrency and parallelism in the
Mach Operating System, IEEE Computer, 23(5):35-43 1990.

S.w. curran, A simulation study of shared-Memory Multiprocessor cp(J
Scheduling Algorithms, Masters Thesis, University of Toronto,
I 989.

D.L. Eager, E.D. Lazowska, and J. Zahorjan, The limited performance
benefits of migrating active processes for load sharing, proc. lggg
ACM Sigmetrics Conf, on Measurement and Analysis of Computer
Systems, pages 63-72, 1988.

M.J. Gonzalez, Deterministic processor scheduling, computing surveys,
ruQ):173-204. te77.

M.H. Kelley, Multiprocessor aspects of the DG/UX kernel, proc. 1990
Winter Usenix Conf., pages 85-99, 1990.

W.E. Leland and T.J. Ott, Load-balancing heuristics and process
behavior, Proc. Perþrmance'86, pages 54-69, 19g6.

S.T. Leutenegger and M.K. Vernon, The performance of multipro-
grammed multiprocessor scheduling algorithms, proc. ACM SiS_
metrics 1990 Conf. on Measurement and Modeling of Computer
Systems, pages 226-236, 1990.

M. Livny and M. Melman, Load balancing and homogeneous broadcast
distributed systems, Proc. ACM Computer Network perþrmance
Symposium, pages 47-55, tgi2.

T. Lovett and s.Thakkar, The symmetry Multiprocessor System, proc.
1988 Intl. Conf. on Pørallel Processing, 1988.

S. Majumdar, D. Eager, and R. Bunt, Scheduling in multiprogrammed
parallel systems, Proc. ACM Sigmetrics ISBB Conf. on Measure-
ment and Modeling of Computer Systems, pages 104-113, 198g.

R. Moore, I. Nassi, J. O'Neil and D.P. Siewiorek, The Encore Multimax:
A multiprocessor computing environmenl., Technical Report ETR
86-004, Encore Computer Corporation, 19g6.

s.J. Mullender, Principles of Distributed operating system Design, Habil-
itation Thesis, Vrije Universiteit te Amsterdam, 19g5.

L.M. Ni and C.F.E. Wu, Design tradeoffs for process scheduling in
shared memory multiprocessor systems, IEEE Trans. on Softwøre
Eng., 15(3):327 -334, 1989.

578 Stephen Curran and Michael Stumm

J. Ousterhout, Scheduling techniques for concurrent systems, Proc. Dis-
tributed Computing Systems Conf., pages 22-30, 1982.

C.H. Russel and P.J. Waterman, Variations on UNIX for parallel-
processing computers, Comm. of the ACM, pages 1048-1055, Dec.
t987.

M. Stumm, The design and implementation of a decentralized schedul-
ing facility, 2nd IEEE Conf, on Worlcstationt, pages 12-22, 1988.

C.P. Thacker, L.C. Stewart, and E.H. Satterthwaite, Jr., Firefly: A mul-
tiprocessor workstation, IEEE Trans. on Computers,
37(8):909-920, 1988.

A. Tucker and A. Gupta, Process control and scheduling issues for mul-
tiprogrammed shared-memory multiprocessors, Proc. I2th ACM
Symp. on Operating System Principles,1989.

J.W. Wendofi, Operating system/application concurrency in tightly-
coupled multiple-processor systems, PhD Thesis, Carnegie-Mellon
University, Aug. 1987.

J. Zahorjan and C. McCann, Processor scheduling in shared memory
multiprocessors, Proc. ACM Sigmetrics 1990 Conf, on Measure-
ment and Modeling of Computer Systems, pages 214-225, 1990'

S. Zhou, A trace-driven simulation study of dynamic load balancing,
IEEE Trans. on Software Eng.,ll(9):1327'1341, 1e88.

lsubmitted Jan.9, 1990; revised Aug. 6, 1990: accepted Sept. 2I' 19901

CPU Scheduling Algorithms for Multiprocessor uNIx 579

