
CONTROVERSY

Can (IIVX survive secret
soL¿rce code?

Michael Lesk Bellcore

For secrets are edged tools
and must be kept from children and from fools.

- Dryden

On"upon a time there was a string processing language
called coMIT. It competed with sNoBoL for certain kinds of text
processing applications. since even in the 1960s the proliferation
of mutated versions of software was bringing chaos on users, the
owners of coMIT decided there wouldn't be any modiflcations to
it. Only binary was distributed; you haven't heard much of
COMIT since. Ditto TRAC1 (the currently popular language
closest to TRAC is probably FORTH). Software is more attractive
to the hackers if it can be changed. As more and more UNIX2
suppliers restrict access to source code, fewer and fewer advanced
research shops will be attracted to UNIX.

During the last ten years the fanatics of computer science
departments have largely been in two groups: the UNIX camp,
believing in modularity, and the Lisp camp, believing in integra-
tion. rWhy were these two systems so popular? Undoubtedly the
hardware they used is part of the answer, as is their style; but
surely the availability of source code was an important feature of
their attractiveness to the universities. unlike major manufac-
turer operating systems, the UNIX and Lisp machine environ-
ments had available source code without extravagant prices (for
universities); they were small enough to be comprehended; and
they ran on machines small enough that changes could be made
without massive negotiations to get the approval of large

l. TRAC is a trademark ofRockford Research, ifanyone still cares.
2. gluNrx/sl/the UNrx system/g

@ Computing Systems, Vol. 1 . No.2. Spring 1988 189



communities of affected users. This has resulted in both isolated
improvements (a driver here and there) and massive rewrites (e.g.

the Berkeley UNIX distributions).
I'm not saying that "information should be free" as some of

the more extravagant university types do. People who write code,
just like people who write books, are entitled to get paid for their
work. But I think that the more restrictions that are placed on the

use of code, and the greater the attempt to control exactly how
systems are used, the less attractive a software product is, particu-
larly in advanced computer research. And I expect, as a result,
that there might well be more money to be made being slightly
more forthcoming with source code.

Admittedly, circumstances alter cases. When railways were

first developed, it was expected that they would operate the same

way canals and turnpikes did: the railway company would pro-
vide only the right-of-way. Customers would show up with their
own vehicles, and pay for the use of the tracks. It became clear
quickly that this was intolerable and that a railway could not be

operated safely without control over how many trains were

operated, and in which direction on which track. Software does

not carry analogous risks.
There are many reasons why suppliers do not wish to provide

source code. For example, they may be concealing bugs in the
hardware; it may be easier to program around certain conditions
than ûx them. This applies more often to turnkey products than
operating systems, however, since when the customers write their
own programs, unless the bugs are restricted to privileged instruc-
tions the users will frnd them. Another reason for not distributing
source is to simplify maintenance. If the customers can't change

things, the service staff knows what they will find. In the extreme
I have seen a computer (intended for use in a factory) provided
inside a heavy steel case with locks, and no keys given to the peo-

ple who used it.
I suspect, however, that the primary reason for keeping source

code secret is to preserve sales of both the hardware and the
software. There are two arguments to be considered here. Source

code might be kept secret to improve hardware sales (by tying cus-

tomers who want a particular software feature to a particular piece

of hardware), or it might be kept secret to improve software sales

190 Michael Lesk



(by preventing people from copying it or adapting it to make alter-

native veisions).
First, if one cannot modify the source code to run on a

different machine, anybody who wants a particular software

feature must buy the hardware of the manufacturer who provides

that feature. Thus, a customer trying to buy some software has to

accept a particular model of hardware ("bundling"). Note that

there is of course some risk in the strategy; the customer asked to

buy something he doesn't want to get something he does want

may decide to live without either of them, even though the

software would have sold by itself. usually the sale price of the

software is so much less than the sale price of the hardware that

the manufacturer is willing to run this risk. The conventional

belief of hardware manufacturers that there is more profrt in
hardware sales than in software sales also pushes them to use

software as a way to sell hardware.
This isn't, however, most of the answer. Until recently, only

for operating systems written in source code could the customer

take the software and run it on different hardware anyway, so that

one would think that if the point of source secrecy was tie-in sales

of hardware, those manufacturers with assembly language operat-

ing systems would have freely published their code. They didn't.
Admittedly, this argument no longer applies, since clone hardware

is becoming more common and no successful manufacturer can

afford to ignore the possibility of imitations. However, even

before there were clones, some manufacturers kept source code

under wraps.
I even know one case where a particular UNIX utility was con-

sidered so valuable that it was going to be kept secret and pro-

vided only as binary for a specific machine. Over the next two
years the plans to manufacture that machine fell apart and only a

trivial effort was made to sell the hardware to the general market.

When the time came to reconsider what to do with this particu-

larly valuable program, all the managers involved had changed

and the utility was no\ry thought of such low value that the project

was scrapped.
The major reason for keeping software secret, however, is just

to preserve sales of the software. Software is easy to copy; the

problems with computer games and low-level word processing

Controversy: Can UNIX survive secret source code? 1 9 1



software are well known. Hence the desire of manufacturers to
keep their product secret. But to me this is also not an
overwhelming argument. In my experience, university depart-
ments generally do try to keep the contracts they sign; they do not
steal software and pass it arorrnd. For example, academic
researchers live by publication and dare not publish research done
with stolen software.

Part of what is going on is simply fear of the unknown. There
are a great many uncertainties about the future of the software
industry. Understandably, producers wish to retain as much con-
trol as possible for fear that something bad might happen. The
same phenomenon can be seen in other areas. For example,
machine-readable texts are supplied, in general, only under
extremely strict licenses. Where it is possible for a publisher to tie
the text to a retrieval system and charge per access, they often try
to do so. If traditional books were priced the same way you
would have to pay a nickel every time you opened one. Part of
the reason for the difficulty in getting typesetting tapes is that pub-
lishers are afraid of somehow losing all the revenue from their
paper sales. We don't know what happens when machine-
readable copies of conventional books are available nor what
market and legal mechanisms are best for getting a fair share of
the profrts from new uses of material to the copyright holders.
And, of course, while the uncertainty and the difficulty persist we
do not explore the uses of new material as much as we should. I
remember one spelling checking program which was switched
from a dictionary-based word list to a newly made word list partly
because of the difficulties of reaching any agreement with the dic-
tionary supplier. Often a machine-readable file wanted is not
available at all, even when a large sum is offered. I have known a

publisher to turn down a larger sum for a machine-readable tape
than the amount to be realized ff everyone in the research lab's
building had bought a copy of the book.

What is the history of uNtx in this regard? Bell Laboratories
supplied it to universities for a nominal sum, with source code,
and it became very popular as a computer science research tool.
The availability of the source code was very important, as was the
low cost and the practical advantages of UNIX over the other
operating systems available for the PDP-I I series of machines.

I92 Michael Lesk



The success of UNIX in the universities then caused it to become
a valuable product elsewhere and to produce larger revenues for
AT&T in the commercial market.

UNIX was then ported to some other kinds of hardware, start-
ing with a Perkin-Elmer machine but most particularly including
the Motorola 68000. This resulted in a number of manufacturers
bringing out UNIX-based systems; some ported the code them-
selves, some hired frrms to do it. AT&T arranged to make it possi-
ble for source code to be available for these other machines and
also for the outside manufacturers to arrange binary licenses for
those customers with no interest in the source code. As a result
the UNIX market developed quickly and very effectively.

None of this would have happened if the source code had been
kept secret, or if universities had been charged commercial licens-
ing costs for experimental use. I believe as much in the techno-
logical imperative as anyone, but here accidental considerations of
availability and ease of use were important. It is certainly possi-
ble to kill a market off by excessive regulation - how many
nuclear power plants have been started lately, and how much have
you heard recently about electronic funds transfer or videotext in
the USA? One reason for the great success of the computer busi-
ness was that people could write their own programs: it is a pro-
duct for which the customer finds the use. The more the
manufacturer constrains the uses, the fewer really advanced custo-
mers will be attracted.

Historically, secrecy hurts more people than just programmers.
There is a story that during the Second V/orld War, when
millimeter-wave radar was developed, it was the first way of
finding submarines running submerged with only a snorkel above
the surface. The result was a sudden gain by the Allies in the
naval war, and the Germans appeared to have no idea what had
happened; submarines were captured fitted out with listening dev-
ices set up to try to discover how the Allies were frnding them.
When the RAF proposed to use the new radar in bombers, the
Royal Navy objected: surely a bomber would be shot down, the
Germans would frnd the equipment in the crashed plane, and then
the gains at sea would be reversed. The argument went up to
Churchill, who ruled in favor of the RAF; a month or so after
outfltting the aircraft a bomber was shot down and the Navy

Controversy: Can UNIX survive secret source code? 193



prepared for the end of the good hunting. To their amazement
nothing happened at sea; the German submarines appeared to
continue in ignorance. After the war it turned out that the Ger-
man Army had studied the bomber that was shot down and they
didn't see why they should tell the Navy about the unusual radar
set they had found on the plane.

I would like to compare the source-code versus binary-code
choices with the drama and the cinema. In the traditional
dramatic theatre, playwrights write plays, which are then produced

and directed by a variety of companies, perhaps centuries later.
As a result we get to see many interpretations of the same text,
and people today discuss the actors they have seen in particular
roles. Opera is similarly enhanced by new interpretations and
new singers. By contrast, for movies the screenplay belongs to the
producers of the movie; the movie can be remade only with their
permission. Now there is no shortage these days (or in earlier
times) of remakes of movies. But are any of them any good? In
the few cases where the second version of a movie is better than
the first, it is usually a movie derived from a literary work any-
way, so that the second movie is really taken from the original
book or play, rather than the frrst movie (e.g. "Oliver Twist"). If
you try to maintain too much control of your work, you stifle
further improvements. As an extreme, in Shakespeare's day

dramatic companies did not want texts of plays published, hoping
that nobody else would be able to put them on. We must all give

thanks that this particular form of secrecy was not sufficiently
thorough or effective to keep us from having copies of
Shakespeare's plays.

You may object that the drama may permit more creativity in
performance, but after all the movies make more money. So let
me talk about some more commercial enterprises. When foreign
equipment rules in the telephone business changed, there was an

explosion of answering machines and similar devices. This has

resulted in an increase in the number of calls completed. The ser-

vice may be worse (many customers feel annoyed at paying for a

call when they only get to talk to a tape recorder) but the revenue

from phone service is up. By contrast, in Europe, the national
PTT organizations combine dominance of service with the power

of legal regulation and limit entry into the communication

194 Michael Lesk



business. As a result, for example, cable television is less common
and the total choice of television channels is much fewer than in
the USA.

Again, much of the problem is uncertainty. Music publishers
are willing to sell sheet music for popular songs, rather than sell
only recordings, since the copyright laws restrict other perfor-
mances without permission and thus the sale of sheet music does
not threaten a flood of unwanted imitation recordings. No such
confrdence is available today in the software business. Thus the
owner of a successful operating system must worry that other peo-
ple will copy and imitate his software and then argue with a judge
that it was new work.

The recent development of "look and feel" suits is adding to
the problem of uncertainty. Nobody knows what is protectable,
legally: is it what is patentable (specifrc new ideas), what is copy-
rightable (the lines of code), or the "look and feel" of something?
The more doubt about what can be protected, the more tendency
to keep things secret in the hope of compensating for the inade-
quacies of the legal system. This does not mean that we should
make everything protectable no matter how trivial; extremes of
protection, as in some of the "look and feel" claims, inhibit
further technical progress and the development of standards.

Providing source code to universities is thus, in my mind, an
effective way of advertising one's product, getting other people to
develop applications, and producing a trained set of users who
will try to buy the same system when in new jobs. It would be
even better if the legal problems could be eliminated: that is, if
public copyright law, rather than trade secret license agreements,
could provide protection. There are many in universities (and
elsewhere) who flnd the negotiations involved in obtaining a trade
secret license very frustrating, with the lawyers on both sides
insisting on variations in wording that technical people can not
understand. Even better than copyright might be a simple techni-
cal fix that reassured the sellers without inconveniencing the users;
I don't know what that might be. As an example, if CD-ROMs
became a standard way of distributing software, they are hard to
make locally and cheap to mass produce. Thus it is likely that
people would be encouraged to buy the information rather than
steal it. Unfortunately, since a CD-ROM is no larger than a

Controversy: Can UNIX survive secret source code? 195



modern fixed-head disk, it is not difficult to transfer the informa-
tion. It is also important that the price of software be reasonable;

and as the number of computers in the world increases, I gain

hope that more and more suppliers will aim for many sales at low
prices rather than a few sales at high prices (regretfully, this
doesn't seem to be happening in the CD-ROM market).

Now, my optimism that cheap distribution of source code to
universities will be repaid with more sales at higher prices to com-

mercial customers, as happened with UNIX originally, may be

irrelevant. The commercial world clearly is moving towards more

secrecy. So what will happen next? University customers and
research groups, in particular, will ask for access to source code.

And as the standard uNlx suppliers now include more and more

companies whose source is not supplied, I predict more and more

interest in universities for flnding alternative operating systems.

Another change, at the same time, is the rise of multiprocessor

computers. The tendency over the last ten years for CPU chips to
get cheaper more rapidly than they get faster has made it advanta-
geous to build multiple processor machines, and at present we do

not really know how to take advantage of them. Advanced

software for these systems is still being built. The opportunity for
a new operating system is there.

It is important that at the same time the AI community, which

has long relied on Lisp code from MIT that was also available in
source form, now finds itself faced with various Lisp machine

manufacturers who have made signiflcant extensions and changes

they are keeping confidential. As a result AI researchers too are

perhaps a fertile ground for a new environment.
Finally, UNIX itself is getting old now. The conventional date

for the start of UNIX is 1969, so pretty soon it will be twenty.
There are UNIX programmers younger than the code they are

using. By comparison, can anyone imagine, in 1970, using a 1950

operating system? Maybe computer science as a whole is slowing

down, but I certainly hope the field has some new operating sys-

tems still to come. UNIX is also now so big that it is hard to
change and as frustrating in many ways as any conventional
operating system; to quote Dick Haight, once we had manual
pages, now we give master's degrees in stty. Presumably ioctl is
worth a Ph.D.

196 Michael Lesk



For all these reasons, I think the universities are ripe to start

with a new operating system. I don't know what it will be, but we

need good support fôr multiple processors, networks of worksta-

tions,-andgraphics.Agoodsystemshouldalsobesmallenough
thatitcanbecomprehendedandusedforteaching.JohnLions
wrote of sixth edition UNIX that it was the only powerful operat-

ing system whose documentation fit in a student's briefcase; in

later editions this has been fixed. And, of course' the system must

be efficient enough for real jobs to be run on it'
Consider, for example, the problems of partitioning a UNIX

program to run in a multiprocessor environment' Right now there

ur.i*o obvious breakpoints: a subroutine call or a f ork() call

(i.e.ashellcommand).ComparedtolPC,subroutinecallsare
ìery fast, and shell commands are very slow. So subroutine calls

are used very freely in programs, whereas shell pipelines can not

be (if each one .ori, u iecond, decent response time requires that

onlyafewprocessesbestarted)'Thus,althoughbreakingpro-
grams apart at commands is easy to do, since the processes on

éitn", side are already well separated and there are very few of

them,thescarcityofprocessesmakesitimpossibletogetabig
,p".á.rp by dividing ã progtu* in this way' What about cutting at

subroutine calls? Today these are usualþ 100 times faster than

interprocess communication, and thus it is not practicable to

separate processes at this point. Furthermore the shared memory

discipline makes it hard to divide programs at calls'

One possible answer is "lightweight processes" that will not

requiresuchhighoverhead.Analternativewouldbealevelof
"tJsk," with limits on shared memory and rapid startup' But it is

,r.r.rrury to find some coupling point whose cost is comparable to

that of tie IPC invoked when the processes communicate across

thecoupling.Considerarailwaytrain.Thecapacityofafreight
car (goods wagon for you UK types) is measured in tons' 50 to 100

tons_beingtypicalinNorthAmerica.Itwouldnotmakesenseto
try to puitogether a train of cars each designed to hold a hun-

dredweight; too much of the weight would be in couplings and

wheels. But articulated unit trains carrying thousands of tons in

long strings of cars designed never to be separated aren't catching

or, ãith.r. The capacity of the cars must be substantially larger

than the weight of the couplings, and the complexity of the

Controversy: Can (INIX sumive secret source code? 197



couplings must be minimized (there is still no electrical cable that
runs end to end on a freight train, although there is an air pipe).
But the units should still be dividable to permit adjustment of
train capacity to offered load and rearrangement of cars for
routing.

In computer terms, this suggests that if too large a fraction of
the time of a process is spent communicating it will not be
efficient. There is an alternate view that process overhead doesn't
matter because extra cPU boards can be devoted to handling com-
munications. Hence, even if 2/3 of the processor were just I/O
boards, what difference would it make? Although the logic is rea-
sonable, my worry is that effectively the cost of such cpus will be
high enough to make intelligent process separation worth more
effort.

of course, this raises the issue of what Ipc mechanisms should
be provided. Realistically, one would like them simpler. Com-
paring UNIX frles with the IBM frle systems available at the time,
and looking at the old mpx or Berkeley sockets, one dreams of
something concise and neat.

Can we bridge the gap between "integrated environments,'and
"modular tools," so that AI and other CS groups may share
software? That, in itself, would be a major step forward in US
computer science. I have some hopes because the rise of neural-
net research raises the cPU demands of AI groups, increasing the
chance that they will wish to make common cause with other
computer scientists.

So, I am looking for some computing system that runs on mul-
tiple small machines, supports graphics and tI work, and remains
comprehensible. Are there any systems around today that meet
all these requirements? I don't know one. But I suspect that
somewhere, in an attic, somebody is building such a system.
Maybe it will look like UNIX, and maybe it won't. But if it is to
be successful, it should have readily available source code. And in
current trends that means it won't be a variant of UNIX.

What might the feel of the new system be? It would, above
all, have a sense of efficiency and compactness. Vy'e have a large
supply of elephantine operating systems, whose documentation

198 Michael Lesk



overflows not just a student's briefcase but his backpack.3 rù/e

need another system people can understand. Remembering how
well UNIX got along without indexed sequential files and pLlI
compilers, we must aim for "that supreme gift of the artist, the
knowledge of when to stop" (Sherlock Holmes). Thus the system
we want will not come from any large team carefully funded by a
corporation or big government to produce "the next UNIX.'' Any
such team will have too many people, be answerable to too many
funders, and wind up putting too much in the system. The goal is
not to anticipate and provide for all needs; the goal is to permit
the users to do this for themselves. Tom Sawyer did not plan how
he would paint the whole fence; he got others to do it for him. In
addition, a small system can be built by a small team; if it is done
in a "skunk works" it is more likely to appear so trivial to the
owners of the code that they will let it out cheaply, and then com-
plain about it later when they realize what they have done, as
have some AT&T lawyers. The more important that the project is
as it is planned, the more likely it is to be kept secret. If it is a
success, it will be kept secret because it is so valuable; and if it is
a failure, it will be kept secret to conceal the bad news. Vide Star
Wars.

So we can not look for the next operating system. We can
only expect it. Somewhere, perhaps in a physics or chemistry lab
(or an English or music department), it will come. If we don,t
recognize it when it does arrive, we will ignore it and it will die;
but if we do recognize it, we'll wrap it up in confidentiality and it
will die anyway. Is there any hope? Carlyle wrote that if Christ
returned today people would invite him to dinner and make fun
of what he had to say. Our best hope is that the next operating
system arrives as ajoke.

Isubmitted Sept. 16, 1987; revised June 3, 1988; accepted June 6, lgf,Bl

The truly teclnology-driven will presumably suggest that the answer is higher-
reduction microfiche.

Controversy: Can UNIX sumive secret source code? 199


