
Implementing the Emulab-PlanetLab Portal:
Experience and Lessons Learned

Kirk Webb Mike Hibler Robert Ricci Austin Clements∗ Jay Lepreau

School of Computing, University of Utah

Abstract

Emulab’s PlanetLab portal, hereafter known as the “por-
tal,” provides access to the large-scale, geographically
distributed resources of the PlanetLab testbed using the
integrated Emulab interface. The portal provides sophis-
ticated resource allocation, configuration, and manage-
ment services, while hiding from the user the underlying
low-level detail and complexity of distributed resource
provisioning and failure management. Moreover, it does
so while minimizing the impact on the underlying Plan-
etLab system.

In the process of creating this portal and tracking Plan-
etLab’s evolving third-party service API, we identified
several key issues in the design of such platforms and the
management systems built on top of them. This paper
uses our portal as a basis for discussing these issues, and
presents the lessons we have learned during its design
and implementation.

1 Introduction

As the Emulab testbed [11] grows and evolves, much of
its focus is on resource diversity and increasing experi-
mental scale. Thus, we took serious note of the emer-
gence of PlanetLab [2] as it offered the research com-
munity a significant set of new testbed resources. We
wanted to both offer these new resources to existing Em-
ulab users, and provide the PlanetLab community with
a rich and powerful experiment setup and management
interface.

One of PlanetLab’s roles is to provide a substrate on
which the PlanetLab user community can build multiple
competinginfrastructure servicesto manage and control
PlanetLab resources. At its base, PlanetLab exports in-
terfaces for creatingslicesand slivers. A sliver repre-
sents resources assigned to a user on a particular Planet-
Lab node, and a slice is a collection of slivers, spanning
many or all PlanetLab nodes. Management systems build
on top of these abstractions. The PlanetLab designers
define a taxonomy of infrastructure services that may be
constructed for PlanetLab [5]. Some tools have already

∗Now at MIT; work done while at the University of Utah.

emerged that provide a subset of these features, such
as the PlanetLab-providedDynamic Slice Maintenance
Tools, the Application Manager[7], and SWORD[6].
The Emulab portal, in production since September 2003,
is the first such service we know of that implements
all parts of the taxonomy, and, in fact, adds some new
ones. We give a brief overview of the implementation in
Section 2.

We faced numerous challenges as we developed the
portal, and we present here the lessons we learned as we
dealt with them. From these lessons, we present recom-
mendations for the designers and implementors of both
the underlying infrastructure and value-added services
on top of it. We believe that these lessons are applica-
ble outside the PlanetLab context, in the broader scope
of federating complex distributed systems such as these
testbeds.

These challenges and their lessons are presented in
Section 3. Reconciling experiment modelsdescribes
the difficulty of preserving a model of short experiment
life-cycles on top of APIs designed for longer cycles.
Since both systems have their own idea of what resources
exist, the state they are in, and how they have been al-
located to users,shared state managementis a diffi-
cult challenge that requires proper APIs and information
sharing. The large, complex nature of systems like Em-
ulab and PlanetLab, in conjunction with the potentially
unreliable communication between them over the Inter-
net means that failures are inevitable, and therefore care-
ful failure handling is required. A final, ongoing prob-
lem isworking with interface evolution .

2 Features

In contrast to PlanetLab’s native experimental environ-
ment which is minimalist by design, Emulab provides
an integrated “full-service” interface. Experiments are
setup rapidly (on the order of a few minutes) and reliably,
with the setup and subsequent control provided through
Web, XML-RPC, or script-driven interfaces. Emulab
experiments may be interactive or completely scripted
and may be instantiated immediately or queued for setup
when resources become available.



Emulab Specific

Allocation

Boot

Slice

Software

Upgrades

Resource

Slice
Abstraction

MaintainCreate

Monitor

Health

Account

Update

Control

Slice Sliver

Discovery

Resource

Figure 1: PlanetLab infrastructure service taxonomy adapted
from [5]. Highlighted are services provided by the portal that
are not part of the original taxonomy.

Nodes within an experiment are automatically setup
with multiple user accounts, are pre-loaded with user-
specified software, and start up user applications as
needed. Dynamic control of nodes, and the experiment
as a whole, is provided through an event mechanism. Ac-
tivities such as link control, traffic generation, and pro-
gram execution can be scheduled and synchronized via
events.

All of these features, with the exception of the wide-
area event mechanism which is still under development,
are available in the Emulab-PlanetLab portal.

In the following paragraphs, we present the portal in
terms of the aforementioned PlanetLab taxonomy, shown
in adapted form in Figure 1. For clarity, we use “node”
to refer to PlanetLab physical nodes and “virtual node”
to refer to a node as seen by the Emulab infrastructure:
i.e., a PlanetLab sliver loaded with Emulab software.

Resource discovery.The portal periodically queries
PlanetLab Central (PLC) for a list of valid nodes, using
this list to synchronize the Emulab database with PLC.
Given the set of valid nodes, the portal can determine
which are “live” and thus candidates for allocation to ex-
periments. Liveness determination is accomplished by
periodically instantiating an Emulab virtual node in a
sliver on every PlanetLab physical node, rather than by
relying on PlanetLab metrics or the success of underlying
PlanetLab slice creation primitives. This “end-to-end”
approach significantly reduces the observed failure rate
of experiment setup.

For live nodes, we constantly monitor the available
CPU, memory, disk and network resources to enable
more accurate mapping of user experiments onto avail-
able resources. The monitoring is performed by a single,
distinguished “service” sliver on every PlanetLab node.

Resource allocation.The portal offers three methods
through which users allocate PlanetLab resources.

The most basic method is to manually choose indi-
vidual nodes, as is done with PlanetLab’s own current
interface. This method also gives the user the oppor-
tunity to run their own selection algorithm before sub-
mitting their experiment specification to Emulab. Sec-
ond, node selection can be done in a link-centric fashion.

In this method, the user specifies a set of virtual nodes,
and a set of virtual links between the nodes. Each vir-
tual link can have a bandwidth, latency, and packet loss
rate specified. Emulab then matches, as best it can, these
desired link characteristics to end-to-end characteristics
observed between PlanetLab nodes, gathered from third-
party sensors. The third, and most common method of
node selection is node-centric. In this scheme, users ask
for a set of virtual nodes, with no links between them.
For each virtual node, a type can be specified to restrict
which PlanetLab nodes they may be associated with. For
example, a user can ask for any node in PlanetLab, a node
on a DSL line, or a node connected to Internet2.

Regardless of the resource specification technique
used, the mapping of the desired user resources on to
the available PlanetLab resources is done by Emulab’s
resource mapper,assign [9]. In addition to the crite-
ria specified by the user above,assign also attempts to
spread the requested nodes across sites, and to find nodes
with low CPU and memory loads.

Emulab administrators can enforce admission control
to PlanetLab by modifying system-wide parameters that
determine the minimum per-node resources needed to in-
stantiate any experiment. For example, they can indicate
that only nodes with a load average below two and 10%
of the disk free should be considered for allocation.

Boot(strap) slice. For every virtual node in an ex-
periment, the portal uses a PlanetLab-provided hook to
create a sliver on the appropriate PlanetLab node, load
a standard set of Emulab scripts and tools, and trigger
the standard Emulab “self-configuration” process. This
configuration process sets up user accounts, downloads
and installs user software packages, and fires up a user-
specified experiment startup script to produce a working
Emulab virtual node.

By default, if any of the PlanetLab or Emulab setup
steps fail, the experiment setup fails. However, since re-
liable setup is not always possible or desirable in a true
Internet environment, the user may specify that exper-
iment setup succeed even if some virtual nodes fail to
setup. For each virtual node that fails to setup, the Plan-
etLab node hosting that node is marked as no longer live
and thus removed as a candidate for future experiments
until the resource discovery mechanism determines that
it is once again responsive.

Monitor health. One of the standard Emulab per-
node services is a watchdog process that periodically
sends a status message to Emulab Central. These mes-
sages are inputs to state machines tracking the “health”
of every experiment. Failure to receive a status message
from a virtual node for an extended period of time causes
that node to be marked as “down.” When the virtual node
representing the service sliver on a PlanetLab node tran-
sitions to the down state, it is treated as if it had failed



during initial setup, eventually causing instantiation to
be attempted again. This is covered in more detail in
Section 3. All other virtual nodes are associated with
user experiments and currently, the portal does nothing
more than record their status. Section 4 suggests a more
aggressive response to failed experiment nodes.

Software upgrades and account updates.The reply
to Emulab watchdog status message includes an indica-
tion as to whether a virtual node has outstanding account
or software updates to perform. If an update is required,
the watchdog contacts Emulab Central, downloads and
installs new software, and updates accounts and ssh keys.
Nodes check in for updates on the order of a few minutes.

Slice and sliver control. The portal provides an ad-
ditional class of infrastructure services for dynamic con-
trol of slices (experiments) and slivers (virtual nodes).
Currently this consists of being able to reboot individual
slivers or an entire slice. Once deployed on PlanetLab
nodes, the Emulab event mechanism will enable use of
existing Emulab event agents to control traffic genera-
tion, program execution, and link testing.

3 Integration Challenges

Our work in developing the portal included handling
a number of integration challenges. The underlying
philosophies guiding the use models of both testbeds
created contention in the setup phase. In addition, the
distributed and shared state across the two loosely cou-
pled systems often lost coherency. Finally, failure modes
were common obstacles requiring continual tuning and
attention. While working to address these issues, we
made some observations on how large distributed sys-
tems could be adapted to ease integration.

Reconciling Experiment Models. Integrating Em-
ulab’s rapid-cycle experimentation model with Planet-
Lab’s long-running, service-oriented model was non-
trivial. Our goal was to extend support for using Plan-
etLab resources through Emulab while maintaining Em-
ulab’s successful use model. In Emulab’s original cluster
testbed, having local, reliable resources under our physi-
cal and administrative control allowed for very rapid ex-
periment turnaround. When Emulab expanded to man-
age the RON testbed [1] and other distributed nodes, we
faced the issues of unreliable, insecure communication
and loss of physical control. However, the scale of dis-
tributed resources was small and we still maintained con-
trol of the infrastructure software, so preserving a rapid
experiment life cycle was not a major effort.

However, with PlanetLab we must deal with a much
larger set of resources that are externally controlled and
allocate them via a more generic, and evolving, API. The
original dynamic slice API,dslice[4], worked well under
Emulab, allowing the portal to directly coordinate with

individual PlanetLab node managers in a timely man-
ner. The typical sliver instantiation time for a node under
dslicewas under 30 seconds.dslicemainly operated in a
distributed manner, only requiring service integrators to
contact a central server to obtain resource use tokens. All
other communication was direct and synchronous to the
individual node managers.

Along its evolutionary path, PlanetLab transitioned to
a centralized management platform, the PlanetLab Cen-
tral user interface (PLC, or PlanetLab version 2.0). Slice
instantiation via PLC is asynchronous and provides no
callback mechanism, or other explicit means to indicate
completion. Thus, we were faced with trying to fit our
fast, synchronous setup mechanics to the delayed, asyn-
chronous semantics of PLC (which was targeted primar-
ily at long-running services). We used per-sliver instan-
tiation parallelization to hide much of the latency. For
synchronization, we used both per-sliver polling via ssh,
and the InstantiateSliver function that was added later at
our request.

The PlanetLab Central user interface provides a hard
one hour guarantee on sliver creation. However, given
that the typical Emulab experiment lasts about five hours,
we noted that this did not fit our use model, being fully
20% of experiment duration. We discovered that one out-
of-band method for determining that sliver instantiation
had completed earlier was to “poll” the sliver using ssh.
However, we observed thatpolling nodes for readiness
is unnecessarily wasteful of resources.

At our request, PlanetLab added a synchronous instan-
tiation method, InstantiateSliver, to PLC. However, per-
haps because it was not part of the original API design,
it never worked well, proving to be unreliable (a 23%
failure rate on nodes that had recently setup correctly)
and exhibiting highly variable per-node instatiation times
(from one to 15 minutes).

The more recent PLC/NM hybrid interface [8] (Planet-
Lab version 3) system includes a re-architected interface
that exposes a lower level per-node manager, and like
dslice, it does provide the fast, synchronous slice-level
setup semantics that are a much better match for the Em-
ulab system. Within this framework, it is also possible
for a service provider to create a delayed, asynchronous
sliver setup interface, such as the one provided by Plan-
etLab version 2. Therefore,supplying lower level API
primitives allows for a wider range of service models.

Shared State Management.Managing shared state
across Emulab and PlanetLab has been a difficult task,
requiring ongoing refinements. Emulab maintains in-
formation about the resources users have requested and
the environment they have asked to have set up on their
nodes. Additionally, it gets information about available
resources from PlanetLab Central and third-party sen-
sors. Thus, node identity is an important issue, since



there must be a consistent mapping between Emulab’s
and PlanetLab’s notion of which nodes exist and what
their state is. Identity is especially important in the Plan-
etLab context, in which the model is that many important
services are provided by third parties rather than Planet-
Lab itself; each of these third parties must agree on a
common resource identifier if they are to inter-operate.

As Emulab keeps records for all node resources it can
allocate (physical and virtual), we need to keep our Plan-
etLab node records in sync with PlanetLab’s. This is dif-
ficult because PlanetLab is a rapidly growing and chang-
ing platform; nodes are added and removed, and occa-
sionally change identity. Hence, the portal must period-
ically poll PlanetLab for changes. Through this process,
we found that there were no persistent identifiers avail-
able from PlanetLab to reliably distinguish its nodes.
Any of IP, hostname, or internal ID number could and
did change. To handle this, we implemented a matching
heuristic to track changes. We also perform sanity checks
to these changes by hand to ensure correctness. We rec-
ommend that PlanetLabdesignate at least one persistent
identifier to each node, in order to simplify the task of
identifying nodes. While defining the important identity
characteristics of a node — i.e., its “role” — is difficult
and subject to policy decisions, we think a consistent
view and use of this distinguishing information is vital
to service integrators, and therefore it should be pinned
down. Then,a node’s unique identifier should change if
and only if its role does(which will hopefully be an in-
frequent event). In order to make state synchronization
manageable, if a node is given a new identifier, it should
appear from an allocation standpoint to be the same as a
new node; that is, it should start with no resources allo-
cated rather than holding over resource allocations from
its old identity.

Emulab must also maintain state about slice expira-
tion, node membership, and user permissions. Sanity
checks between our lease records and PlanetLab’s were
included in the portal, and the Emulab experiment tear-
down phase was made robust against node and slice dis-
appearance. Of particular note here is our experience
with slice expiration. When the portal went through
dslice, individual node slivers could expire independent
of one another. To reduce overhead, we kept our own
timers for each of these leases; this worked fine in prac-
tice, but was potentially dangerous as it assumed state
synchronization. When we migrated to the PlanetLab
Central user interface, we retained this loosely coupled
synchronization model. After several slices went miss-
ing, due to disagreements between Emulab and Planet-
Lab’s notion of the terms of their leases, we modified
our renewal logic to synchronize with PlanetLab by peri-
odically polling slice state via the PlanetLab Central user
interface. In practice, a third party integrator should not

rely on assumed state synchronization, especially over
long periods of time. Software bugs, and policy or mech-
anism changes can easily invalidate a third party’s infor-
mation.

Resource state change callbacksare one mechanism
that would help keep external service providers apprised
of such changes. Exporting a complete view of the inter-
nal database structures and state machines would signifi-
cantly augment the tools available for external state syn-
chronization. Providing this information in a centralized
fashion is advantageous, and a weakness in the original
dslice model. However, distributed information could
have been made available by publishing to a content dis-
tribution network, or via a peer-to-peer query substrate,
e.g., Sophia [10].

Failure Handling. Given two large distributed sys-
tems such as Emulab and PlanetLab, failures are a fact
of life and have many possible modes. Beyond the is-
sues of large scale integration, both platforms have re-
search aims, and so tend to evolve rapidly. This fact
tends to produce instability in the interfaces. We have
refactored the portal backend to more easily track new
developments in PlanetLab, and have wrapped much of
our remote interaction with robust failure handling mech-
anisms.

The portal backend defines wrapper functions that call
a requested remote API function and handle different
classes of error conditions encountered (continuable, fa-
tal, and retryable). The classification of these errors is
defined in software however; there is no heuristic to de-
termine when to continue or give up. The portal backend
also goes to great lengths to clean up and release all al-
located resources in the event of failure. We also toler-
ate partial setup failure when bringing up an experiment
across a PlanetLab slice. Any resources associated with
nodes that fail to setup properly will be released.

One of the key observations we made in the course
of this work is theneed for end-to-end testing. Experi-
ence has shown that relying on the success of any subset
of constituent PlanetLab or Emulab operations to indi-
cate a node’s fitness for use in an experiment isn’t suffi-
cient; one must perform a complete Emulab virtual node
setup. There are such a large numbers of factors that
can lead to failure, including network connectivity, disk
space, node load, and software bugs, that no partial test
can account for all failure modes. We have structured our
service slice to perform this vital function in addition to
its other duties. When a node fails to setup during ex-
periment initialization, it is sent to a “down node” pool
to await testing. This pool is also where newly discov-
ered nodes first go to be tested for fitness. An Emulab
daemon runs through these nodes in batches, executing a
full setup of the service sliver on each one. Once setup is
successful on a node, it is moved into the free pool where



its resources become available for allocation to experi-
menters. Without this end-to-end testing, users would
endure many more failures as Emulab attempted to setup
their experiments on PlanetLab.

Working with Interface Evolution. A final chal-
lenge stems from the obvious tension between Planet-
Lab’s requirements of “Evolving Architecture” which
promotes evolution of the service-visible API and “Un-
bundled Management” which encourages third-party de-
velopment of services [2]. As the architecture evolves,
backward compatibility should be maintainedso that ex-
isting management systems continue to work. The transi-
tion from the first PlanetLab interface to the second was
abrupt, interrupting the availability and slowing the de-
velopment of the portal. The transition to the third is
occurring while the second is still available, making it
much smoother. We attribute many of the problems we
encountered initially in using PlanetLab Central user in-
terface to the fact that the “native” PlanetLab interface
does not interact with PlanetLab using the same API that
it exports to external integrators.We believe the best way
to ensure that the externally available API is sufficiently
powerful and robust is to use it internally as well.

4 Future Work

We plan to enhance the portal to better support the long-
running service use model on PlanetLab. Currently,
nodes that fail to properly boot at setup time and nodes
that fail after boot time, are lost to the experiment un-
til the experiment is reinstantiated (via a swapout/swapin
sequence or a modify operation). By implementing op-
tional sliver state recovery, which will proactively re-
allocate and restart individual slivers, we can keep ex-
periments fully instantiated. A related feature is an “all
nodes” experiment that will attempt to create and main-
tain a slice encompassing all nodes in PlanetLab, auto-
matically adding new nodes as they appear (and remov-
ing old ones as they disappear).

Other work will include finishing the extension of our
event system for wide-area use. This will enable the
same event-driven experimentation currently available in
the Emulab cluster, including starting and stopping pro-
grams and controlling traffic generators.

We are starting to gather statistics on virtual node life-
time, to get hard numbers on end-to-end reliability.

Finally, we hope to start leveraging other infrastruc-
ture services built atop PlanetLab. These include the
SWORD resource discovery service and distributed de-
ployment mechanisms, such as CoDeploy [3], that will
more efficiently scale up the amount of data we can move
out to the vservers.

5 Conclusion

This paper describes our experience developing the por-
tal, the associated challenges we faced in integrating two
large, independent systems over the past year, and some
of the lessons.

In particular, we have identified several integration
challenges: reconciling different experimental mod-
els, such as rapid cycle, and long-running (service-
oriented); managing state between loosely coupled ser-
vice providers sharing common resources; handling fail-
ure modes in complex systems; and working with evolv-
ing APIs.

We feel that the lessons we learned in the course of
meeting these challenges, as presented in this paper, will
aid us, and hopefully others in future efforts to integrate
large and potentially disparate testbeds.

Acknowledgments

For much implementation and information, we thank
Brent Chun, Steve Muir, Larry Peterson, and Mic Bow-
man, as well as others involved in PlanetLab support.
We thank NSF for their sponsorship under grants ANI–
0082493 and CNS–0335296.

References
[1] D. Andersen, H. Balakrishnan, F. Kaaschoek, and R. Mor-

ris. Resilient Overlay Networks. InProc. of the 18th ACM
Symposium on Operating Systems Principles, pages 131–
145, Banff, Canada, Mar. 2001.

[2] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin,
S. Muir, L. Peterson, T. Roscoe, T. Spalink, and M. Wawr-
zoniak. Operating System Support for Planetary-Scale
Services. InProc. of the First Symposium on Network
Systems Design and Implementation, Mar. 2004.

[3] CoDeploy: A Scalable Deployment Service for Planet-
Lab. http://codeen.cs.princeton.edu/codeploy/.

[4] dslice: A prototype implementation of a dynamic slice
creation service for PlanetLab. http://dslice.planet-lab.
org/.

[5] S. Karlin. An Overview of the PlanetLab Archi-
tecture, Jan. 2004. http://www.planet-lab.org/Talks/
2004-01-27-JointTechs.pdf.

[6] D. Oppenheimer, J. Albrecht, D. Patterson, and A. Vah-
dat. Scalable Wide-Area Resource Discovery. Technical
Report UCB//CSD-04-1334, UC Berkeley, 2004.

[7] PlanetLab Application Manager. http://appmanager.
berkeley.intel-research.net/.

[8] PlanetLab NodeManager API. https://www.planet-lab.
org/Wiki/bin/view/Planetlab/NodeManagerApi.

[9] R. Ricci, C. Alfeld, and J. Lepreau. A Solver for the Net-
work Testbed Mapping Problem.SIGCOMM Computer
Communications Review, 33(2), Apr. 2003.



[10] M. Wawrzoniak, L. Peterson, and T. Roscoe. Sophia: An
Information Plane for Networked Systems. Technical Re-
port PDN–03–014, PlanetLab Consortium, July 2003.

[11] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An In-
tegrated Experimental Environment for Distributed Sys-
tems and Networks. InProc. of the Fifth Symposium
on Operating Systems Design and Implementation, pages
255–270, Boston, MA, Dec. 2002.


