
Type-safe Linkage for C++
Bjarne Stroustrup AT&T Bell Laboratories

ABSTRACT: This paper describes the problems
involved in generating names for overloaded func-
tions in C++ and in linking to C programs. It also
discusses how these problems relate to library build-
ing. It presents a solution that provides a degree of
type-safe linkage. This eliminates several classes of
errors from C++ and allows libraries to be com-
posed more freely than has hitherto been possible.
Finally the current encoding scheme for C++ names
is presented.

1. Introduction

This paper describes the type-safe linkage scheme used by the 2.0
release of C++ and the mechanism provided to allow traditional
(unsafe) linkage to non-C++ functions. It describes the problems
with the scheme used by previous releases, the alternative solu-
tions considered, and the practicalities involved in converting
from the old linkage scheme to the new.

A previous version ofthis paper appeared irthe Proceedings ofthe U9ENIX tgBB c++
Conference (Denver).

@ Computing Systems, Vol. I . No. 4 . Fall 1988 371

The new scheme makes the over I'oad keyword redundant,

simplifres the construction of tools operating on C++ object code,

makes the composition of C++ libraries simpler and safer, and

enables reliable detection of subtle program inconsistencies. The

scheme does not involve any run-time costs and does not appear

to add measurably to compile or link time.
The scheme is compatible with older C++ implementations for

pure c++ programs but requires explicit specification of linkage

requirements for linkage to non-C++ functions.

2. The Original Problem

C++ allows overloading of function names; that is, two functions

may have the same name provided their argument types differ

sufficiently for the compiler to tell them apart. For example,

doubIe sqrt(doubl'e);
compIex sqrt(comPIex) ;

Naturally, these functions must have different names in the object

code produced from a c++ program. This is achieved by suffixing

the name the user chose with an encoding of the argument types

(the signature of the function). Thus the names of the two sqrt()

functions become:

sqrt--Fd / I sqrt that takes a double argument
sqrt--FTcomptex t / sqrt that takes a comptex argument

Some details of the encoding scheme are described in Appendix A.

When experiments along this line began five years ago it was

immediately noticed that for many sets of overloaded functions

there was exactly one function of that name in the standard C

library. Since C does not provide function name overloading

there could not be two. It was deemed essential for c++ to be

able to use the C libraries without modification, recompilation, or

indirection. Thus the problem became the design of an overload-

ing facility for c++ that allowed calls to c library functions such

aS sqrt() even when the name sqrt was overloaded in the C++

program.

372 Bjarne Stroustrup

3. The Original Solution

The solution, as used in all non-experimental C++ implemen-
tations up to now, was to let the name generated for a C++ func-
tion be the same as would be generated for a C function of the
same name whenever possible. Thus open() gets the name open
on systems where C doesn't modify its names on output, the name

-open on systems where C prepends an underscore, etc.
This simple scheme clearly isn't sufficient to cope with over-

loaded functions. The keyword overt.oad was introduced to dis-
tinguish the hard case from the easy one and also because func-
tion name overloading was considered a potentially dangerous
feature that should not be accidentally or implicitly applied. In
retrospect this was a mistake.

To allow linkage to C functions the rule was introduced that
only the second and subsequent versions ofan overloaded func-
tion had their names encoded. Thus the programmer would write

overIoad sqrt;
doubl.e sqrt(doubl.e) ;
compIex sqrt(comptex) ;

/ / sqrt
/ / sqrt--FTcompIex

and the effect would be that the C++ compiler generated code
referring to sqrt and sqrt--FTcomptex. This enabled a C++ pro-
grammer to use the C libraries. This trick solves the problems of
name encoding, linkage to C, and protection against accidental
overloading, but it is clearly a hack. Fortunately, it was docu-
mented only in the .BUG,S section of the C++ manual page.

4. Problems with the
Original Solution

There are at least three problems with this scheme:

. How to name overloaded functions so that one may be a C
function.

. How to detect errors caused by inconsistent function
declarations.

Type-safe Linkage þr C++ 37 3

. How to specify libraries so that several libraries can be

easily used together.

4.1 The overload Linkage Problem

consider a program that uses an overloaded function print() to
output gtobs and widgets. Naturally sLobs are defined in gtob.h

and w i dgets in u¡ i dget . h. A user writes

// filel.cz
#inctude (gtob.h)
#inctude (widget.h)

but this elicits an error message from the C++ compiler since

pr int(I is declared twice with different argument types. The user

then modifies the Program to read

/ / f iLel . c:
overtoad Print;
#inctude <gLob.h)
#inctude <widget.h>

and all is well until someone in some other part of the program

writes

I I l ile?.cz
over Ioad Pr int;
#incLude (widget.h)
#inctude <gl'ob.h)

This fails to link since the object code file produced from

f i Le1.c refers to print (meaning printCgtobl) and

print--Fówidget, whereas the output from f i I'e2.c refers to
print (meaning print(widget)) and print--F4gLob.

This is of course a nuisance, but at least the program fails to

link and the programmer can - after some detective work based

on relatively uninformative linker error messages - fix the prob-

lem. The nastier variation of this will happen to the conscientious

programmer who knows that pr int() is overloaded and inserts

the appropriate overl.oad declarations, but happens to use only

one variation of print(¡ in each of two source flles:

37 4 Bjarne Stroustrup

// filel.c=
overtoad print;
#inctude <gLob,h>

/ / file?.c=
overtoad print;
#incl.ude (widget.h)

The output from f i Le1.c and f i Le2.c now both refer to print.
Unfortunately, in the output from fllel.c print means
print(9l.ob) whereas print refers to print(widget> in the output
from file2.c. One might expect linkage to fail because pr i nt () has

been deflned twice. However, on most systems this is not what
happens in the important case where the definitions of
print(gLob) and print(widget) are placed in libraries. Then, the
linker simply picks the first definition of print() it encounters
and ignores the second. The net effect is that calls (silently) go to
the wrong version of print(). If we are lucky, the program will
fail miserably (core dump); if not, we will simply get wrong
results.

The requirement that the over Ioad keyword must be used and
the non-uniform treatment of overloaded functions ("the frrst
overloaded function has C linkage") is a cause of complexity in
C++ compilers and in other tools that deal with C++ program text
or with object code generated by a C++ compiler.

4.2 The General Linkage Problem

This problem of inconsistent linkage is a variation of the general
problem that C provides only the most rudimentary facilities for
ensuring consistent linkage. For example, even in ANSI C and in
C++ (until now) the following example will compile and link
without warning:

#inctude (stdio.h)
extern int sqrt(int);
main()
{

printf (r'sqrt(%d) == %d\n'r,2,sqrt(2)) ;
)

and produce output like this

Type-safe Linkage for C++ 37 5

sqrt(2) == 0

because even though the user clearly specified that an integer

sqrt() was to be used, the C compiler/linker uses the double pre-

cision floating point sqrt(l from the standard library. This prob-

lem can be handled by consistent and comprehensive use of
correct and complete header files. However, that is not an easy

thing to achieve reliably and is not standard practice. The tradi-

tional C and C++ compiler/linker systems do not provide the pro-

grammer with any help in detecting errors, oversights, or

dangerous practices.
These linkage problems are especially nasty because they

increase disproportionally with the size of programs and with the

amount of librarY use.

4.3 Combining Libraries

The standard header compIex.h overloads sqrt():

// comPIex.h:
over Ioad sqrt;
#incIude (math.h)
comPtex sqrt(comPIex) ;

Some other header, 3d.h, declares sqrt(> without overloading it:

/ / 3d'h=
#incl'ude <math.h>

Now a user wants both the 3d and the complex number packages

in a program:

#inctude <3d.h>
#incl.ude (comPtex.h)

Unfortunately this does not compile because of this sequence of
operations:

doubte sqrt(doubLe); /t fron (math'h) via <3d'h>
overtoad sqrtl- I / from (comPtex'h)

A function that is to be overloaded must be explicitly declared

overloaded before its frrst declaration is processed. So the pro-

grammer, who really did not want to know about the internals of

376 Bjarne Stroustrup

those headers, must reorder the #inctude directives to get the pro-
gram to compile:

#incIude <comptex.h>
#inctude <3d.h>

This will work unless 3d.h overloads some function, say atan(),
that compl.ex.h does not. Even in that case the programmer can
cope with the problem by adding sufficient over Ioad declarations
where 3d,h and comptex.h are included:

overtoad sqrt;
over Ioad atan;
#incLude <3d.h>
#inctude (compIex.h)

This reordering and/or adding of overl.oad declarations is
irrelevant to the job the programmer is trying to do. Worse, if the
extra overl.oad declarations were placed in a header file the pro-
grammer has now set the scene for the users of the new package to
have exactly the same problems when they try combining this new
library with other libraries. It becomes tempting to overload all
functions or at least to provide header files that overload all
interesting functions. This again defeats any real or imagined
benefits of requiring explicit ove¡[oad declarations.

5. A General Solution

The overloading scheme used for C++ (until now) interacts with
traditional C linkage scheme in ways that bring out the worst in
both. Overloading of function names, which was introduced to
provide notational convenience for programmers, is becoming a
noticeable source of extra work and complexity for builders and
users of libraries. Either the idea of overloading is bad or else its
implementation in C++ is defrcient. The insecure C linkage
scheme is a source of subtle and not-so-subtle errors. In
summary:

l. Lack of type checking in the linker causes problems.

2. Use of the overtoad keyword causes problems.

Type+afe Linkage for C++ 377

3. We must be able to link C++ and C program fragments'

A solution to I is to augment the name of every function with an

encoding of its signature. A solution to 2 is to cease to require the

use of over load (and eventually abolish it completely). A solution

to 3 is to require a C++ programmer to state explicitly when a

function is supposed to have C-style linkage.

The question is whether a solution based on these three prem-

ises can be implemented without noticeable overhead and with

only minimal inconvenience to C++ programmers. The ideal solu-

tion would

. require no C++ language changes;

o provide tyPe-safe linkage;

. allow for simple and convenient linkage to C;

. break no existing C++ code;

. allow use of (ANSI style) C headers;

o provid€ good error detection and error reporting;

. be a good tool for library building;

. impose no run-time overhead;

. impose no compile time overhead;

. impose no link time overhead.

We have not been able to devise a scheme that fulfills all of these

criteria strictly, but the adopted scheme is a good approximation.

5.1 Type-safe C++ Linkage

First of all, every c++ function name is encoded by appending its

signature. This ensures that a program will load only provided

every function called has a defrnition and that the argument types

specifred in declarations used to compile calls are the same as the

types specifred in the function definition. For example, given:

f(int i) { .'. } // f--Fi
f(int i, char* j) { ... } /l f--FiPc

These examples will cause correct linkage:

378 Bjarne Stroustrup

extern f(int);
Í(1);

I / f--F i - t inks to f(int)

extern f(int,char*)ì ll f--FiPc - Links to f(int,char*)
f(lrtrasdfrr);

These examples will cause linkage errors independent of where in
the program they occur because no f () with a suitable signature
has been defined:

extern f(int ...); // 1--Fie - Links to ???
f(1'rrasdfrr);

One might consider extending this encoding scheme to include
global variables, etc., but this does not appear to be a good idea
since that would introduce at least as many problems as it would
solve. For example:

/l no decIaration
// (this is Iegal.
f(1);
extern f (char*);
f (rrasdf ");

I / f iLel.c:
int aa = 1;
extern int bb;

I /ÍiLe2.cz
char* aa = rrasdf"; I/ error:
extern char* bb; // errorz

of f() in this f il.e
onty in C programs)

ll f - Links to ???

/ / 'f --FPc - L i nks to ???

aa dectared int in fi Le1.c
bb dectared int in fi Le1.c

Under the current C scheme, the double definition of aa will be

caught and the inconsistent declarations of bb will not. Using an
encoding scheme, the double definition of aa would not be caught
since the difference in encoding would cause lwo differently
named objects to be created - contrary to the rules of C and C++.
The fact that the inconsistent declarations of bb would be caught
by some linkers (not all) does not compensate for the incorrect
linkage of aa. Consequently only functions are encoded using
their signatures.

For a similar reason function argument types are not encoded
(except for pointer to argument types):

Type-safe Linkage for C++ 379

t/ hyqotheticaI encoding using return types:

/ / f iLe1.c=
int f() { "' }; // f--Fv-i

I /f iLe2.cz
char* f(); ll f--Fv-Pc

Here a linker would report f () undeflned because of the name

mismatch. This could be quite confusing.
The adopted linkage scheme is much safer than what is

currently used for C, but it cannot detect all linkage problems.

For example, if two libraries each provides a function f (int) as

part of their public interface there is no mechanism that allows

the compiler to detect that there are supposed to be two different
f (int)s. If the .o files are loaded together the linker will detect

the error, but when a library search mechanism is employed the

error may go undetected.
Note that this linking scheme simply enforces the C++ rules

that every function must be declared before it is called and that
every declaration of an external name in C++ must have exactly

the same type.
In essence, we use the name encoding scheme to o'trick" the

linker into doing type checking of the separately compiled files.

More comprehensive solutions can be achieved by modifying the

linker to understand C++ types. For example, a linker could

check the types of global data objects and the return types of func-

tions. It might also provide features for ensuring the consistency

of global constants and classes. However, getting an improved
linker into use is typically a hard and slow process. The scheme

presented here is portable across a gteat range of systems and can

be used immediately.

5.2 Implicit Overloading

If a function is declared twice with different argument types it is
overloaded. For example:

doubte sqrt(doubte);
comptex sqrt(comPIex) ;

380 Bjarne Stroustrup

is accepted without any explicit overl.oad declaration. Naturally,
overtoad declarations will be accepted in the foreseeable future;

they are simply not necessary any more.
Does this relaxation of the C++ rules cause new problems? It

does not appear to. For example, originally I imagined that obvi-
ous mistakes such as

doubl,e sqrt(doubte); // sqrt--Fd
doubl.e d = sqrt(2.3);
doubIe sqrt(int d) t...]// sqrt--Fi

would cause hard-to-find errors. It certainly would with the tradi-
tional C linkage rules, but with type-safe linkage the program sim-
ply will not link because there is no function called sqrt--Fd
defined anywhere. Even the standard library function will not be

found because its name is as always "plain" sqrt.
Another imagined problem was that a call

f(x);

would suddenly change its meaning when a function became over-

loaded by the inclusion of a new header file containing the
declaration of another function f t>. The only case where f (x)

can have its meaning changed by the introduction of a new

declaration f <r¡ is where r is the type of x. In this case the

meaning of t(x> ought to change. In all other cases, the C++

ambiguity rules ensure that the introduction of a new f < I will
either leave the meaning of t txl unchanged (when the new f < > is

unrelated to the type of x) or will cause a compile time error
(when an ambiguity is introduced).

5.3 C Linkage

This leaves the problem of how to call a C function or a C++

function "masquerading" as a C function. To do this a program-

mer must state that a function has C linkage. Otherwise, a func-
tion is assumed to be a C++ function and its name is encoded.

To express this an extension of the "extern" declaration is intro-
duced into C++:

Type-safe Linkagefor C++ 381

extern lrCrr {
doubte sqrt(doubte); // sqrt(doubte) has C Iinkage

)

This linkage specifrcation does not affect the semantics of the
program using sqrt(I but simply tells the compiler to use the C
naming conventions for the name used for sqrt(l in the object
code. This means that the name of this sqrt() is sqrt or -sqrt
or whatever is required by the C linkage conventions on a given

system. One could even imagine a system where the C linkage
rules were the type-safe C++ linkage rules as described above so

that the name of sqrt() was sqrt--Fd.
Linkage specifications nest, so that if we had other linkage

conventions, such as Pascal linkage, we could write:

extern ,,c,, {
/I de'lault: c++ [inkage here

// C Iinkage here
extern ltPascattt {

// Pascat Iinkage here
extern rrC++rt {

// C++ [inkage here

' ,/ Pasca I' I' i nkage here

' ,t c linkage here

' ,/ c++ Linkage here

Such nestings will typically occur as the result of nested

#incIudes.
The tl in a linkage specification does not inÍroduce a new

scope; the braces are simply used for grouping. This use of tl
strongly resembles their use in enumerations.

The keyword extern was chosen because it is already used to
specify linkage in C and C++. Strings (for example, "ç" utt¿

'Ç++rr) were chosen as linkage specifiers because identifiers (e.g. c

and cpl.uspLus) would de facto introduce new keywords into the
language and because a larger alphabet can be used in strings.

Naturally, only one of a set of overloaded functions can have

C linkage, so the following causes a compile time error:

382 Bjarne Stroustrup

extern rrCrr {
doubte sqrt(doubl.e);
comptex sqrt(comptex) ;

)

Note that C linkage can be used for C++ functions intended to be

called from C programs as well as for C functions. In particular,
it is necessary to use C linkage for C++ functions written to imple-
ment standard C library functions for use by C programs. How-
ever, using the encoded C++ name from C preserves type-safety at
link time. This technique can be valuable in other languages too.
I have already seen an example of the C++ scheme applied to
assembly code to prevent nasty link errors for low level routines.

One might consider using this C++ linkage scheme for C also, but
I suspect that the sloppy use of type information in many C pro-
grams would make that too painful.

In an "all C++" environment no linkage specifications would
be needed. The linkage mechanism is intended to ease integration
of C++ code into a multi-lingual system.

5.4 Caveat

One could extend this linkage specifrcation mechanism to other
languages such as Fortran, Lisp, Pascal,PLll, etc. The way such

an extension is done should be considered very carefully because

one "obvious" way of doing it would be to build into a C++ com-
piler the full knowledge of the type structure and calling conven-
tions of such "foreign" languages. For example, a C++ compiler
might handle conversion of zero-terminated C++ strings into Pas-

cal strings with a length prefix at the call point of a function with
Pascal linkage and might use Fortran call by reference rules when

calling a function with Fortran linkage, etc.

There are serious problems with this approach:

. The complexity and speed of a C++ compiler could be seri-
ously affected by such extensions.

. Unless an extension is widely available and accepted pro-
grams using it will not be portable.

. Two implementations might "extend" C++ with a linkage
specification to the same "foreign" language, say Fortran, in

Type-safe Linkage for C++ 383

different ways so as to make identical C++ programs have

subtly different effects on different implementations.

Naturally, these problems are not unique to linkage issues or to
this approach to linkage specification.

I conjecture that in most cases linkage from C++ to another
language is best done simply by using a common and fairly simple

convention such as "C linkage" plus some standard library rou-

tines and/or rules for argument passing, format conversion, etc., to
avoid building knowledge of non-standard calling conventions into
C++ compilers. This ought to be simpler from C++ than from
most other languages. For example, reference type arguments can

be used to handle Fortran argument passing conventions in many

cases and a Pascal string type with a constructor taking a C style

string can trivially be written. Where extension are unavoidable,
however, C++ now provides a standard syntax for expressing

them.

6. Experience

The natural first reaction to this scheme is to look for a way of
handling linkage and overloading without requiring explicit link-
age specifications. We have not been able to come up with a sys-

tem that enabled C linkage to be implicit without serious side

effects. I will summarize the advantages of the adopted scheme

here and discuss several possible objections to it. Section 7 below

describes alternative schemes that were considered and rejected.

6.1 Making Linkage Specifications
Invisible

One obvious advantage of this scheme is that it allows a program-

mer to give a set of functions C linkage with a single linkage

specification without modifying the individual function declara-

tions. This is particularly useful when standard C headers are

used. Given a C header (that is, an ANSI C header with function
prototypes, etc.),

384 Bjarne Stroustrup

// C header:
It C declarations

one can trivially modify the header for use from C++:

I I C++ header:

extern rrCrr {
// C header:
tl C dectarations

)

This creates a C++ header that cannot be shared with C.

Sharing with C can be achieved using #i f def :

// C and C++ header:

#i fdef --cpIusptus
extern trCrr {
#end i f

// C header:
l/ C declarations

#i fdef --cptusptus
)
#end i f

where --cpl.uspl.us is defined by every C++ compiler.
In cases where one for some reason cannot or should not

modify the header itself one can use an indirection:

t / C++ header:

extern rrCrr {
i nc I ude 'r C-headerrl
)

Fortunately, such transformations can be done by trivial programs

so that most of the effort in converting C headers need not be

done by hand.
It was soon discovered that even though programmers tend to

scatter function declarations throughout the C++ program text,

most C functions actually come from well-defined C libraries for
which there are - or ought to be - standard header frles.

Placing all of the necessary linkage specifications in standard

header flles means that they are not seen by most users most of
the time. Except for programmers studying the details of C
library interfaces, programmers installing headers for new C

Type-safe Linkage for C++ 385

libraries for C++ users, and programmers providing C++ imple-
mentations for C interfaces, the linkage specifications are

invisible.

6.2 Error Handling

The linker detects errors, but reports them using the names found
in the object code. This can be compensated for by adding
knowledge about the C++ naming conventions to the linker or
(simpler) by providing a filter for processing linker error messages.

This output was produced by such a fllter:

C++ symboI mapping:

PathListHead: : -PathListHead() --dt--l2PathListHeadFv
Path-List::sephlork() sephJork--9Path-l'istFv
Path::pathnorm() pathnorm--4PathFv
Path::operator&(Path&) --ad--4PathFR4Path
Path: :first() 'f irst--4PathFv
Path:: Last() Last--4PathFv
Path::rmfirst() rmfirst--4PathFv
Path::rml.ast() rmIast--4PathFv
Path::rmdots() rmdots--4PathFv
Path : : f indpath (Str i ng&)
Path::ful.l.path()

f i ndpath--4PathFRóStr i ng
f ul" Lpath--4PathFv

Introducing this filter had the curious effect of replacing the usual

complaint about "ugly C++ names" with complaints that the

linker didn't provide enough information about C functions and
global data objects.

The reason for presenting the encoded and unencoded names

of undefined functions side by side is to help users who use tools,

such as debuggers, that haven't yet been converted to understand
C++ names.

A plain C debugger such âs sdb, dbx, or codeviebr can be used

for C++ and will correctly refer to the C++ source, but it will use

the encoded names found in the object code. This can be avoided
by employing a routine that "reverses" the encoding, that is, reads

an encoded name and extracts information from it.l The

l. Naturally, this would be the same function that w¿s used to write the linker output
frlter. The examples here are based on the name decoding routine written.by Steve

Brandt and used to modify the UNIX System V C debugger sdb into sdb++.

386 Bjarne Stroustrup

encoding scheme is described in Appendix A. A C++ name

decoder should be generally available for use by debugger writers
and others who deal directly with object code. Until such

decoders are in widespread use the programmer must have at least

a minimal understanding of the encoding scheme.

6.3 Upgrading Existing C++ Programs

Decorating the standard header frles with the appropriate linkage
specifications had two effects. The frrst phenomenon observed
was that most of the declarations scattered in the program text
that were referring to C functions were either redundant (because

the function had already been declared in a header) or at least
potentially incorrect (because they differed from the declaration of
that header file on some commonly used system). The second

phenomenon observed was that every non-trivial program con-
verted to the new linkage system contained inconsistent function
declarations. A noticeable number of declarations found in the
program text were plain wrong, thaf is, different from the ones

used in the function definition. This was caused in part by sloppi-
ness, for example, where a programmer had declared a function

char* f(int ...);

to suppress compiler warnings instead of looking up the type of
the second argument. A more common problem was that the
"standard" header files had changed since the function declaration
was placed in the text so that the "local" declaration didn't match
any more; this often happens when a file is transferred from one

system to another, say from a BSD to a System V.

In summary, introducing the new linkage system involved
adding linkage specifications. Typically, these linkage

speciflcations were only needed in standard header files. The pro-

cess of introducing linkage specifications invariably revealed errors

in the programs - even in programs that had been considered

correct for years. The process strongly resembles trying L int on
an old C program.

As was expected, some programmers first tried to get around
the requirements for explicit C linkage by enclosing their entire
program in a linkage directive. This might have been considered

Type-safe Linkage for C++ 387

a frne way of converting old C++ programs with minimum effort
had it not had the effect of ensuring that every program that uses

facilities provided by such a program would also have to use the
unsafe C linkage. To achieve the benefits from the new linkage
scheme most C++ programs must use it. The requirement that at
most one of a set of overloaded functions can have C linkage
defeats this way of converting programs. The slightly slower and
more involved method of using standard header frles (already con-
taining the necessary linkage specifrcations) and adding a few
extra linkage specifications in local headers where needed must be

used. This also has the benefit of unearthing unexpected errors.

7. Details

The scope of C function declarations has always been a subject for
debate. In the context of C++ with linkage specifications and
overloaded functions it seems prudent to answer some variations
of the standard questions.

7.1 Default Linkage

Consider:

extern rrCrr {
int f(int);

)
int f(int); l/ detaul.t (C++ [inkage) overruted:

// Í() has C Linkage

Is it the same f () that was defined with C linkage above and does

it have C or C++ linkage? It is the same f () and it does (still)
have C linkage. The frrst linkage specification "wins" provided
the second declaration has "only" default (that is, C++) linkage.

Where linkage is explicitly specified for a function, that
specification must agree with any previous linkage. For example:

extern t¡Crr {
int f(int); l/ f() has C Iinkage

)

388 Bjarne Stroustrup

int g(); lt default: g() has C++ [inkage
int f(int); t / finez defautt overruted,

l/ f() has C Iinkage

extern rrCrr {
int f(int); / I line
int g(); ll error: inconsistent

// [inkage sPecification
)

The reason to require agreement of explicit linkage specifrcations

is to avoid unnecessary order dependencies. The reason to allow

a second declaration with implicit C++ linkage to take on the link-
age from a previous explicit linkage specifrcation is to cope with
the common case where a declaration occurs both in a , c flle and

in a standard header frle.

7.2 Declarations in Dffirent ScoPes

Consider:

extern rrCrr {
int f(int);

)

void sl()
{

int f(int);
f(1);

)

Is the f <) declared local to g1 the same as the global f () and

does the function called in g1() have C linkage? It is the same

f() and it does have C linkage.
Consider:

extern rrCrr {
int f(int);

)
void g2()
{

int f(char*);
f(1);
f ("asdf 'r);

)

Type-safe Linkage þr C++ 389

Does the local declaration of t < I overload the global f () or does

it hide it? In other words, is the call t t 1 I legal? That call is an
error because the local declaration introduces a new f() that
hides the global f t ¡. In the tradition of C, the declaration of
f (char*) also draws an warning.

Consider:

void g3()
{

int ff(int);
);

void g4()
t

int ff(char*);
f f ('rasdf 'r);
ff(1);

);

Does the second declaration of rt<) overload the first? In other
words, is the call ++<11 legal? The call is an error and a warning
is issued about the two declarations of tt() because (as in the
example above) overloading in different scopes is considered a

likely mistake.

7.3 Local Linkage Specification

Linkage specifications are not allowed inside function definitions.
For example:

void g5()
t

extern rrCrr { /l error: Iinkage specification
int h(); // in function

)
)

The reason for this restriction is to discourage the use of local
declarations of C functions and to simplify the language rules.

390 Bjarne Stroustrup

8. Alternative Solutions

So, the linkage speciflcation scheme works, but isn't there a better
way of achieving the benefits of that scheme? Several schemes

were considered. This section presents the first two or three alter-

natives people usually come up with and explains why we rejected

them. Naturally, we also considered more and weirder solutions,

but all the plausible ones were variations of the ones presented

here.

8.1 The Scope Trick

The first attempt to provide type-safe linkage involved the use of
overtoad and the C++ scope rules. All overloaded function names

were encoded, but non-overloaded function names were not. This

scheme had the benefit that the linkage rules for most functions
were the C linkage rules - and had the problem that those rules

are unsafe. The most obvious problem was that at first glance

there is no way of linking an overloaded function to a standard C
library function. This problem was handled using a "scope trick":

overIoad sqrt;
comptex sqrt(comptex) ;
inI ine doubIe sqrt(doubl.e d)
{

extern doubte sqrt(doubl.e) ; r, l"T":"::i::à".
return sqrt(d); /l not a recursive calI

ll but a ca|. of the C

// function sqrt
)

In effect, we provided a C++ calling stub for the C function
sqrt(). The snag is that having thus defined sqrt(doubte) in a
standard header a user cannot provide an alternative to the stan-

dard version. The problems with library combination in the pres-

ence of overIoad are not addressed in this scheme, and are actu-

ally made worse by the proliferation of definitions of overloaded

functions in header files. In particular, if two "standard" libraries

each overload a function then these two libraries cannot be used

Type-safe Linkage for C++ 391

together since that function will be defined twice: once in each of
the two standard headers.

There is also a compile time overhead involved. In retrospect,
I consider this scheme somewhat worse than the original "the first
overloaded has C linkage" scheme.

8.2 C "storage class"

It is clear that the definitions providing a calling stub are redun-
dant. We could simply provide a way of stating that a member of
a set of overloaded functions should be a C function. For
example:

comptex sqrt(comptex) ;
cdecI doubIe sqrt(doubl.e) i / /sqrtdoubte) has C I inkage

This is equivalent to

compIex sqrt(compIex) ;
extern rrCrr {

doubIe sqrt(doubIe);
)

but less ugly. However, it involves complicating the C++ language
with yet another keyword. Functions from other languages will
have to be called too and they each have separate requirements
for linkage so the logical development of this idea would eventu-
ally make ada, f ortran, I isp, pasca[, etc., keywords. Using a
keyword also requires modifrcation of the declarations of the C
functions and those are exactly the declarations we would want
not to touch since they will typically live in header files shared
with an ANSI C compiler. In some cases we would even like not
to touch a file in which such declarations reside.

8.3 Overload "storage class"

The use of a keyword to indicate that a function is a C function is
logically very similar to the linkage specification solution, though
inferior in detail. An alternative is to have a keyword indicate
that a function should have its signature added. The keyword
overtoad might be used. For example:

392 Bjarne Stroustrup

overIoad comptex sqrt(comptex); // use C++ [inkage
doubl.e sqrt(doubLe); // C linkage by defautt

This has the disadv aîfage that the programmer has to add infor-

mation to gain type safety rather than having it as default and

would de facto ensure that the C++ type-safe linkage rules would

be used only for overloaded functions. Furthermore, this would

mean that libraries could be combined only if the designers of
these libraries had decorated all the relevant functions with over -

toad. This scheme also invalidates all old C++ programs without
providing significant benefrts.

8.a Calling Stubs

one way of dealing with c linkage would be not to provide any

facilities for it in the C++ language, but to require every function

called to be a C++ function. To achieve this one would simply

re-compile all libraries and have one version for C and another for

c++. This is a lot of work, a lot of waste, and not feasible in gen-

eral. In the cases where recompilation of a c program as a c++
program is not a reasonable proposition (because you don't have

the source, because you cannot get the program to compile,

because you don't have the time, because you don't have the file

space to hold the result, etc.) you can provide a small dummy C++

function to call the C function. Such a function would be written

in C (for portability) or in assembler (for efficiency). For example:

doubl.e sqrt--Fd(d) doubLe d;
t /* C cal'l'ing stub for sqrt(doubte)= *l

extern doubIe sqrt();
return sqrt(d);

)

A program can be provided to read the linker output and produce

the required stubs.
This scheme has the advantage that the user works in what

appears to be an "all C++" environment (but so does the adopted

scheme once a few C libraries have been recompiled with C++

and/or a few header files have been decorated with linkage

specifications). It does, however, also suffer from a few severe

disadvantages. A "C calling stub maker" program cannot be writ-

ten portably. Therefore, it would become a bottleneck for porting

Type-safe Linkage for C++ 393

c++ implementations and c++ programs and thus a bottleneck for
the use of C++. It is also not clearthat this approach can be
implemented everywhere without loss of efficiency since it
requires large numbers of functions to have two names (a C name
and a C++ name). This takes up code space and introduces large
numbers of extra names that would slow down programs reading
object frles such as linkers, loaders, debuggers, etc. The C calling
interfaces would also be ubiquitous and available for anyone to
use by mistake, thus re-introducing the C linkage problems in a
new guise.

8.5 Encode only C++ Functions

The fundamental problem with all but the last scheme outlined
above is that they require the programmer to decorate the source
code with directives to help the compiler determine which func-
tions are C functions. Ideally, the compiler would simply look at
the program and determine the linkage necessary for each indivi-
dual function based on its type. Could the compiler be that
smart? Unfortunately, no. There is no way for the compiler to
know whether

extern doubl.e sqrt(doubLe);

is written in C or C++. However, one might handle most cases by
the heuristic that if a function is clearly a C++ function it gets
C++ linkage and if it isn't it gets C linkage. For example:

comptex sqrt(compI ex)ì I / ctearIy C++: sqrt__FTcomptex
doubLe sqrt(doubte); / / coul.d be C: sqrt

Since comptex is a class, sqrt(complex) is clearly a C++ function
and it is encoded. The other sqrto might be C so it isn,t.

Applying this heuristic would mean that most functions would
not have type-safe linkage - but we are used to that. It would also
mean that overloading a function based on two C types would be
impossible or require special syntax:

int max(int, int);
doubte max(doubI e, doubIe) ;

394 Bjarne Stroustrup

Such overloading must be possible because there are many such
examples and several of those are important, especially when
support for both single and double precision floating point arith-
metic becomes widespread:

fIoat sqrt(fLoat);
doubte sqrt(doubte);

This implies that either overtoad or linkage specifications
must be introduced to handle such cases. The heuristic nature of
the specification of where these directives are needed will lead to
confusion, overuse, and errors.

If overl.oad is re-introduced, the cautious programmer will use
it systematically wherever a relatively simple class is used (in case

a revision of the system should turn it into a plain C struct), wher-
ever an argument is typedeld (because that typedet might some
day refer to a plain C type), and wherever there is any doubt.
This will lead to the now well known problems of combining
libraries. Similarly, if linkage specifications are required any-
where, they will proliferate because of doubts about where they
are needed.

It does not seem wise to refrain from checking linkage in a
large number of cases and to introduce a rather arbitrary heuristic
into the linking rules for C++ without being able to reduce the
complexity of the language or to reduce the burden on the pro-
grammer somewhere.

8.6 Noth.ing

Naturally, while considering these alternative schemes the easy

option of doing nothing was regularly re-considered. However,
the original scheme still suffers from the problems described in
section 4: insecure linkage, spurious overtoad declarations, over-
loading rules that complicate the life of library writers and library
users, and unnecessary complexity for tools builders.

Type-safe Linkage þr C++ 395

9. Syntax Alternatives

The scheme of giving all C++ functions type-safe linkage and pro-

viding a syntax for expressing that a given function is to have C
linkage was thus chosen and tried. However, there were still
several alternatives for expressing C linkage for this general

scheme.

9.1 Why extern?

Instead of employing the existing keyword extern we might have
introduced a new one such as t inkage or foreign. The introduc-
tion of a new keyword always breaks some programs (though usu-
ally not in any serious way and for a well chosen new keyword not
many programs) and extern already has the right meaning in C
and C++. In almost all cases extern is redundant since external
linkage is the default for global names and for locally declared
functions. When used, extern simply emphasizes the fact that a
name should have external linkage. The use of extern introduced
here merely allows the programmer to tag an extern declaration
with information of how that linkage is to be established.

9.2 Linkage for Individual Functions

One obvious alternative is to add the linkage specification to each

individual function:

extern 'lCrt doubIe sqrt(doubte);
// sqrt(doubl.e) has C Iinkage

The advantage of this scheme is that the linkage is obvious from
looking at an individual function declaration. The problem with
this is that it does not serve the need to be able to give a set of C
functions C linkage with one declaration and requires the declara-
tion of every C function to be modified. In particular, it does not
allow a C header (that is, an ANSI C header) to be used from a
C++ program in such a way that all the functions declared in it get

C linkage.
This notation for linkage specification of individual functions

is not just an alternative to the linkage "block" adopted but also

396 Bjarne Stroustrup

an obvious extension to the adopted syntax. After observing the
use of linkage blocks for a while and listening to the comments
from users this extension was adopted.

extern rrCrr doubIe sqrt(doubl.e);
// sqrt(doubl.e) has C Linkage

is by defrnition equivalent to

extern rlCtr { doubIe sqrt(doubte);]
// sqrt(doubIe) has C linkage

Naturally, a linkage specification applies to all members of a
declaration list:

extern "c'f doubre
:ìlt::ät::l'nl;ltl"i?fl¿"

9.3 Linkage Pragmas

The original implementation of the linkage specifications used a

#pragma syntax:

#pragma Iinkage C

doubte sqrt(doubLe);
#pragma I i nkage

// sqrt(doubLe) has C Linkage

This was considered too ugly by many but did appear to have
significant advantages. For example, it can be argued that linkage
to "foreign languages" is not part ofthe language proper. Such
linkage cannot be specified once and for all in a language manual
since it involves the implementalions of Mo languages on a given
system. Such implementation specific concepts are exactly what
pragmas were introduced into Ada and ANSI C to handle. The
#prasma syntax was trivial to implement and easy to read. It was
also ugly enough to discourage overuse and to encourage hiding of
linkage specifications in header files.

There are problems with this view, though. For example, it is
most often assumed that any #pragma can be ignored without
affecting the meaning of a program. This would not be the case

with linkage pragmas. Another problem is that for the moment
many C implementations do not support a pragma mechanism
and it is not certain that those that do can be relied upon to "do

Type-safe Linkagefor C++ 397

the right thing" for linkage pragmas used by a C generating C++
compiler.

Linkage to a particular foreign language does not belong in
C++ because such linkage will in principle be local to a given sys-

tem and non-portable. However, the fact that linkage to other
languages occurs is a general concept that can and ought to be

supported by a language intended to be used in multiJanguage
environments. In practice, one can assume that at least C and
Fortran will be available on most systems where C++ is used and
that a large group of users will need to call functions written in
these languages. Consequently, one would expect C++ implemen-
tations to support C and Fortran linkage.

The fact that C (like most other languages) does not provide a

concept of linkage to program fragments written in other
languages led to the absence of an explicit linkage mechanism in
C++ and to the problems of link safety and overloading.

9.4 Special Linkage Blocks

Another approach would be to introduce a new keyword, say

Iinkase, and use it to specify both the start and the end of a link-
age block:

I inkage(rrCrr) '
doubte sqrt(doubte);
Iinkage(rrrr);

l/ sqrt(doubl.e) has C Iinkage

This avoids introducing yet another meaning for {}, allows
setting and restoring of linkage to be two separate operations,
allows all linkage directives to be found by simple pattern match-
ing in a line oriented editor, and allows all linkage directives to be

suppressed by a single macro

#define Iinkage(a)

The problem with this seems to be that it tempts people to think
of as linkage as a compiler "mode" that can be switched on and
off at random times and doesn't obey block structure. For
example:

I inkage(rrCrr) '
doubLe sqrt(doubte);

398 Bjarne Stroustrup

// sqrt(doubte) has C Linkage

f() {
extern g();
Iinkage(11");
extern h();

)

// S() has C Iinkage

/ I h() has C++ [inkage

It also becomes hard to convince people that linkage specifications
come in pairs and can be nested.

The same approach, with the same educational problems, can

be tried without introducing a new keyword:

extern rrCrr;

doubte sqrt(doubte),'
extern lt rr ;

// sqrt(doubLe) has C Iinkage

Note that whatever syntax was chosen, linkage specifications were

intended to obey block structure to flt cleanly into the language.

In particular, if linkage "blocks" and ordinary blocks were not
obliged to nest, the job of writers of tools manipulating C++

source text, such as a C++ incremental compilation environment,
would be needlessly complicated.

9.5 Special Header File Names

The impact of linkage issues on the C++ language would appear to
be minimized if the distinction between functions with C linkage
and functions with C++ linkage was done not in the language itself
but in "the environment."2 For example, it was suggested that
one might decide that functions declared in header flles with the
. h suffix should be given C linkage and functions declared in
header files with the . tt suffix should be given C++ linkage.
Naturally, the reduction in complexity would only be apparent
because the same disctinction between C and C++ linkage would
still have to be made by the programmer and handled by the
compiler.

The fundamental problem with this scheme is that the mean-
ing of a program becomes dependent on the way the program is

2. This section was added since the USENIX C++ proceedings version of this paper.
The idea was among the ones originally considered, but when I wrote this paper I
did not consider it necessary to explain why it.was bad.

Type-safe Linkage for C++ 399

stored and cannot be determined simply from the source text of
the program itself.

There are, and hopefully there will continue to be, many more
environments in which 'C++ is used than there are dialects of the
C++ language. Relying on header files names or other environ-
ment conventions will therefore affect the portability of C++ code,
the portability of tools operating on C++ programs, and the effort
needed to understand C++ programs. In particular, every tool
working with C++ source text (including the compiler) would need
access to the source file names and have to know about the (prob-
ably non-standardized) header file conventions.

Relying on header file names also makes it infeasible to defrne
all the versions of an overloaded function in a single header file: If
one of the set of overloaded functions should have C linkage it
would have to be defined in a separate header from the rest.

10. Conclusions

The use of function name encodings involving type signatures pro-
vides a significant improvement in link safety compared to C and
earlier C++ implementations. It enables the (eventual) abolition
of the redundant keyword over Ioad and allows libraries to be
combined more freely than before. The use of linkage
specifications enables relatively painless linkage to C and eventu-
ally to other language as well. The scheme described here appears
to be better than any alternative we have been able to devise.

Acknowledgements

The new linkage and overloading scheme was essentially a joint
efort of Andrew Koenig, Doug Mcllroy, Jerry Schwarz, Jonathan
Shopiro, and me. Brian Kernighan made many useful comments.
The name encoding scheme is based on a proposal by Stan Lipp-
man and Steve Dewhurst with input from Andrew Koenig and
me. Steve Dewhurst, Margaret Ellis, Georges Gonthier, Bill Hop-
kins, Jim Howard, Mike Mowbray, Tim O'Konski, and Roger
Scott also made valuable comments on earlier versions on this
paper.

400 Bjarne Stroustrup

Appendix A:
The Function Name
Encoding Scheme

The (revised) C++ function name encoding scheme was originally
designed primarily to allow the function and class names to be

reliably extracted from encoded class member names. It was then
modifred for use lor all C++ functions and to ensure that rela-
tively short encodings (less than 3l characters) could be achieved
reliably for systems with limitations on the length of identifrers
seen by the linker. The description here is just intended to give

an idea of the technique used, not as a guide for implementers.
The basic approach is to append a function's signature to the

function name. The separator -- is used so a decoder could be

confused by a name that contained -- except as an initial
sequence, so don't use names such as a--b--c in a C++ program
if you like your debugger and other tools to be able to decompose

the generated names.
The encoding scheme is designed so that it it easy to deter-

mine

. if a name is an encoded name;

. what (unencoded) name the user wrote;

. what class (if any) the function is a member of;

. what are the types of the function arguments.

The basic types are encoded as

void v
char c
short s
int i
long L

ftoat f
doubte d

:o:n.oo'ot" :

A global function name is encoded by appending --r followed
by the signature so that f(int,char,doubte) becomes f--Ficd.
Since f () is equivalent to f (void) it becomes f--Fv.

Type-safe Linkage for C++ 401

Names of classes are encoded as the length of the name fol-
lowed by the name itself to avoid terminators. For example,
x::f () becomes f--1xFv and rec::update(int) becomes
update--3recF i.

Type modifiers are encoded as

unsigned U

const C

votati Ie V

signed S

so f (unsisned) becomes f--FUi. [f more than one modifier is

used they will appear in alphabetical order so f (const sisned
char) becomes f --FCSc.

The standard modifiers are encoded as

pointer * P

reference & R

array t 1 0l A1 0-
function () F

ptr to member S::* M1S

So f(char*) becomes f--FPc and printf(const char* ...)
becomes pr i ntf --FPCce.

Function return types are encoded for arguments of type
pointer to function. The return type appears after the argument
types preceded by a single underscore; for example,
f (int (*)(char*)) becomes f--FPFPc-i. The return type is not
encoded except for pointer to argument types (see $5).

To shorten encodings repeated types in an argument list are
not repeated in full; rather, a reference to the first occurrence of
the type in the argument list is used. For example:

f(compIex,comptex)i // f--FTconptexTl
// the second argument is
/ / oÍ the same type as argument 1

f(record,record,record,necord)i // f--FórecordN3l
// the 3 arguments 2, 3, and 4 are
/ / of the same type as argument 1

A slightly different encoding is used on systems without case

distinction in linker names. On systems where the linker imposes
a restriction on the length of identifiers, the last two characters in
the longest legal name are replaced with a hash code for the

402 Bjarne Stroustrup

remaining characters. For example, if a 45 character name is gen-
erated on a system with a 31 character limit, the last 16 characters
are replaced by a 2 charactq hash code yielding a 31 character
name.

Naturally, the encoding of signatures into identifrer of limited
length cannot be perfect since information is destroyed. However,
experience shows that even truncation at 3l characters for the old
and less dense encoding was sufficient to generate distinct names
in real programs. Furthermore, one can often rely on the linker to
detect accidental name clashes caused by the hash coding. The
chance of an undetected error is orders of magnitude less than the
occurrence of known problems such as C programmers acciden-
tally choosing identical names for different objects in such a way
that the problem isn't detected by the compiler or the linker.

lsubmitted Nov. 4, 1988; accepted Dec. 12, 1988)

Type-safe Linkage for C++ 403

