
Hot Crap!

Eddie Kohler, UCLA

HotCRP, a web-based conference submission and review

package designed for flexibility and ease of use during

reviewing, was initially written in summer 2006 as the

submission system for HotNets V, which I co-chaired

with Greg Minshall. It currently consists of about 20,000

lines of PHP plus 500 lines of Javascript, 1200 lines

of CSS, and some others, and has been used for two

SIGCOMMs, two USENIX Annual Technical Confer-

ences, NSDI, ISCA, SOSP, and others. This paper dis-

cusses its design principles (and how they differ from

other systems), my experiences with ongoing develop-

ment and with anonymity, some interesting bugs, and

general thoughts on conference review.

Heartfelt thanks to the generous Dirk Grunwald, author

of HotCRP’s ancestor CRP. Without CRP, HotCRP would

not exist (although since essentially all CRP code has

been replaced, any bugs are mine).

Design principles Two principles guided HotCRP’s

UI: reduce modes and prefer search. These principles

make systems sense as well as UI sense and any review

package would be improved by following them.

First, reduce modes. The terminology comes from

graphical user interfaces. A UI “mode” constrains the ac-

tions a user may perform; in the most restrictive modes,

such as those induced by error dialog boxes, a user might

have only one option (“Click OK to continue”). A mod-

eless UI, in contrast, avoids constraining the user: all

options are always available. Modeless UIs give users

more freedom to design their own workflows, and even

early Macintosh user interface guidelines recommended

minimizing modes (specifically, modal dialog boxes). For

instance, consider how browsers have evolved to report

DNS errors and the like. Previously, a modal dialog re-

ported the error; now, error information is displayed mod-

elessly in the browser window itself.

Much of my dissatisfaction with other conference re-

view systems arose from violations of this principle. In

CRP, for example, a paper’s “PC member view” for a pa-

per doesn’t normally display reviews, while the “reviewer

view” doesn’t display abstracts. Similar issues beset

START (www.softconf.com), Linklings’s RM 3.2 (www.

linklings.com), and EasyChair (www.easychair.org). For

instance, EasyChair users switch between “roles,” such

as “PC member,” “reviewer,” or “author,” getting very

different views of paper information in each case. I’ve

even served on committees on which the easiest way to

use the conference system was to edit URLs. HotCRP, in

Figure 1: Maybe a blinking arrow would help.

contrast, aims to display all accessible paper information

on a single “paper view” page. This page shows each

viewer exactly the information the viewer is allowed to

see, taking conflicts of interest, author state, and PC status

into account.

Modelessness improves code structure too. The more

ways there are to view a paper, the more code must be

checked or updated when system functionality changes,

and the more potential channels there are for informa-

tion leaks or bugs. Inevitably some views will be for-

gotten. HotCRP aims to implement all paper views and

paper viewing policies once each. This makes develop-

ment harder in the short term—precisely expressing a

policy is surprisingly difficult—but hopefully more con-

sistent in the long term. In the end, HotCRP has three

pages per paper, for paper viewing and editing, review

viewing and editing, and comment viewing and editing.

Where CRP ships with 119 user-visible pages, HotCRP

currently ships with 26, and HotCRP probably has more

features. Dynamic HTML streamlines the UI while keep-

ing all information immediately accessible; for instance,

on review pages, abstracts are collapsed by default. A

single combined page might be an improvement—some

users don’t notice the tabs that navigate among pages

(fig. 1)—but the combination seems too complex.

HotCRP reduces modes even to the extent of refus-

ing to support certain conference policies. CRP, among

other systems, requires reviewers to “finalize” their re-

views. A review in “finalized” mode cannot be changed.

This supposedly ensures review independence, since a

reviewer cannot see other reviews until her own review is

frozen. This is nasty. Fixing a single typo in a review re-

quires interactions with the chair. Reviewers cannot learn

from each other. Although groupthink is worth avoid-

ing, finalization prevents more benign interactions, such

as sharpening arguments when reviewers disagree. Every

CRP conference I’d been involved with had specifically

encouraged groupthink by unfinalizing all reviews after

the PC meeting, the intention being for outliers to explain

changes of heart inspired by PC discussion! Finally, the

whole policy seems unnecessary: once a review is writ-

ten, how many busy PC members will actually rewrite the

1

review? Those members that would rewrite their review

for the wrong reasons could probably subvert the process

in some other way. HotCRP hides other reviews until a

reviewer enters her own review, but allows arbitrary edits

thereafter. PC members should be trusted by default.

The second UI principle is to prefer search. Many PC

member and chair operations reduce to searching the cur-

rent paper collection. In HotCRP all paper lists are formed

by a common search library. Search is smart: entering a

paper number takes you directly to that paper; keywords

like “au:,” “tag:,” and “review:” select specific fields. This

is great for users, although care is required to ensure

search does not expose inappropriate information.

A secondary design principle was to implement mech-

anisms rather than policies. This idea can be abused [4],

but it works well for user interfaces. For contrast, con-

sider the Continue system, which “implements Oscar

Nierstrasz’s ‘Identify the Champion’ pattern for program

committees” [6]. This imposes reviewing scales of A–D

for championability, a form of overall rating, and X–Z

for expertise; Continue further color-codes the scores,

putting “the most visually striking colors . . . where there

is most need for discussion due to the greatest variance

of opinion” [6]. These scales are useful and concise—the

programming language community has largely settled on

them—but still just one policy among many. HotCRP can

implement this and other policies, and the advantages of

color coding are achieved in more general ways. The

best example is the paper tagging system, which lets PC

members and chairs create and manage arbitrary paper

sets and orders.

Other conference review packages are based on their

own principles, some of which lead to interesting alterna-

tives. For instance, START’s author interface is designed

to simplify submission, with the goal of attracting new

submitters: “[Registration procedures create] an unnec-

essary ‘barrier of entry’ to the conference. As a ‘regular

participant’ in conferences, you may find it hard to believe

that this kind of thing makes a difference. However, after

five years of experience with START, we have discov-

ered that it does make a small difference in the number

of submissions received. Simply put, if a potential author

can click directly to your submission page, he/she is more

likely to submit to your conference.” [9] Whether or not

systems conferences need more submissions, START’s

one-page, directly-accessible submission form is cleaner

and simpler than HotCRP’s process, which includes an

email validation step. The START “passcode” system for

submission updates is particularly attractive: each paper

is assigned a random passcode, and anyone who knows

the passcode can edit the paper or view reviews. Un-

fortunately I have not found START’s review process as

simple, clean, or principle-based.

Probably the most interesting alternate review package

Figure 2: Quick links between papers.

is Andrei Voronkov’s EasyChair (www.easychair.org),

which is popular and usually lightning fast. One of its ap-

parent development principles is reducing the information

available on any one page. The resulting UI often looks

clean and affords fewer opportunities for bugs, but makes

it difficult to navigate from paper to paper. “Notes” let

reviewers enter private thoughts into a per-paper scratch

area, useful while preparing a review. The “events” sub-

system is particularly nice. All reviews and comments

are sorted and displayed by date, facilitating review con-

versations. PC members configure a set of papers called

the “watchlist” (by default the PC member’s review as-

signment); they receive email when reviews or comments

for the watchlist change, and the system exposes a web

page listing watchlist events in reverse chronological or-

der. HotCRP would benefit from these features. While

EasyChair would benefit from, for example, HotCRP’s

powerful search facility and consistently clean visuals,

the “reduce modes” principle, which argues that most or

all paper information should be accessible on every pa-

per page, directly conflicts with EasyChair’s minimal UI

design.

Ongoing development Minimal user interfaces, such

as EasyChair’s, can be relatively simple to implement, but

user expectations also stay simple—a perhaps unexpected

advantage. In contrast, HotCRP’s more advanced features

often inspire improvement requests. For example, links

on paper pages point to the previous and next papers in

a list (fig. 2), letting users quickly page through a list in

order. This is a mechanism, not a policy: any search list

can be a source of quick links. For simplicity, each user

initially had a single current list, but this meant searching

for another paper in a separate tab or window lost the

current list state. Now many lists are kept per session, and

links between papers must explicitly include the intended

list.

Surprisingly many users have asked to limit HotCRP’s

functionality or strengthen its treatment of conflicts of

interest. At an architecture conference, there were com-

plaints that PC members could read papers they were not

assigned to review. (What does program committee mem-

bership mean if not “can read papers submitted to con-

ference”?) Chairs themselves are not always comfortable

with their ability to view or modify reviews for any paper,

including conflicts. (HotCRP reports conflicts and hides

information by default, but chairs and admins can explic-

itly override their conflicts.) There have been requests for

doling out administrative privilege paper by paper. Some

2

PC members have even complained that they were able to

modify their own reviews after submitting them. There’s

a fundamental difference here in approaches to managing

conflicts of interest. There’s no way to constrain chairs,

reviewers, or authors to behave strictly correctly. Most

constraints seem to limit useful behavior, such as review

editing, collecting additional reviews from interested PC

members, or system administration, and worse, locking

down the process seems to make PC members and au-

thors more suspicious, poisoning the atmosphere. The

most serious misbehavior occurs openly in reviews and

the program committee meeting anyway: PC members

try to bully the group into swallowing their opinions,

take joy in killing work based on secondary complaints,

skim, farm out reviews without reading the papers, write

reviews with malice, and use their debating skills skew

the program. I think these problems should be addressed

not through constraints, but through openness: when mis-

behavior is exposed to the PC, it might be correctable in

the long term. (Several other WOWCS submissions think

along these lines.) So far HotCRP is willing to discourage

misbehavior only as far as flexibility can be preserved.

HotCRP does not support CRP’s paper grading phase,

where all PC members enter “grade” score for each paper

based mostly on its reviews. I didn’t think this was worth

the burden—in my experience, PCs generally skipped

the step—and eliminating review “finalization” captures

some of its benefits. However, Dirk Grunwald, CRP’s

author, considers paper grading one of CRP’s more im-

portant features: “[a]s a community, we kept saying that

ISCA (and MICRO etc.) were the journal equivalent

places to do research, but our review standards were sig-

nificantly lower than that of journals. Inserting a rebuttal

mechanism was the first step towards improving that pro-

cess. The others, were the ‘grading’phase and the empha-

sis on pre-meeting deliberation. . . .” [5] Perhaps a paper

ranking [3] would be a good replacement for the paper

grading phase; reviewers might rank the papers they re-

viewed or, as in CRP, every PC member might rank all

submitted papers.

HotCRP also does not support CRP’s reviews of re-

viewers, where paper authors can rank reviews on how

helpful they were. So far no conference has been inter-

ested, although several WOWCS submissions suggest a

similar feature. Allowing reviewers to review other re-

views might be the right tweak on this feature.

Web development is fantastic, but (a cheap metaphor

for systems research?) the sheer number of technologies

involved makes it difficult to achieve the feeling of perma-

nence and solidity of a good Unix tool. There’s too many

chances to go wrong. For instance, which header should

be used to make a page uncacheable: “Cache-Control: no-

cache,” an “Expires:” with a date in the past, or both? The

answer is “Expires”: “Cache-Control” forces browsers to

reload the page when the Back button is pressed, losing

values entered in forms, such as review preferences for a

hundred papers. (Sorry, Andrew Myers.) Another imple-

mentation day was lost figuring out how to fit non-ASCII

characters into mail subject lines. And don’t talk to me

about databases.

CRP was hosted on Sourceforge. Dirk Grunwald

“found that the ‘open source’ model under sourceforge

was problematic (because other people broke things & I

needed to fix them).” [5] The main benefit of open source

for HotCRP has been the prior availability of CRP, a

huge benefit. I’ve gotten few useful patches, but many

more useful problem reports and feature requests.

Anonymity HotCRP’s most underappreciated feature

is, I think, its support for optional anonymity. This triv-

ially solves the issue of double- vs. single-blind review:

authors fearful of bias, misunderstanding, or long-term

consequences can submit anonymously; most authors

will choose not to. Selective anonymity was the excuse

for building HotCRP in the first place. Greg Minshall

and I were, as chairs, skeptical of the benefits of double-

and single-blind review. In other program committees I

had seen some pretty low-quality reviews—a handful of

sentences, really nothing more than a score. Procrasti-

nation had led me to turn in suboptimal reviews of my

own. I felt that openness would discourage drive-by re-

viewing. However, since imposing openness on a whole

PC would be unfair, the system should allow, but not re-

quire, reviewers to sign their reviews. Any system lets

a reviewer put their name into the body of their review,

but an explicit “anonymity” checkbox would encourage

reviewers to consider their choice. For consistency, sub-

mitters should also be able to choose whether to submit

their papers anonymously. This would also let us run an

experiment on the consequences of anonymity. Since ex-

isting review packages enforced double- or single-blind

review for all submissions, to support selective anonymity

we’d have to do something ourselves.

Just over one-fourth of the 114 HotNets submissions

were anonymous—fewer than we expected. Only 6.9%

of anonymous submissions were accepted, compared to

24.7% of non-anonymous submissions. This is also re-

flected in the overall merit scores, where anonymous

submissions did substantially worse. Rejected anony-

mous submissions came from top worldwide industrial

research labs and top US universities, among other places.

Although it is possible that our reviewers were biased

against anonymous papers, I believe the anonymous

submissions were simply lower quality. For instance,

some anonymous submissions from well-known authors

seemed constructed at the last minute. Submitters seem

less willing to put their names on a less-than-top-quality

submission. This does not argue for universal anonymity.

3

Figure 3: Painful.

Although both Greg Minshall and I had planned to

sign our reviews, in the end, only Greg and one of our

external reviewers did so. I was not sure that my own re-

views were sufficiently careful, high quality, and genteel.

This seems justified since one of them was recently criti-

cized as emotionally immature [8]. I have signed reviews

for other conferences since, especially USENIX (which

seems to have a nicely down-to-earth submitter popula-

tion), and the result has been useful engagement with the

authors. However, as I am exposed secondhand to mis-

placed author anger (“Did you write one of the reviews

that killed my paper?”) and more-or-less petty academic

squabbles, I feel more reluctant to sign reviews, not less.

There should be positive incentives to sign reviews.

Information exposure HotCRP has had a humbling

number of bugs that inappropriately exposed paper in-

formation. The most interesting was the first. In “email

debug” mode, the system does not send email to users;

rather, it displays the constructed email in the response

HTML page. This is usually perfectly safe—most emails

are of the form “Dear author, this mail confirms that you

just changed your paper.” However, like many web sys-

tems, an “I forgot my password” login option will send

the named user an email containing their password. In

email debug mode, any user could use this option to

find out any other user’s password—for instance, mine

(fig. 3). A user reported this bug immediately before Hot-

Nets V’s reviews were released. My appreciation for the

report was tempered: the user (actually, one of their stu-

dents) had used my account in the meantime to download

several of the accepted papers. For me, this bug demon-

strates in microcosm all the claims I and others have

made about the difficulty of secure programming. More

return (($this->privChair && $forceShow)
|| ($prow->timeSubmitted > 0

&& (($prow->conflictType >= CONFLICT_AUTHOR
&& $conf->timeAuthorViewReviews() && $rrowSubmitted
&& (!$this->reviewsOutstanding || !$this->isReviewer))
|| ($this->privChair && $prow->conflictType == 0)
|| ($this->isPC

&& $prow->conflictType == 0 && $rrowSubmitted
&& ($conf->timePCViewAllReviews()

|| defval($prow, "myReviewSubmitted") > 0))
|| (defval($prow, "myReviewType") > 0

&& $prow->conflictType == 0 && $rrowSubmitted
&& defval($prow, "myReviewSubmitted") > 0
&& ($this->isPC

|| $conf->settings["extrev_view"] >= 1))
|| (defval($prow, "myReviewType") == REVIEW_SECONDARY

&& $prow->conflictType == 0 && $rrowSubmitted
&& $prow->myReviewNeedsSubmit === null)

|| ($rrow && $rrow->paperId == $prow->paperId
&& $rrow->contactId == $this->contactId))));

Figure 4: Can this user view a paper’s reviews?

security-minded programmers wouldn’t have perpetrated

this bug, but they might not have written the system in

the first place: the mindset required to write new features

seriously differs from the mindset required to enumerate

how combinations of features can be abused. I wish in-

formation flow control systems were usable in practice.

A flexible information flow control layer would have pre-

vented all of HotCRP’s information exposure bugs. It’s

not clear, however, that any extant information flow con-

trol system could handle HotCRP’s policies; see fig. 4.

Later information flow exposure bugs could have been

prevented by reducing the number of system modes—for

instance, one bug affected fully anonymous conferences

(HotNets was optionally anonymous), another affected

rebuttals (HotNets didn’t have a rebuttal period), and an-

other affected the textual format for downloaded reviews

(the web format was fine). At this point I think all serious

information flow exposure bugs are fixed, but if you find

one, I will not pay you $2.56.

Review form design I close with more general thoughts

on the review process, in several sections.

No commonly reviewed quality is as subjective as ex-

citement. The difference between “exciting but flawed”

and “flawed but flawed” lies mostly in the authors’ tal-

ent for writing and spin. It is not clear whether this tal-

ent should be prized. “Exciting and not flawed” papers,

though rare, are generally liked and need no special help.

“Novelty” scores are similarly subjective; I’m not sure

it captures anything useful. Although perceptions of re-

viewer expertise are extremely variable, the score is still

useful enough to keep.

Review scores should have five options at most. For

overall merit, the four-value scale suggested by “Identify

the Champion” [7] works well.

The best way to keep reviewing viable in the face of

increasing submission load is to reduce the burden on

reviewers. This means reducing the number of fields in

4

the review form (do you really need “1–3 sentences on

why the paper should be accepted” and “1–3 sentences

on why the paper should be rejected”?) and introducing

a community standard that bad papers get brief reviews.

Although this would make it more difficult for authors

to improve, perhaps publishing all reviews for accepted

papers would help those who wanted to be helped. It is

not the community’s job to help the others, such as those

who appear never to have read a research paper.

A minimal but complete form, worth considering:

Overall merit (4 options), Reviewer expertise, Comments

to author, Comments to PC. The next fields to add would

be Reasons to accept and Reasons to reject.

Reviewing goals Reviews should grapple with a paper,

and reviews that go out of their way to be nice are often

superficial. Tone is a secondary concern. Your job as a

reviewer is to explain your opinion and your vote to the

authors. Sugarcoating does no one any favors. The skill

of how to learn from a review is more important than the

skill of how to write a review. (So why the recent boomlet

of reviewing advice and recommendations?)

It is sometimes necessary and appropriate to punish an

author’s paper n for a flaw of its predecessors.

I like reading papers that contain tricks or ideas I could

use in my own systems. Authors should describe not why

their system is good, but why its ideas are worth reusing.

This perspective can be criticized as incremental—“big

advances” are not immediately usable—but progress is

incremental. Conferences that lose track of usefulness

quickly become academic, in the pejorative sense.

The purpose of a program committee meeting is for

the people who read the paper to generate consensus in

the people who didn’t read the paper. If the people who

didn’t read the paper are expected to stay quiet, then there

should be no program committee meeting.

Conferences in general Conference review produces

random results for medium-quality papers. There’s not

much difference in quality between the lowest-ranked

accepted papers and the highest-ranked rejected papers.

There is no way to control this: the best papers published

in a conference are much better than the second tier, but

while the first tier is too small to stand on its own, the

second tier is too large to treat uniformly. Additional re-

views do not greatly affect the randomness of the result.

Consider the anecdote of “[o]ne particularly controver-

sial submission” that “received nine reviews before being

accepted” [1]. Swapping this for a comparable rejected

paper might not change either program quality or the total

amount of worldwide author happiness (it is impossible

to know without understanding the controversy). Addi-

tional reviews should be used, if at all, to improve the

reviews given to the authors, not to improve the set of

accepted papers. If program chairs believe reviewers are

wrong, let them accept papers without program commit-

tee consensus (a power too little used).

Many parts of the conference review cycle, including

shepherding and rebuttals, don’t greatly change the qual-

ity of the program. Rebuttals help authors blow off steam,

and shepherding is occasionally useful, but a model where

the shepherd is available to answer the authors’ questions

matches reality better than a model where the shepherd

“approves” the final version.

A 14-page conference paper is too long. The limit en-

courages running on at the mouth, particularly in the ini-

tial motivational sections—papers that go for five pages

without describing a technical idea are no longer uncom-

mon. In many of the sciences authors must describe com-

plex ideas in short papers; we should set the same goal.

Conference papers should not be longer. Even 14-page

papers cannot be described in 25 minutes; longer ideas

demand journal presentation. I would like to review ex-

tended abstracts, but the extended abstract must contain

fully described technical ideas as well as motivation.

The proliferation of conferences makes journals in-

creasingly attractive.

Some of the profit from running a conference, if any,

could be used to hire a professional editor. ;login: is better

edited than any conference, which is too bad.

Sheridan, ACM’s print shop, pointlessly enforces early

deadlines on accepted authors. ACM’s conference styles

are ugly and inconsistent (unlike its journal styles) but

Sheridan pointlessly enforces them too.

Future work The following ideas from other WOWCS

submissions are attractive enough for me to want to imple-

ment them: ranking rather than (or in addition to) rating,

public distribution of (anonymous) reviews, public distri-

bution of all submissions (a great idea), publication of pa-

per rankings, and reviews of reviewers. Specific thoughts

on how these features should work would be welcome.

The following ideas are not as attractive, because either

they would constrain flexibility or they disagree with my

taste: constraining reviewers’ use of certain scores, con-

straining author feedback, and privately passing submis-

sions and reviews from conference to conference (public

distribution is better). The effectiveness of peer pressure

in improving process quality may have been exagger-

ated [2]; peer pressure can lower standards as easily as

raise them, and arguably it has.

Conclusion My favorite HotCRP compliment came

from Adnan Darwiche, who said something like “I like

your system, it—moves with you.” That’s what I wanted.

Thanks to Dirk Grunwald, Greg Minshall, Anja Feld-

mann, Bernhard Ager, Jeff Chase, Frans Kaashoek, Jim

Larus, Matthew Frank, Stefan Savage, Geoff Voelker,

Jon Crowcroft, Akos Ledeczi, and anyone who has used

HotCRP.

5

References

[1] T. Anderson. Towards a model of computer systems re-

search. In Proc. Workshop on Organizing Workshops, Con-

ferences, and Symposia for Computer Systems, San Fran-

cisco, Apr. 2008.

[2] J. Crowcroft, S. Keshav, and N. McKeown. Scaling In-

ternet research publication processes to Internet scale. In

Proc. Workshop on Organizing Workshops, Conferences,

and Symposia for Computer Systems, San Francisco, Apr.

2008.

[3] J. R. Douceur. Paper rating vs. paper ranking. In Proc.

Workshop on Organizing Workshops, Conferences, and

Symposia for Computer Systems, San Francisco, Apr. 2008.

[4] D. R. Engler, M. F. Kaashoek, and J. O’Toole. Exokernel:

An operating system architecture for application-level re-

source management. In Proc. 15th ACM Symposium on Op-

erating Systems Principles, pages 251–266, Copper Moun-

tain Resort, Colorado, Dec. 1995.

[5] D. Grunwald. Personal communication, 7 Feb. 2008.

[6] S. Krishnamurthi. The Continue server (or, how I admin-

istered PADL 2002 and 2003). In Proc. 2003 Symposium

on the Practical Aspects of Declarative Languages, New

Orleans, Jan. 2003.

[7] O. Nierstrasz. Identify the champion: An organisational

pattern language for programme committees. In N. Harri-

son, B. Foote, and H. Rohnert, editors, Pattern Languages

of Program Design 4, pages 539–556. Addison Wesley,

2000. URL http://www.iam.unibe.ch/∼oscar/Champion/.

[8] T. Roscoe. Writing reviews for systems conferences,

Mar. 2007. URL http://people.inf.ethz.ch/troscoe/pubs/

review-writing.pdf.

[9] Softconf.com. Softconf.com – software for conferences

– author view. URL http://www.softconf.com/index.php?

option=com content&task=view&id=17&It%emid=46.

6

