
Data Struclures in the
Icon Programming Language

Ralph E. Griswold The University of Arizona

ABSTRACT: The lcon programming language pro-
vides a rich variety of data structures with sophisti-
cated facilities: sets of arbitrary values, tables with
associative lookup, lists with positional and deque
access mechanisms, and records that extend the
type repertoire ofthe language. Instances ofthese
structures are created at run-time and grow and
shrink as values are added to or removed from
them. Storage management is automatic.

This paper describes these structures and their use
in combination with lcon's goal-directed evaluation
mechanism. Examples illustrate the use of pointer
semantics and heterogeneity and how the natural
geometrical interpretation of structures like trees
and graphs in the problem domain is imaged in the
programming domain.

The work described in this paper u/as supported by National Science Foundation
Grants MCS-8 l0 I 9 I ó, DCR-840 I 83 l, DCR-850201 5, and CCR-87 I 3690.

@ Computing Systems,Yol.2. No. 4 . Fall 1989 339

1. Introduction

The data structures that a programming language provides have
an important influence on the kinds of problems for which the
language is appropriate. They also determine how easy it is to
program solutions to these problems in the language. These con-
siderations are of central importance in rapid prototyping,
artifrcial intelligence applications, and, in general, in nonnumeri-
cal computation.

Most "traditional" programming languages provide only arrays
and records. Persons who program in these languages have to
fabricate, at the source level, more complicated data structures
that are needed for specifrc problems. For example, a C program-
mer who needs to look up symbols in a table must provide the
look-up mechanism and handle storage allocation.

Some programming languages go well beyond these primitive
and static data structures. Most notably, LISP [McCarthy et al.

1962; Steele 19841 in various forms provides a variety of data
structures motivated largely by problems in artifrcial intelligence.
APL generalizes the notion of arrays and provides many powerful
and concise operations on them [Polivka & Pakin 1975]. SETL

[Schwartz et al. 1986] brings the powerful mathematical notions of
tuples and sets into the progf,amming domain. The SNOBOL

languages [Farber et al. 1964; Farber et al. 1966; Griswold et al.

19711 started with a focus on string processing, but then added
sophisticated data structures, including tables with associative
look-up [Griswold 1975; Gimpel 1976]. More recent languages

with associative look-up mechanisms include Awk [Kernighan &
Pike l9S4l, B [B], Rexx [Cowlishaw 1987], and Prolex [Fabisinski
le8el.

340 Ralph E. Griswold

The development of powerful data structuring capabilities in
the SNOBOL languages continued in SL5 [Griswold 1976] and cul-
minated in Icon [Griswold & Griswold 1983], which is a general-
purpose programming language with powerful facilities for pro-
cessing both strings [Griswold to appear] and structures. The data
structures in SNOBOL4, SL5, and Icon were originally motivated
by providing support for organizing and accessing string data in
sophisticated ways. However, the data structuring capabilities of
these languages have proved to be centrally important in their
own right. In fact, one of the major applications of Icon is for the
rapid prototyping of software systems [Fonorow lgSS].

Icon has sets that may contain values of arbitrary types, tables
with associative look-up, lists with deque access mechanisms, and
records. This paper describes the essential aspects ofthese data
structures. The material related to Icon that is essential to under-
standing its data structure facilities is covered briefly in the fol-
lowing sections. A more thorough understanding of Icon
[Griswold & Griswold 1983] may be helpful in understanding
details in some of the examples.

2. Variables, Values, and Types

Icon, unlike most programming languages, has no type declara-
tions. Any variable may take on a value of any type at any time
during program execution, as in

x := I

''='rrHeIto' ¡{ortd!rl

On the other hand, while Icon has no compile-time type sys-
tem in the ordinary sense, it has a strong run-time type system.
The types of all operations are checked and operands are coerced,
if necessary, to expected types. Thus,

sum := sum + read()

increments sum by the numeric value of a string read from a file,
provided the string can be converted to a number. (Program exe-
cution terminates with an error message if the string is not

Data Structures in the Icon Programming Language 341

numeric in form.) Note that the conversion of a string to a
numeric value is automatic; the programmer does not have to
specify this.

In addition, it is possible to determine the type of any value.
For example,

write(type(x))

writes the type of the value of x. One view of this is that vari-
ables are not typed in lcon, but values are.

White the original motivation for not providing type declara-
tions in the SNOBOL languages that preceded Icon was to make it
easier to write programs (at the expense of compile-time type
checking), the ultimate importance of this approach is that struc-
tures - aggregates of values - need not be homogeneous with
respect to type. The value of this language feature is discussed in
Section 5.

Of course, untyped variables have a profound effect on the
implementation of the language [Griswold & Griswold 1986;

Walker 19881. Since any variable can be assigned a value of any
type, in some sense all values must be the same size. Like typical
implementations of LISP, Icon uses a descriptor representation of
values. Icon's descriptor contains type information, flags that are

useful for identifying classes of values, and a representation of the
value itself. If the value is small enough (as it is for integers), it is
contained in the descriptor. If the value is too large to fit into the
descriptor (as in the case of strings and structures), the descriptor
contains a pointer to the value.

While these are implementation matters, they lead in a natural
way to pointer semantics for structures. That is, the value for a
structure such as a set or list is a pointer to the corresponding
aggregate of values. In this sense, a structure value ls a pointer.
This allows arbitrarily large and complex aggregates to be treated
as frrst-class values, and these values are small, independent of the
size of the aggregates to which they point. For example, assign-

ment just copies a pointer, not the aggregate of values to which it
points.

The role of descriptors is seen in Icon's value-comparison
operation,

342 Ralph E. Griswold

¡l === ¡l

which compares two values of any type. The comparison is suc-
cessful for structures if the descriptors for xî and xZ are identical.
Thus, two structures are the same for this operation if they point
to the same aggregate of values. Similarly, the operation

¡l -=== ¡l

succeeds if x1 and xZ are not identical.
There are many consequences of pointer semantics, both in

how structures are viewed conceptually and in how they are mani-
pulated. With pointer semantics, a programmer can model a
problem-domain object like a directed graph in the programming
domain in a natural way. These considerations are treated in
more detail in Section 5.

3. Expression Evaluation

The way that expressions are evaluated in a programming
language has a strong influence on how structures are used. In
conventional programming languages like Pascal and C, the
evaluation of an expression always produces exactly one result.
Access to structures is straightforward, but imperative in nature
and often tedious. IPLV [Newell 196l], CLU [Liskov l98l], and
SETL provide iterators that simplify processing of specific struc-
tures. In Prolog [Sterling & Shapiro 1986], on the other hand,
expression evaluation is much more sophisticated (as well as

largely hidden from the programmer) and data is searched for
desired combinations of characteristics automatically. In this
case, programming paradigms are more declarative and problem-
oriented.

While Icon is superficially an imperative programming
language, it has a sophisticated expression-evaluation mechanism:
expressions that can generate sequences ofresults, goal-directed
evaluation, and novel control structures. These aspects of expres-
sion evaluation in Icon make many operations on structures more
concise and natural than they are in conventional imperative
languages, while providing control that is often difficult to achieve
in declarative programming languages. Furthermore, unlike

Dqla Structures in the lcon Programming Language 343

iterators in other programming languages, generators and goal'

directed evaluation are general features of expression evaluation
in Icon and apply to all kinds of computation.

Unlike most programming languages, the evaluation of an

expression in Icon may succeed and produce a result, or it may
fail and not produce a result. Success and failure, not Boolean

values, drive control structures in Icon. Consider, for example,

the traditional way of writing all the values in a list l-:

i := I
whiLe i (= *L do {

write(Ltil)
i := i + I
)

Here *t is the number of elements in the list l- and I t i I refer-
ences the ith element of t-. In Icon, the expression i <= *L does

not produce a Boolean value. Instead, it succeeds if the com-
parison succeeds but fails if the comparison fails. The wh i L e loop
is controlled by this success or failure, not a Boolean value,

although the appearance is the same. The utility of the
success/failure concept comes from its broader applicability. An
expression that succeeds and produces a useful computational
value in one circumstance may fail in another circumstance. For
example, L r i: fails if ¡ is out of range. Thus, the loop above can

be recast in a more compact form:

i := I
whil.e write(Ltil) do

i := i + I

Note that it is not necessary to know how big a list is in order to
traverse it.

It is important to understand that failure is a normal aspect of
expression evaluation in Icon, not the indication of an error.
Failure occurs when a computation cannot be performed but the
situation is not erroneous. This distinction between failure and

error, which is not found in most programming languages, is cen-

trally important to expression evaluation in Icon and how pro-
grams in Icon are written. The concept of failure allows condi-
tional computations to be cast in a natural way and provides the
context in which alternative computations can be specified.

344 Ralph E. Griswold

Alternatives are provided by generator; which are expressions
that are capable of producing more than one result. This is a
natural concept in processing structures, which are aggregates of
values. For example, !L generates the values in the list l- in order
from beginning to end.

A generator produces one value at a time, suspending evalua-
tion every time it produces a value so that it can be resumed if
another value is needed. If only one value is needed from a gen-
erator, only one is produced.

write(!L)

just writes the first value in L, even though L may contain many
values.

The need for multiple values from generators arises from
goal-directed evaluation, in which suspended generators are
resumed if they are contained in an expression that otherwise
would fail. This is illustrated by

if !L -== 0 then trrite('¡zero found")

The first value produced by I t- is compared to zero. If this com-
parison fails, tl is resumed to produce another value. This pro-
cess continues until the comparison is successful, in which case
the message is written, or until there are no more values for I t, in
which case no message is written. The power of goal-directed
evaluation is illustrated by

if !L1 === !ll then rrite('rcommon vatuerr)

which writes a message if lt and Lz contain a value in common.
The iteration control structure,

every expr, do expr,

resumes expr, repeatedly and evaluates expr, for each vahrc expr ,
produces. For example,

every x := !L do
wr i te(x)

writes all the values in l. The do clause is optional, and the
example above can be rewritten more concisely as

every write(!L)

Data Structures in the lcon Programming Language 345

Compare the conciseness of this form with the method of per-
forming this computation using â wh i L e loop. The use of itera-
tion and goal-directed evaluation in combination is shown by

every wr i te(! ll === ! ll)
which writes all of the values common to Lî and lz (a com-
parison operation returns its right operand if it succeeds). It
should be noted that the expression-evaluation mechanism of Icon
does not improve algorithmic eftciency for such operations (here
there are *11 * *12 comparisons). Instead, it provides a natural
formulation that is concise and demonstrably correct.

Icon has several generators. For example,

itoj

generates the integers from i to j. One generator ofgeneral use-
fulness is the alternation control structure

exprr I expr2

which generates the values of expr, followed by the values of
expr2. Thus,

!l === (Q | -1)

succeeds if I contains a value that is 0 or - 1.

Programmer-defined procedures also can be generators,
suspending (rather than returning) so that they can be resumed to
produce additional values. For example, the following procedure
generates the values in the list t- that are not equal to x:

procedure cutt(Lrx)
every y := !L do

if ¡ -=== y then suspend y
faiL

end

The f ai t control structure at the end of the procedure returns,
but indicates that no result is produced. The f a i L is optional
here, since flowing off the end of a procedure body has the same
effect.

346 Ralph E. Griswold

The control structure suspend, like every, iterates over all the
values generated by its argument. Consequently, the procedure
above can be written more compactly as

procedure cutt(L,x)
susPend ¡ -=== !l

end

4. The Basics of lcon Data
Structures

Different kinds of structures are provided to allow aggregates of
values to be organized and accessed in different ways. Sets allow
values to be grouped according to some common property. Lists
allow values to be organized sequentially and to be accessed by
position. Lists also can be accessed as stacks and queues. Tables
provide associative look-up in which keys select corresponding
values. Finally, records provide fixed organizations in which
values are referenced by name.

The following sections describe the basic properties of these
data structures as they are cast in Icon.

4.1 Sets

A set is an unordered collection of distinct values with no struc-
ture imposed on the values beyond their membership in the set.
An empty set with no values is created by set(). For example,

words := set()

assigns a nerry, empty set to words.
A value is added to a set by insert(S,x). For example,

i nsert (words r rrtherr)

adds the string ,rtherr to words. Since a set is a collection of dis-
tinct values, adding a value to a set that already contains the value
has no effect. A value is deleted from a set by del.ete(s,x). If
the value is not in the set, this operation has no effect (it does not
fail). Membership in a set is tested by member(S,xt which
succeeds if x is in s but fails otherwise. The size of a set, which

Data Structures in the Icon Programming Language 347

is the number of values in it, is given by *s. The size of an
empty set is 0. The size of a set increases and decreases as values
are added to it and deleted from it.

In addition to these functions related to set membership, there
are three operations on sets as a whole:

51 ++ 52 union
51 ** SZ intersection
51 -- SZ difference

In each case, the result isanew set; s1 and sz are not affected.
For example,

commonwords := wordsl ** wordsZ

assigns a new set to commonwords that consists ofthe values that
are in both wordst and wordsZ.

The operation ¡S generates the values in s. Since there is no
inherent order for the values in a set, the order in which they are
generated is unpredictable. The operation zs produces a
randomly-selected value in s. For example,

del.ete(S,?S)

deletes a randomly selected value from s.
The values in a set need not all be of the same type. For

example, the result of

one:= set()
insert(one, 1)
insert(one,1.0)
insert(oner rronerr)

is a set with three members, all of different types.

4.2 Lists

Many problems require access to an ordered collection of values.
Icon provides lists for this purpose. Icon lists are one dimensional
arrays (vectors) with an origin of t.

Lists can be constructed in several ways. The values in the list
can be given explicitly, as in

one : = 1,1 ,1 .0r iloneilJ

348 Ralph E. Griswold

which assigns a list of three values to one. If the values in a list
are not known when the list is created or if the list is large, the
function Iist(n,x) can be used. It produces a list of n values, all
of whichare x. Both il and tist(O) produceemptylists.

Unlike a set, the values in a list are ordered and can be refer-
enced by position. For example, the value of onet2l is 1.0. As
mentioned earlier, an out-oÊbounds list reference, such as one[4],
fails, and tt generates the values in t in order. As for a set, ?L
produces a randomly-chosen value in I and *t produces the size
of l.

Since the values in a list are ordered, specifrc list values can be
changed, as in

one[2] := 2.0

In other words, Ltil is a variable, as are lt- and ?1. For
example,

every !L := 0

changes every value in l- to 0. Note that it is not necessary to
know the size of t- to perform this operation.

Two other operations on lists are concatenation,

L1 lllLz
and sectioning,

LIi:jl

Both of these operations produce new lists.
Since a list is a sequence of values, it is natural to access it by

position. There are two other commonly-used structures that con-
sist ofsequences ofvalues: stacks and queues. Rather than pro-
vide two additional structure types (or require programmers to
model them with fixed-sized lists), Icon provides stack and queue
(deque) access mechanisms for lists.

The following functions add or remove elements from the ends
of lists:

push(L,x) prepend x to the left end of I
put(L,x) append x to the right end of r-

pop(L) remove and return the leftmost value in l_

DaÍa Structures in the lcon Programming Language 349

set(L) remove and return the leftmost value in t
pu L t (L) remove and return the rightmost value in I

With push and put, a list grows automatically. There is no limit
to the size of a list except the amount of available memory. With
pop, set, and pul.t, a list shrinks. These functions fail is the list
is empty. Note that pop and set are synonymous.

While deque access functions are provided for manipulating
lists as stacks and queues, they also are useful for other purposes,
such as building lists whose sizes are not known in advance. Sup-
pose, for example, that a list of all lines of an input frle is needed.
In most programming languages, a frxed-size array would be allo-
cated. Depending on the number of lines in the input file, part of
the array would be wasted, or it might overflow. In Icon, all that
is needed is

Iines := [l
whi Le put(t ines,read())

It might seem that positional and deque access mechanisms
are in fundamental conflict and likely to lead to programming
erors. In practice, lists are used in either one mode or the other,
or the mode changes but remains frxed during a different phases of
program execution. For example, during the initial phase of pro-
gram execution, a list such as I ines above may be constructed
using the queue access function. Once built, this list may be
accessed in another phase ofprogram execution strictly in a posi-
tional fashion. Thus, the fusion of positional and deque access
mechanisms provides flexibility is manipulating sequences of
values from viewpoints that may change during the course of pro-
gram execution.

4.3 Tables

There are many situations in which access to an aggregate of
values needs to by key rather than by position. An example is
tabulating the words in a file, where each word has an associated
count. Icon provides tables for such purposes. Tables are created
like sets, as in

words:= tabte()

350 Ralph E. Griswold

which assigns an empty table to words. Tables are subscripted
like lists, except the subscripts (keys) can be of any type. For
example,

wordslnthettl := I

associates the value I with the key 'then in words. If there is not
already a value for the key ,'¡¡"" in the table, the size of words
increases by one, reflecting a new key and value.

A table has a default value, which is given as the argument
when it is created. For example,

words := tabl.e(0)

provides the default value 0 for words. The default value is pro-
vided for keys to which no other value has been assigned. For
example,

wr i te(words ["automaton'r])

writes 0 if no other value has been assigned for the key
rrautomatonrr.

Conceptually a table is a set of key/value pairs that constitutes
a many-to-one mapping, that is, a function. The domain and
range of a table include all possible Icon values. The default value
serves to make the function complete, mapping all keys that have
not been assigned values to the default value.

The operations on other structures apply to tables also. For
example, *r is the size of T - the number of keys for which values
have been assigned.

4.4 Records

Records in Icon are similar to those in many other programming
languages with the notable exception that records extend Icon's
type repertoire.

Records types are declared, as in

record comptex(rri)

which defines comptex to be a record type with fields r and i.
Records of type comptex are created by a function of the same
name. For example,

Data Structures in the lcon Programming Language 351

origin := comptex(10.0,0.0)

creates a new conplex record and assigns it to origin.
Fields are referenced using the infix dot operator. For

example,

¡¡rite(origin.r)

writes 10.0, the value of the r freld of oriein, while

origin.i := 20.0

changes the i freld of orisin to 20.0.

As mentioned above, a record declaration adds a new type to
Icon's repertoire. Although such types are really subtypes of a
general record type, they are on a par with other types, such as

t ist ând tabte, as far as type determination is concerned. For
example,

write(type(origin))

writes comptex. Thus, for example, complex arithmetic can be
added to Icon in the form of procedures that perform different
arithmetic operations, depending on the types of the operands.

Several records may have the same field name, as in

record verb(vatuercount)
record noun(vatue,count)

Such field names need not be in the same order for all records to
which they apply.

In addition, record type names can be the same as built-in
type names. An example is

record t i st (car, cdr)

Different types with the same name are differentiated internally,
but they are indistinguishable via the type function.

352 Ralph E. Griswold

5. Pointer Semantics

As mentioned earlier, pointer semantics provide much of the
power of data structures in Icon. Using pointers, physical struc-
tures in the problem domain can be modeled directly in the pro-
gramming domain. A few examples follow.

5.1 Trees

Consider binary trees composed of records, such as

record node(vatue, Ief t, r i ght)

This declaration defrnes 4 node data type with three frelds. The
vatue freld provides a place for a value associated with a node,
while Lef t and right hold pointers to left and right subtrees
(nodes), respectively. For example, the expression i + j * k

might be represented as

This tree could be constructed node by node, as in

n4 z= node(rr j rr)
n5 : = nOde(rrkn)
n3 := n6de(rt*rr,n4rn5)
nZ z= node(riil)
nl := ngde(il+r ,n2rn3)

In general, of course, such a tree would be constructed by parsing
a string and building conesponding nodes in the process.

n2

Data Structures in the lcon Programming Language 353

Where no freld value is specified, the default value is null
(similar to nil in other programming languages). This corresponds
to the absence of a pointer to a node. The operation

\x

succeeds if x is non-null (for example, a pointer).
Generators provide a natural way of traversing such a struc-

ture:

procedure traverse(T)
suspendT I traverse(\T.l.eft | \T.right)

end

The use of traverse is illustrated by

every wr i te(traverse(T) . vatue)

which writes the values of all nodes in the binary tree T.

Lists can be used for general trees that are not limited to an
out-degree of two. For example, nodes can be represented by lists
in which, by convention, the frrst element holds a value and the
remaining elements are arcs (pointers) to subtrees. Note that
heterogeneity is essential to this method of representing trees. A
more structured approach is to use a record such as

record node(va Iue, arcs)

where the first field holds a value as before and the second field is
a list of arcs (pointers) to subtrees. Again, heterogeneity is impor-
tant.

Other kinds of structures can be handled in a similar way. For
example, the representations above can be used for dags as well as
trees; it is simply a matter of arranging pointers to represent the
desired structure.

Note that in all cases, the values associated with nodes need
not be strings. They could, for example, be structures.

5.2 Graphs

While directed cyclic graphs can be represented by lists or records,
there is a more general and interesting way of representing graphs.
This method is based on the observation that with pointer seman-
tics, a set is a pointer to a collection ofobjects that are its

354 Ralph E. Griswold

members. But a node in a graph has poinfers (arcs) to other
nodes. Thus, a node in a graph can be represented by a set that
contains the nodes (sets) that the node points to. For example,
the graph

n1

can be represented by .

n1 := set()
n2 z= set()
n3:= set()
insert(n1,n2)
insert(n1 rn3)
i nsert (n2, n3)
i nsert (n2, nZ)
Ínsert(n1,n5)

The corresponding Icon data structure is

Data Structures in the lcon Programming Language 355

where

F_>

indicates the member of a set that is a (pointer) to a set. Thus,
there is a simple geometrical transformation that illuminates the
relationship between a graph and its representation as a sets
whose members are sets.

Many graph operations are easy to perform on this representa-
tion. For example, the following procedures form the transitive
closure ofa graph starting at node n.

procedure ctosure(n)
S := set()
insert(Srn)
return accumutate(Srn)

end

start with node itself

procedure accumutate(Srn)
every n1 := !n do # process nodes reachabte from nif member(S,n1) then

next
etse {

f skip those atready found

insert(S,nî) # add ne¡r node
accumutate(S,n1) # recurse with ne¡l node
)

return S

end

Note that the set containing the closure also can be interpreted as
a graph node with arcs to all the nodes in the closure.

In handling graphs in general, where not all nodes are reach-
able from any one node and there may be disconnected subgraphs,
an additional structure is necessary. Consider, for example:

356 Ralph E. Griswold

As for forests, a list of nodes may be useful. Geometrically, this is
a tree of(graph) nodes: Ifa set is used in place ofa tree, the
geometrical interpretation is a set of nodes. This, of course, is
just another graph:

5.3 Labelings

rWith structures in general (and graphs in particular), labeling
often is needed to keep track of nodes within a program and to
relate them to external data. For example, labels in previous
diagrams are used informally to identify components of structures,
and correspond to variables in the code used to construct them, as

in

n1 := set()

String labels may be needed outside the program (for example, to
write out results of processing structures). Tables provide a
natural way to associate string labels with structures. For the
example above, this might take the form

Node := tabte()
llodeIrrnlrr] := n1

Data Structures in the lcon Programming Language 357

Thus, the node labeled nt is obtained by

NodeIrrnlrr]

and so on.
The converse mapping is needed more frequently. This can be

accomplished using a table whose keys are nodes and whose labels
are the corresponding values:

LabeL := tabIe()
Labeltnll != rr¡tn

Note that the keys in lode are strings, while the keys in labet
are sets. Since the keys in a table need not be homogeneous, both
kinds of keys can be used in a single table:

Graph := tabte()
Graphlnnltrl := n1
GraphlnlJ := rrnlrr

Such a "two-way" table, which contains both label-to-structure
and structure-to-label relationships, combines the information in a
single structure. In this structure, looking up a node produces its
label, while looking up a label produces the corresponding struc-
ture. The advantage of using this technique is that the topJevel
chanctenzation of a graph is contained in a single structure.
Again, heterogeneity allows a useful programming technique.

6. Combinations of Data Structures

In most nonnumerical problems, there are several kinds of data
that need to be accessed in different ways. The data structuring
repertoire of a programming language determines how this data is
represented, how it is accessed, and what operations have to be
provided in addition to the built-in ones. Consider, as an exam-
ple, a program that reads a context-free grammar and produces

randomly selected sentences from the corresponding language.
Data structures are centrally important in the design of such a

program. Assuming that the size and details of the grammar are
not known in advance, the structures for representing it must be

358 Ralph E. Griswold

constructed during program execution and must be flexible enough
to handle a wide variety of possible program input.

There are two main considerations in designing the necessary
structures: how sentences are generated from them and how they
can be constructed from the program input.

Suppose the grammar is in a BNF form with each nonterminal
symbol deflned by alternative deñnitions composed of sequences
of terminal and nonterminal symbols. An example is:

(e I ement): : =<var i ab L e) | (<express i on))
<express ion) : : =(term) |

(term)(addop)(expression)
(term) : : =(e I ement) | (e I ement><mpyop><term>
<addop>::=+l-

A sentence for a specified nonterminal symbol can be produced by
selecting one of its alternative definitions at random and process-

ing each symbol in this definition (in order from left to right is
convenient for programming purposes). For example, if the
specified nonterminal is <el.ement) ând the second alternative is
picked, the symbols to be processed are (, (expression>, and).

A terminal symbol, such as a parenthesis, contributes to the
sentence being generated, while a nonterminal symbol, such as
(expression>, is replaced by a randomly chosen definition for it
as above.

The process of producing a sentence is stack-based. The top
symbol is popped. If it is a terminal symbol, it is appended to the
evolving sentence. If it is a nonterminal symbol, the symbols
from a randomly chosen definition for it are pushed.

A natural way to distinguish between terminal and nontermi-
nal symbols is by type. In Icon,'terminal symbols are naturally
treated as strings, while nonterminal symbols can be represented
by a defrned type:

record nontermina[(name)

so that (expression> is represented by

nontermi na [(rrexpress i onrr)

The sequence of symbols in an alternative is represented by a
list. For example, the list for the second alternative for <element>
is

Dqta Structures in the lcon Programming Language 359

I rr(tr, nonterminal{ttexpressionrt), rt)n]

Note that such lists are heterogeneous, consisting of values of type
string 4ûd nontermina[.

In a similar fashion, alternatives are lists - lists of symbol-
sequence lists. Thus, the grammar is represented by a two-tier list
of lists. Note that selecting an alternative at random is trivial.

Finally, it is necessary to get from the name of a nonterminal
to its corresponding structure. This can be done with a table
whose keys are the nonterminal names and whose values are the
corresponding lists of lists. The overall structure for a grammar
therefore has the form

alternetives

360 Ralph E. Griswold

Suppose the structure for a grammar has been built and is in
the table grammar. A procedure to generate sentences for the non-
terminal soa L is:

procedure sentences(goat)
tocaI pending, sent, symboI
repeat t

initiat condition
pending 3= [nonterminatlgoaL)l
sêñt := n¡r

¡¡hi [e symbol ¡= pop(pending) do

ir type(sy,uorl !3o"llitl3r ;il::"'
sent := sent | | symbol.

concatenate terminaI symboI
etse # push symbots for nonterminal

pending := ?grammarIsymbot.name] lll pending
suspend sent # produce the compteted sentence
I # go around again

end

f{s¡s rrrr is the zero-length, empty string and I I is string concate-
nation. Note that list concatenation is used to prepend all the
symbols for the randomly selected alternative to the list of pend-
ing symbols. This is equivalent to pushing them one by one, but
it is simpler and also faster.

This leaves the problem on constructing the structures for the
grammar. Since the sizes of the lists of alternatives and symbols
are not known in advance, it is convenient to build them as
queues, even though they are accessed by position later. The
choice of queues rather than stacks is irrelevant for the lists of
alternatives, since they are only accessed by random position, but
is necessary for the lists of symbols so that they are in the correct
order for the list concatenation in the sentence-generation pro-
cedure.

The procedures for constructing the grammar are naturally
phrased in terms of generators:

gl.obat grammar

procedure main()
grammar := tabIe()
evefy grammarIname()l := def initions()

end

Dqta Structures in the lcon Programming Language 361

procedure def initions()
defl.ist := []
every aIternative() do

put(def I i st,symbol.s())
return defList

end

procedure symbots()
sYml. ist := []
every put(syml. ist,symbo[())
return symI ist

end

The procedures name, atternatives, and symbot read the input,
aîalyze the defrnitions, and generate the nonterminal names,
definitions, and symbols, respectively. These procedures use

Icon's highJevel string scanning facility, which is beyond the
scope of this paper. They are comparable in size to the pro-
cedures above for constructing the lists.

7. Conclusion

Summary

Many of the aspects of structures in Icon are not original to it.
Structures are first-class values in many programming languages.
The run-time creation of structures whose sizes are not known at
compile time also is supported by several programming
languages. Pointer semantics is as old as LISP. Associative look-
up dates back to SNOBOL4, and a general treatment of sets was
pioneered by SETL.

Icon's judicious combination of these features, coupled with its
expression-evaluation mechanism, give its data structuring facili-
ties their power:

. The fusion ofstacks, queues, and vectors supports different
kinds of access to sequences of values in a coherent frame-
work.

. The uniform representation of values and the use of pointer
semantics provides heterogeneous structures, which in turn
allow structures of different kinds to be used in combina-
tion.

362 Ralph E. Griswold

Generators provide a concise method of accessing all the
elements of a structure. Since generators are a general
aspect of expression evaluation, not just idiosyncratic to
structures, processing structures frts naturally with other
kinds of computation.

The important concept of failure as distinct from error,
combined with goal-directed evaluation, allows concise and
natural formulation of many kinds of operations on struc-
tures.

Status

The current version of lcon, Version 7.5, was originally developed
under UNIX and has been successfully installed on over 60
different kinds of UNIX systems, ranging from VAXes to the
NoXT. There also are implementations of Icon for the Amiga, the
Atari ST, the Macintosh, MS-DOS, MVS, VM/CMS, and VMS.

All of these implementations are in the public domain and are
available from the Icon Project, Department of Computer Science,
The University of Arizona, Tucson, A285721.

Acknowledgements

The origins of the data structures in Icon lie primarily in SNO-
BOL4 [Griswold et al. l97l]. Many persons have participated in
the design and implementation of data structures in Icon. Dave
Hanson, Tim Korb, Cary Coutant, and Steve Wampler were
major contributors.

Data Structures in the lcon Programming Language 363

References

lBl, The B Newsletter, Informatics Department, Mathematical Centre,
Amsterdam.

M. Cowlishaw, The Design of the REXX Language, SIGPLAN Notices
22(2),pages 26-35 (Feb. 1987).

L. L. Fabisinski, Computing with ProLex 1.0, Metal'ex Systems, Inc.
(I e8e).

D. J. Farber, R. E. Griswold and I. P. Polonsky, SNOBOL, A String
Manipulation Language, J. ACM l1(l), pages 21-30 (Jan. 1964).

D. J. Farber, R. E. Griswold and I. P. Polonsky, The SNOBOL3 Program-
ming Language, Bell System Technical Journal xl,v(6), pages 895-944

(July-Aug. 1966).

O. R. Fonorow, Modelling Software Tools in lcon, Proceedings of the
I1th International Conference on Software Engineering, Apr. 1988,

pages 202-220.

J. F. Gimpel, Algorithms in SNOBOL4, John Wiley & Sons, New York,
NY (1e76).

R. E. Griswold, String and List Processing in SNoBoL4; Techniques and
Applications, Prentice-Hall, Inc., Englewood Cliffs, NJ (1975).

R. E. Griswold, String Analysis and Synthesis in SL5, Proceedings of the
ACM Annual Conference,1976, pages 410-414.

R. E. Griswold, String Scanning in the Icon Programming Language,

Computer,L, to appear.

R. E. Griswold and M. T. Griswold, The lcon Programming Language,

Prentice-Hall, Inc., Englewood Cliffs, NJ (1983).

R. E. Griswold and M. T. Griswold, The Implementatíon of the Icon Pro-
gramming Language, Princeton University Press (1986).

R. E. Griswold, J. F. Poage and I. P. Polonsky, The SNOB)L4 Program-
ming Language, Prentice-Hall, Inc., Englewood Cliffs, NJ (second

edition, l97l).

B. W. Kernighan and R. Pike, The UNIX Programming Environment,
Prentice-Hall, Inc., Englewood Cliffs, NJ (1984).

B. Liskov, CLU Reference Manual, Springer-Verlag (1981).

J. McCarthy, P.W.Abrahams, D. J. Edwards and M. I. Levin, in IISP
1.5 Programmer's ManuaLln.{IT Press, Cambridge, MA (1962).

364 Ralph E. Griswold

A. Newell, Information Processing Language-V Manual, Prentice-Hall,
Inc., Englswsod Cliffs, NJ (1961).

R. P. Polivka and S. Pakin, APL: The Langaage and lts Use, Prentice-
Hall, Inc., Englewood Cliffs, NJ (1975).

J. T. Schwartz, R. B. K. Dewar, E. Dubinsky and E. Schonberg, Pro-
gramming with Sets: an Introduction to SETL, Springer Verlag
(1e86).

G. L. Steele Jr., Common LISP: The Language, Digital Press (1984).

L. Sterling and E. Shapiro, The Art of Prolog, MIT Press, Cambridge, MA
(1e86).

K. Walker, A Type Inference System for Icon, The Univ. of Arizona
Tech. Rep. 88-25 (1988).

Isubmiued May 5, 1989; revised Aug. 21, 1989; accepted Sept. 1, 19891

Data Structures in the lcon Programming Language 365

