
A Concurrent Window System
Rob Pike AT&T Bell Laboratories

ABSTRACT: When implemented in a concurrent
language, a window system can be concise. If its
client programs connect to the window system using
an interface defined in terms of communication on
synchronous channels, much of the complexity of
traditional event-based interfaces can be avoided.
Once that interface is specified, complex interactive
programs can be assembled, not monolithically, but
rather by connecting, using the same techniques,
small self-contained components that each imple-
ment or modify elements of the interface. In partic-
ular, the window system itself may be run recur-
sively to implement subwindows for multiplexed
applications such as multi-frle text editors. This is
the software tool approach applied to windows.

@ Computing Systems, Vol. 2 . No. 2 . Spring 1989 133

1. Introduction

Traditional window systems offer their clients - the programs that
call upon them for services - an interface consisting primarily of a
graphics library and a stream of o'events": tokens representing key
presses, mouse motion and so on. The clients of these systems

tend to be written as state machines with transitions triggered by
these events. Although this style of programming is adequate, it is
uncomfortable; state machines are powerful but inconvenient.
There are also engineering reasons to object to this interface style:
all types of events come through the same port and must be disen-
tangled; the event handlers must relinquish control to the main
loop after processing an event; and the externally imposed
definition of events (such as whether depressing a mouse button is
the same type of event as releasing one) affects the structure of the
overall program.

To make the situation more comfortable, event-driven inter-
faces typically allow some extra control. For instance, a program
displaying a pop-up menu can usually arrange to ask only for
mouse events, so the code supporting the menu is not disrupted
by keyboard events. Although they help, such details in the inter-
face are just work-arounds for the fundamental difficulties that
event-driven programming must ultimately face. The work-
arounds accumulate: the Xl1 windows library, for instance, has
27 standard entry points to handle 33 types of events [Scheifler et
al. 19881; NeWS has a single general event type but still needs 20

entry points to handle it [Sun 1937]. The interface for input in
GKS is comparably complex [GKS 19841. It is demonstrably
difficult to write simple programs to connect to such intricate
interfaces [Rosenthal 1988].

134 Rob Pike

Although events from the various inputs may be intermingled
and asynchronous, the events from any one device will be well-
behaved. We could therefore program each device synchronously
and cleanly if we could divide the events into separate streams,
one per device, directed at concurrent processes. The resulting
program would be a collection of self-contained processes, free of
irrelevant bookkeeping, whose execution would be interleaved
automatically.

That approach was taken in Squeak [Cardelli & Pike 1985], a
concurrent language designed for programming such components
of user interfaces as menus and scroll bars. Squeak was a small
language, though, and too simple to be useful for writing complete
applications. It lacked variables, a type system, communication of
anything other than integers, and dynamic creation of processes.

Input management in a realistic environment requires a stronger
language than Squeak and a more concentrated understanding of
graphics applications and the environment in which they run.

This paper describes the design of an experimental window
system written in a concurrent language designed for the job. The
language, called Newsqueak, is documented elsewhere [Pike 1989].
The window system provides a well-specified environment for its
client programs, using a synchronous procedural interface for out-
put and structured communication on a small number of synchro-
nous channels (as in CSP [Hoare l97S]; see below) to handle input
and control. The window system functions by multiplexing its
clients'access to its own environment, which has the same struc-
ture, allowing the system to be run recursively. The environment
is easy to program both from the client's and the window system's
points of view. The complete window system is fewer than 300

lines of Newsqueak.

2. Comparison with other systems

In contrast to systems such as NeWS, which allow their clients to
be written using concurrent techniques, this system requires its
clients to be written concurrently. The only interface to the win-
dow system is through parallel synchronous communication chan-
nels. The main observation from this exercise is the importance

A Concurrent Window System 135

of specifying the interface between the window system and its
clients succinctly and completely. Given such a specification, it
becomes possible to interconnect small programs, each of which
implements a piece of the specification, to form larger interactive
applications in a manner similar to the pipeline approach to text
processing on the UNIX system.

The external structure of the system is akin to that of NeWS.
Remotely executing applications implement graphical user inter-
faces by connecting to the window system over the network and
calling upon the Newsqueak interpreter to execute code on their
behalf. It is therefore expected that production applications
would be ordinary compiled programs running remotely that
achieve interactive graphics by loading customized Newsqueak
code into the window system's connections to them.

Philosophically, the closest relative might be the Trestle win-
dow system of Manasse and Nelson [1939]. There, the connection
between the window system and its clients is implemented by a
bidirectional module interface. By defrning that interface
thoroughly, Trestle achieves some of the same interconnectivity
and recursive structure but in a more conventional environment.
(From some points of view, object-oriented programming,
modules, and concurrent communications on synchronous chan-
nels are the same idea in different clothing.) The input mechan-
ism in Trestle is still event-driven, however. The system
described here goes further, defining all input and window control
functions, including resizing and deleting windows, using synchro-
nous communications.

3. Basics

An application or client of a window system is an independently
executing process whose display activity is confined to a subset of
the entire screen controlled by the window system. That subset is
the client's window. Ignore for the moment the process-specifrc
aspects of the client and assume that it is a procedure written in a
high-level programming language. Moreover, assume that there is
no implicit global environment for the procedure. Instead, the
environment for the procedure must be passed explicitly, as

136 Rob Pike

parameters, from the window system to the client. If we can

define those parameters and what they signify, we will have com-
pletely defrned the properties of a client.

One of the parameters will obviously be a variable, say tl,
labeling the window in which the program is running. w will be

used by the client to place output in its window. w's precise type
need not concern us yet, but it must at least describe the window's
geometry.

w is, loosely, a capability, granted by the window system, ena-

bling the client to use its window. w labels a multiplexed com-
ponent of a larger screen containing all the windows. Input to the
client may be regarded similarly. We need capabilities allowing
communication with the multiplexed mouse, keyboard, and
perhaps other input devices. Call these r and M, and pass over
their exact specifications. The client's declaration is then, approx-
imately,

cI ient: prog(hl, K, 14)

(The syntax used in this paper is based on Newsqueak, but should
be mostly self-explanatory.) Once it has been invoked, the client
can be represented pictorially, using arrows to represent the flow
of information.

Ultimately the picture will become more complicated as we add
new possibilities such as setting the mouse position and control-
ling the resizing and deleting of windows.

The window system has several independently executing
clients, each of which has the same external specifrcation. It mul-
tiplexes a screen, mouse, and keyboard for its clients and therefore
has a type reminiscent of the clients themselves:

windowsys: prog(S, K, M)

where s is the screen. If we arrange the client's windows to be
programmable by the same interface as the full screen (making s a

A Concurrent Window System 137

w), the window system will have the same type as its clients.
Pictorially,

If the window system multiplexes clients of its own type, then
it may be a client of itself, or a client may pass its environment to
a fresh invocation of the window system to do further multiplex-
ing. This recursion allows a client of window system - a text edi-
tor, say - to invoke the window system afresh in its window to
manage subwindows for multiple views of files being edited.

To fill in this sketchy outline, we need to be more precise
about the properties of w, K, and M.

4. Output

Two problems must be addressed by the output mechanism: how
a client can draw in its window and how multiple clients can
share the screen harmoniously. The choice of output model - bit-
maps, PostScript, display lists - is unimportant to the structure of
the client, since any model can be implemented by a synchronous,
procedural interface, a programming library. Replacing the
library will not greatly affect the structure of the client or its
environment. The system described here is based on bitmap
graphics because that is perhaps the simplest model.

138 Rob Pike

Bitmap graphics has been described before [Guibas & Stolfr
1982; Pike et al. 19851. Briefly, a two-dimensional portion of
memory, possibly but not necessarily visible on the display, is
described by a data structure called â Bitrnap. The data structure
may be passed to several graphics operators, of which the best-

known is the rectangular operator bitbl.t or rasterop, to effect

changes to the memory and therefore to the display. Our first
guess, then, will make ut a Bitmap. But that ignores the problem
of multiple clients with windows on the same screen.

The concept of 'layers' generalizes bitmap graphics so it
applies to overlapping bitmap windows sharing a physical display
by storing in the window system complete backup bitmaps for
obscured portions of windows [Pike 1983(b)]. By extending the
Bitmap type to encompass the properties of layers, the standard
operators such as bitbl.t can be applied to partially or wholly
obscured windows on the hardware display. Clients of a window
system may remain unaware of each other, free to draw in their
respective windows regardless of overlap and oblivious to changes

in the visibility of their windows.
Other systems typically send their clients 'expose' events when

the visibility of their windows changes. Such events require all
affected clients to run when the display is rearranged, which can

cause considerable paging overhead and delay. A rationale for
expose events is that some such mechanism is necessary when a
user asks a client to change the size of its window, since the origi-
nal contents of the window will be lost anyway. Unfortunately,
flipping between windows is much more common than changing
their sizes. Reducing the common case to the hard case therefore
obviates an important optimization: a single bitblt executed by
the window system can restore a window much faster than can
paging in and executing client code. When windows take longer
to repair themselves, the entire user interface becomes less

dynamic and less comfortable [Pike l98S]. Layers permit very
responsive interfaces.

On the other hand, the layers model offers no guidance on how
to implement resizing, which is a central issue in the design of a
window system. It does not, however, prevent resizing, and there

is a clean solution to the problem, which is explained below, in
the section on "Control."

A Concurrent Window System l3q

Layers have other difficulties. Especially on displays with
many bits per pixel, layers are expensive in memory, because they
maintain oflscreen backup memory for invisible portions of win-
dows. But display memory has become much cheaper, and in sys-
tems such as the one under discussion, the machine with the
display has no other major use for its memory. It is there to
maintain the display, to run the window system.

A more telling criticism is that layers require some shared
memory, atomicity, and synchronization. The window system
must maintain a central data structure describing the
configuration of the display, and the clients must not be writing to
their windows when that data structure is being modified. That
problem is easily overcome, however, using techniques standard in
operating systems. For example, bi tbt t could be made a system
calL, at least when it is operating on a window. In our case, the
structure of the interpreter solves the synchronization problem
implicitly.

In summary, although layers have limitations, they have
important advantages and are used in this system. Output is han-
dled by passing the client processes a variable, w, oftype Bitmap
(extended to be applicable to overlapping windows) that the client
may use to access its window using whatever graphics package is
available. There are no expose events, and resizing is handled by
special techniques.

5. Input

It remains to decide on the types of the variables r and u that
provide the client with access to the multiplexed keyboard and
mouse. The type of r is easily determined: it can be a synchro-
nous channel that yields integral values identifying the key that
has been pressed. It is analogous to a file descriptor on the UNIX
system, from which may be read successive input characters.
Since x will provide only keyboard data, no further speciflcation
is necessary; we need not distinguish keyboard data from mouse
data, as the mouse information is available only through u.
r does not provide events, it just delivers characters, synchro-
nously, as they become available and are requested. If it were

140 Rob Pike

desired to track up and down transitions of the keys, the transi-
tions could still be represented easily as integers. r is declared in
Newsqueak as

K: chan of int;

that is, as a channel of integers.
The behavior of the mouse is harder to model. It has three

buttons that go up and down and two dimensions of translational
motion. The usual solution is to represent the mouse's behavior
by a series of events: button down, button up, motion, motion
while button down, etc. It is simpler instead to track the mouse
by a series of synchronous messages reporting the entire state of
the mouse.

The state of the mouse is represented by a data structure:

type Mouse: struct of {
buttons: i nt;
position: Point;

).

The variable buttons has a bit set for each button that is
depressed, and the position is held in a point, a type that is
already part of the graphics library:

type Point: struct of {
x,y i i nt;

).

The actions of the mouse are reported on the channel u, defined
as

M: chan of Mouse.

Each time the state of the mouse changes, the current state is
made available on the channel u. If the mouse is idle, reads from
u will block. The semantics of communication in Newsqueak
implies that mouse-ahead, if desired, must be provided explicitly.
(The properties of channels are discussed in the next section.)

A programmer accustomed to an event-driven mouse interface
might argue that the synchronous way of handling the mouse is
awkward. If the program is waiting for some genuine event such
as a button transition, then decoding the complete state of the

A Concurcent Window System l4l

mouse to look for the transition might seem harder than just wait-
ing until the specified event happens. But before making that
decision, we should look more closely at how the mouse is pro-
grammed. For simple cases such as waiting for a single button
event, it makes no practical difference; the loop

do
s=getevent () ;

wh i I e(e. type I =LEFTBUTTONDOTTN)

is equivalent to

do
m=readmouse(M);

wh i t e(m. buttons&LEFTBUTTON).

Imagine, though, that a more complicated condition is to be met,
such as the left button being held down while the mouse is inside
some rectangle. The proposed interface solves the problem well:

do
m=readmouse(]4) i

whi Le(! (m.buttons&LEFTBUTTON &&
pointinrect(m.position, r))).

The full programming language may be used to specify the condi-
tion. The mouse may be programmed as if it were being polled,
which is probably the simplest way to write mouse software. An
event-based interface would instead have to be programmed to
reconstitute the state so the condition may be tested. Why pro-
vide a complex interface when the programming language can
already handle all the complexity required? Events add unneces-
sary complexity to the problem of interpreting the mouse. But we
can only avoid that complexity when we can write code to read
the mouse channel independently of the code that handles the
keyboard; otherwise, the event mechanism is the only way to col-
lect both mouse and keyboard actions. To keep those two tasks
separate, we need processes.

142 Rob Pike

6. Channels, concurrency and
multiplexing

Here is the declaration of the type of clients of the window system
developed so far:

tvpe ct ient: pros(r't: llii"i; fi,:!;: or int'

Any program of type c t i ent, including the window system itself,
can be run in a window.

A client program is started by the window system by creating a
window and channels for the keyboard and mouse and then by
calling the client program as a separate process. In Newsqueak
this is written

begin cIient(newbl, newK, newM).

The window system records the values of the new channels and
uses them to send keyboard and mouse data to the client. The
clients execute independently and concurrently and are likely
themselves composed of concurrent subprocesses. The clients are
true processes, not coroutines; their execution is finely interleaved,
and not just switched at I/o time as in mpx or NeWS [Pike
1983(a); Sun 19871. No client can completely dominate the sys-

tem, even if it is in a tight loop without I/O. The user interface of
the window system or its clients does not block because a client is
busy.

The channels that carry messages between processes in
Newsqueak, and hence within the window system, are synchro-
nous, bufferless channels as in Communicating Sequential
Processes (CSP) or Squeak, but carry objects of a specific type, not
just integers [Hoare 1978; Cardelli & Pike l9S5]. To receive a

message on a channel, say M, a process executes

mrcv = (-M

and blocks until a different process executes

M(- = msend

for the same channel. When both a sender and a receiver are

A Concuwent Window System 143

ready, the value is transferred between the processes (here assign-
ing the value of msend to mrcv), which then resume execution.
Except for the syntax, this sequence is exactly as in CSp.

The client must obey a simple protocol to function properly in
the system. Because all communication is synchronous, the client
must always be ready to receive keyboard and mouse data. If the
client misbehaves, of course, deadlock may result. That possibil-
ity is covered, below, in its own section.

The clients are typically written as concurrent processes, one
reading the mouse, another the keyboard, and others managing
the display. These various processes communicate using internal
channels. A complete client that connects an operating system's
command interpreter to a window, including all processing of key-
board input such as echoing, typing correction, and so on, takes
about 100 lines of Newsqueak, distributed across three processes
(keyboard, mouse, and display).

The window system itself is also written in Newsqueak, unlike
other language-based systems such as NeWS. The window system
is little more than a multiplexer that creates windows and runs
clients in them. Its only user interface is that to create, delete,
select, and rearrange windows. The main program is a single pro-
cess that accepts the usual set of parameters w, K, and M, and uses
the mouse to select which window receives keyboard and mouse
data. When buttons are pressed with the mouse not above any
client, the window system activates its own functions. Otherwise
it passes keyboard and mouse data to the appropriate client.

The structure of the multiplexing subroutine is straightfor-
ward. It maintains an array of data structures describing the
environments of its children:

type Env: struct of {
encapsutated worl.d of a window program

I'l: Bitmap; # screen/window
M: chan of Mouse; # mouse
K: chan of int; # keyboard

);
env: array of Env;

The subroutine is a loop that uses Newsqueak's selection control
structure, much like the selection operators in CSp and Squeak, to
wait for I/O. When keyboard or mouse information is sent, the

144 Rob Pike

system decides which client should receive the data, passes the
data on, and waits again.

This sounds very much like the usual event-based loop of most
window systems and their applications. The main difference is
that none of the software needs to be written as state machines.
The problems have been decoupled, and the individual com-
ponents - window multiplexer, clients, and mouse and keyboard
handlers for the individual clients - can execute concurrentþ,
independently, and without explicit state. Simpler software
results. The multiplexing subroutine, the heart of the window sys-
tem, is about 60 lines long. Another 100 lines or so is used for
ancillary functions such as interpreting mouse motion to define
the location of new windows. Graphics and layering operations
are provided atomically by a built-in Newsqueak library imple-
mented in C.l The complete window system, capable of running
recursively, including deleting and rearranging windows (discussed
below) is fewer than 300 lines of Newsqueak. A client that pro-
vides a simple terminal interface to a command interpreter adds
another 100 lines.

Because the interface to the clients is well-defined, the multi-
plexer knows nothing about the clients themselves. This allows it
to multiplex arbitrary programs that satisfy its protocol, including
itself. It may thus be invoked again by a client to do submulti-
plexing within its window. (A small amount of easily arranged
protocol is required to initialize the system with the definitions of
the functions to be multiplexed.)

We also need the ability to load new clients while the system is
running. The major hurdle is linguistic - it is hard to run arbi-
trary programs in a statically typed language - but soluble. Load-
able clients have little affect on the size or structure of the system,
but require some strengthening of Newsqueak's type system,
which is outside the scope of this paper.

l. The layer library comprises 364 lines ofC, not counted here.

A Concurrent Window System 145

7. Control

With the approach taken in this system, new forms of communi-
cation between the window system and the client are implemented
by adding synchronous protocol. A trivial example is changing
the mouse cursor, which could be done by having a channel for
passing cursor descriptions to the window system. This channel
could carry other information, so for generality let this o'control"

channel, c, hold character strings (arrays ofcharacters in
Newsqueak):

type CI ient: prog(t'l: Bitmap, K: chan of int,

f; :Hl :l ::T:;'"r char,

(It would also be frne to have a channel of type cursor for the
special job of changing the cursor.) The defrnition of type ct ient
is getting more involved. We can tidy it up a bit by borrowing the
Env data structure from the main loop of the multiplexer. And we

can prepare for the future by providing a pair of control channels,
one each way:

type String: array of char;
type Env: struct of {

encapsuIated worId of a windo], program
hl: Bitmap; # screen/window
M: chan of Mouse; # mouse
K: chan of int; # keyboard
CI: chan of Strins; # control messages in
C0: chan of String; # control messages out

li
type Cl. ient: prog(Env);

As a more interesting use of the control channels, consider
how a client tells the window system that it is exiting. When a

client wants to exit, it shuts down internally and as its last action
asks the window system to delete its resources:

146 Rob Pike

cIient: prog(e:Env) {
do

things();
white(notdone());
e. C0<- = rrDe I eterr -

>,

Communication is synchronous, so, at the instant the window sys-
tem receives the client's "Delete" message, it knows the client is
gone, and it can shut down connections to the client. A similar
argument shows that the system should never block because a
client is trying to exit.

What happens when a user of the system wants to delete a
window? The usual method is to send an event or, worse, an
asynchronous poisonous message (a "signal" in the UNIX system)
to the client, terminating it suddenly. This brutality is avoidable;
the system can just notify the client, using the same synchronous
methods, that it is being asked to exit. When the client is ready,
it can exit by the same method as above. In other words, instead
of the client being killed, it can be asked to leave. (part of the
protocol of the client is that it must soon honor the request.) This
protocol works well for recursively instantiated windows. When a
window system is asked to exit, on its ct channel, it turns and
asks its clients to exit on their c r channels. When they have all
gone, it then reports on co that it is done.

The same logic can be applied to the other major control prob-
lem, which is how to change the location or size of a window on
the screen. Again, the usual solution is to change the client's size
and then abruptly to notify it of the change. Instead, as with
delete, we can install a protocol so the client may ask the system
to change its size for it, then add a message in the other direction
so the system can ask a client to request a change. In fact, the
window system and its client can exchange windows: a channel of
type eitmap (that is, a description of a bitmap, not the actual
data) can be used to pass the new window to the client, and to
return the old one to the window system when it can be deleted.
This protocol has the advantage that the client has, for a moment,
the old and new windows, and may therefore copy portions of its
old window to the new one.

A Concurrent Window System 147

Here is the frnal definition of type cL ient.

type String: array of char;
type Env: struct of {

encapsutated wortd of a window program
LJ: Bi tmap; # screen/window
l,l: chan of Mouse; # mouse
K: chan of int; # keyboard
CI: chan of String; # control messages in
C0: chan of String; # controI messages out
Ctl: chan of Bitmap; # exchanging old and new windou¡s

);
type CI ient: prog(Env);

It might seem that the delete and resize messages are events
after all, that nothing has really changed. To be sure, a prograrn-
mer is still free to write an event-driven application for this sys-

tem. But by making a conscious change to a concurrent style,
much of the discomfort of event-driven interfaces can be avoided.
The underlying structure is different. Delete and resize messages

are synchronous; all events associated with the mouse have been
eliminated, replaced by synchronous reads; and events reporting
changes of visibility of a window are unnecessary. The structure
of the system - a set of concurrent processes communicating on
synchronous channels - makes the control of multiple complex
inputs decomposable into small, easily understood components
whose design is chosen by the programmer, not the interface.
Even in a system where events are unavoidable, that approach
makes them easier to manage.

8. Deadlock

The price to pay for this style is twofold: the need to write in a
concurrent language, using novel techniques; and the possibility of
deadlock. The novelty of concurrent programming will wear off
with practice, but deadlock is harder to dismiss. Although in an
experimental system a deadlock is at worst an annoyance, in a
production system it is unforgivable. This is hardly the forum for
a long discussion on the subject ofdeadlock, but there are prag-
matic considerations worth mentioning.

148 Rob Pike

A deadlock is really nothing more than a peculiar form of bug,
and any method for eliminating bugs will work for deadlocks.
The best method is to design the system to be bug-free. For
deadlocks in particular, that is a practical suggestion. Since the
interface between the window system and the clients is completely
specified, it can be proven deadlock-free, either formally or experi-
mentally by programs such as trace [Holzmann 1988]. Trace
has the advantage that it is also capable of simulating the com-
munications of the window system itself, so it is possible to make
strong statements about the reliability of the system. That simula-
tion requires considerable work on the part of the programmer,
however, and is probably an unreasonable demand to make on all
applications programmers. Thus the window system should pro-
vide its own level of defense against errant clients. Although this
has not been done, it should be possible to provide a second order
interface around an undebugged client. That interface would be a
correct set of processes that honors the protocol to the window
system, and connects the client and the window system as long as

the client is well-behaved. If the client errs, however, the interface
isolates the client from the window system and then enters some
state where the client and its errors may be examined.

9. Specirtcaüons and Streams

Much as file descriptors (rather than explicit file names) and con-
ventions about the format of program output make the toolkit
approach to text processing possible on UNIX systems, synchro-
nous channels implementing an interface specification permit a
piece-parts approach to the construction of interactive applica-
tions.

A left-handed person might want to reverse the interpretation
of the buttons on the mouse, so the left hand's index frnger
accesses the same functions as a right-handed useros index finger.
All that is required is to interpose a single process, on the mouse
channel connecting to the appropriate application or top-level
window system, that reverses the buttons field of the House struc-
ture. The affected application remains unaware of the swap.

A Concurrent Window System 149

The simple terminal-emulating client makes no use of the
mouse. Imagine that we wanted to provide a simple history
mechanism, so that previously typed lines could be selected by the
mouse and sent as if typed again. A pair of communicating
processes, watching the keyboard and mouse channels connected
to the client, could keep track of typed lines of input and
retransmit them on the keyboard channel when selected from a
menu triggered by the mouse.

If the client process already made use of the mouse, the his-
tory feature could still be provided by triggering it on some ges-
ture not used by the client, or by running the client in a slightly
smaller window, leaving a banner along the top of its window,
invisible to the client, wherein the history menu may be activated.

A more realistic example is to construct a "chess terminal": a
two-part client that acts as a normal terminal in half the window,
but recognizes escape sequences printed to the screen as com-
mands to draw chess pieces on a board represented in the other
half. Between the window system and the regular terminal pro-
gram sit processes that operate the resize and delete protocols; the
terminal is unaware that it is in a subwindow. Independent of the
window system proper, the external channels that connect from
the terminal to the operating system's output are similarly mani-
pulated to catch the escape sequences. The advantage ofthis
structure is that the ordinary terminal part of this program is
identically the standard terminal emulator; in most systems, a
chess terminal must explicitly provide its own terminal emulator,
although it may get help from toolkits.

In the implemented system, bi tbt t is a subroutine. If it were
instead a message sent on a channel associated with env.w, output
messages could be similarly modified, say to provide reverse video
or to make slides by copying the output to a file. In the next ver-
sion of the system, this approach will probably be taken, although
it adds some complexity to the specification of the interface.

The window system can be run in a window. As the system
was being debugged, the new version was often run in a window
of the old version, without the usual need to reboot from scratch
for each test run. (The situation is analogous to virtual machine
operating systems.)

150 Rob Pike

As mentioned above, perhaps the best example of this tech-
nique is to use a fresh instance of the window system itself to
manage subwindows for a program such as a text editor. Clients
can exploit the multiplexing structure of the system without pro-
viding their own multiplexing software.

The overall lesson is that by providing a complete specification
of the interface between a window system and its clients, it
becomes possible to manipulate and interconnect programs by
simulating aspects of that interface. Simulation is just the multi-
plexing of a single connection, so the step from a window system

to window programs assembled from piece parts is a small one.

10. Status

The programming language Newsqueak has been fully designed
and an interpreter for it written [Pike l9S9]. Using the inter-
preter, I have written a window system that demonstrates the via-
bility of the synchronous design. The window system is usable as

a front end to a UNIX system; the functionality it provides is com-
parable to the standard X window manager or mpx [Scheifler et

al. 1988; Pike 1983(a)1. In its ability to run recursively, it offers a

unique property. This is no mere trick; it can be used, for exam-
ple, to run multiple windows on a single connection to a remote
CPU server, although that requires some operating system support
beyond the scope of this paper. The window system's main lack is
that it must be restarted to link in new clients, but that restriction
will pass.

Although the design is easily implemented in Newsqueak - the
language was built for the task - it can be put together in more
traditional environments. Any system that allows synchronous
message passing and multiplexing can be used to construct a syn-

chronous window system. The interprocess communication tools
in most UNIX systems, particularly pipes plus the setect or pol' I'

system calls, are sufficient to implement this design IUNIX 4BSD

1986; UNIX SYSV 19361. Although such a system would involve
substantially more code than the Newsqueak version, it would still
be conceptually simpler than a conventional window system.

A Concurrent Window System 151

1 1. Conclusions

Window systems are not inherently complex. They seem complex
because we traditionally write them, and their client applications,
as single processes controlled by an asynchronous, event-driven
interface. We force them into the mold of real-time software.
They can be simplifred greatly by writing them as multiple
processes, each with individual, synchronous communication
channels on which to receive data and control information. It is
possible to write a complete, useful window system, comparable in
basic power to commercial systems, using just a few hundred lines
ofcode in a concurrent language. Even in traditional languages,
simplicity can be achieved by replacing event-driven interfaces
with synchronous interfaces and some easily-provided multiplex-
ing functions. An interface based on synchronous communication
allows a novel style of construction that permits interactive appli-
cations to be assembled from piece parts, much as in standard
UNIX pipelines.

References

L. Cardelli and R. Pike, Squeak: A Language for Communicating with
Ì|i[ice, Computer Graphics 19(3), pages 199-204, 1985.

[cKS 1984] Draft Proposed American National Standard Graphics Kernel
System, Computer Graphics, Special GKS Issue, Feb. 1984.

L. J. Guibas and J. Stolfi, A language for bitmap manipulation, ACM
Trans. on Graph.,1(3), pages l9t-214,1982.

C. A. R. Hoare, Communicating Sequential Processes, Comm. ACM
21(8), pages 666-678, 1978.

G. J. Holzmann, An Improved Protocol Reachability Analysis Tech-
nique, Softw. Pract. Exp., t8(2), pages 137-161, 1988.

M. Manasse and G. Nelson, DEC SRC, Private communication.

R. Pike, The Blit: A Multiplexed Graphics Terminal, AT&T Bell Labs
Tech. J.,63(8), part 2, pages 1607-1631,1983(a).

R. Pike, Graphics in overlapping bitmap layers, ACM Trans. on Graph.,
2(2), pages I 35-l 60, 1983(b).

I52 Rob Pike

R. Pike, Window Systems Should be TransparerÍ, Computing Systems,
1(3), pages 153-158, 1988.

R. Pike, Newsqueak: A language for communicating with mice, Comput-
ing Science Technical Report 143, AT&T Bell Laboratories, Murray
Hill, NJ, lggg.

R. Pike, B. Locanthi, and J. Reiser, Hardware/software trade-offs for bit-
map graphics on the Blit, Softw. Pract. Exp.,15(2), pages l3l-152,
I 985.

D. Rosenthal, A Simple Xll Client Program, USENIX Wínter Conference
Proceedings, pages 229-242, Dallas, 1988.

[Sun 1987] NeWS 1.1 Manual, Sun Microsystems Inc., Mountain View,
cA, 1987.

IUNIX 4BSD] UNIX Tíme-Sharing System Programmer's Manual, 4.3
Berkeley Software Distribution, University of California, Berkeley,
cA, 1986.

ILJNIX SYSV] System V Interface Definition, Issue 2, Volume III, pages
319-321, AT&T, Summit, NJ, 1986.

R. W. Scheifler, J. Gettys, and R. Newman, X Window System: C
Library and Protocol Reference, Digital Press, Bedford, MA, 1988.

lsubmitted Mar. 13, 1989; revised May 8, 1989; accepted May 11, 19891

A Concunent W'indow System 153

