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Abstract

We are building a wide area surrogate computing plat-
form, called WASCo, that allows users to dynamically
locate, allocate, and exploit resources on surrogate com-
puters spread around the Internet. WASCo allows clients
to install and run arbitrary code on surrogates. Uses of
WASCo include offloading energy-intensive operations
from energy-constrained devices, executing bandwidth-
intensive queries near a large data source, creating a dy-
namic resilient overlay network (RON) to route around
internet problems, or instantiating a new web server near
underserved clients in response to a spike in traffic.

While a surrogate infrastructure like WASCo has a
huge number of beneficial uses, the ability to run ar-
bitrary code on surrogates distributed across the inter-
net could make it the perfect platform for spammers,
hackers, content thieves, and other nefarious individu-
als. In this paper, we discuss the network security issues
that must be addressed before wide area surrogate sys-
tems can be safely deployed and present our solutions.
We show how a combination of virtual machine technol-
ogy for local resource controls, network security imple-
mented at the virtual machine monitor level, and a trust
infrastructure can address the key security problems.

1 Introduction

We envision a future where the compute, storage,
and networking resources of myriad cheap network-
connected computers distributed around the world will
be made available to arbitrary clients or devices by a
mix of open p2p sharing and commercial companies.
Users will be able to dynamically locate, allocate, and
exploit these resources on-demand when and where they
are needed. Towards this goal, we are building a wide
area surrogate computing infrastructure, called WASCo,
that allows users to allocate complete virtual servers, in-
cluding root access, on surrogate machines distributed

across the internet. We believe that WASCo will be a
powerful platform for enabling a wide variety of dis-
tributed or pervasive services. For example, a PDA could
offload compute- and energy-intensive operations to a
nearby tethered server to reduce the load on its battery. A
scientist could create a dynamic compute grid of servers
located around the world to solve a particularly compute-
intensive problem. Another scientist might wish to move
a computation to a surrogate located near a large data
source to avoid shipping an immense amount of data over
the WAN. Or, a webmaster might witness a surge of web
requests from a currently underserved part of the world
and want to dynamically create a site mirror on a server
near the new traffic.

Unfortunately, while the potential uses of an open
surrogate infrastructure are almost endless, the poten-
tial misuses are equally endless if there are insufficient
security measures to keep spammers, hackers, content
thieves, and other nefarious individuals at bay. For ex-
ample, a spammer could use the surrogate infrastructure
to create a new spambot in response to a system admin-
istrator adding the old spambot’s IP address to a black-
list. A hacker could instantiate a cracking tool inside
of a company’s firewall or create an army of bots from
which to launch a distributed denial of service attack. A
content thief could create an open relay on a machine
owned by an organization with a subscription to some
data source and use it to access the data. In general, giv-
ing miscreants unfettered access to surrogate computers
at strategic locations in the Internet would create seri-
ous security threats [15]. Even unfettered access to sys-
tems with restricted capabilities, e.g., the CoDeeN open
proxy infrastructure [13], can introduce myriad security
problems. For a wide area surrogate infrastructure to at-
tain wide acceptability, it must contain sufficient security
mechanisms to make misuses infeasible.

The Spectra/Chroma [4] and Xenoservers [14]
projects, along with research on the computational
grid [10], have demonstrated the benefits of using dis-



Figure 1: A Wide Area Surrogate Computing Scene

tributed compute resources. However, unlike Spec-
tra/Chroma and the grid, WASCo is an open system that
allows potentially untrusted clients to install and run ar-
bitrary code on surrogates. Unlike Xenoservers, WASCo
does not assume a trust relationship between clients and
surrogates and thus needs to guard against network at-
tacks initiated by surrogate clients.

In this paper, we describe the security mechanisms
that we are including in WASCo to prevent its misuse.
WASCo employs Xen virtual machine technology to al-
locate complete virtual servers to clients [5] and to con-
trol a client’s access to the surrogate’s local resources.
We enforce network security by controlling the network
access of surrogate VMs at the virtual machine monitor
(VMM) layer. We show that we can address the security
concerns outlined above without negating the value of a
general surrogate infrastructure by selectively restricting
surrogate VM network access, employing IP tunneling,
and rate limiting surrogate network traffic. The degree to
which a surrogate’s network access is restricted is gov-
erned by the trust relationship between a client and the
surrogate server. For example, a surrogate running on
a user’s home machine will have no restrictions, while
a surrogate running code on behalf of a completely un-
trusted third party will have severely restricted network
access so that it cannot be used for nefarious purposes.

2 WASCo

In this section, we outline how WASCo can be used
and differentiate it from related work. We envision peo-

ple making their home/office computers available as sur-
rogates, perhaps only for trusted friends, and commer-
cial entities making surrogates available for a fee. In
WASCo, each surrogate computer runs a virtual machine
monitor and allocates entire virtual servers to clients,
complete with root access and a unique IP address. The
utility of a virtual server may derive from its computing
and storage resources and/or its location in the Internet.
Figure 1 illustrates four example uses of WASCo.

Joe is relaxing in a cafe. His PDA is connected to the
Internet via the cafe’s Wifi hub. The cafe has installed
WASCo on a PC so that its customers also have access to
compute resources. Joe likes to voice-control his PDA,
but running voice recognition on the PDA is far slower
than real-time and quickly drains the battery. Instead,
upon locating the available surrogate, his PDA instan-
tiates a voice recognition service on the cafe’s PC and
sends it raw audio streams for interpretation. Offloading
work to a tethered PC enables real-time voice recognition
without draining the PDA’s battery [11].

Dave is an astronomer who wants to data mine the
multi-terabyte Sloan Digital Skyserver database to prove
a provocative new theory. Rather than stream terabytes
of data across the Internet or ask Jim Gray to FedEx
a TeraScale SneakerNet box [2] with the data, Dave
accesses a WASCo surrogate located on the SkyServer
SAN. From that surrogate, his analysis tool can mine ter-
abytes of data without impacting either his or the Sky-
server’s limited Internet bandwidth. Taking this exam-
ple one step farther, after using the SkyServer surrogate
to extract the relevant data, Dave might need to perform
substantial computation to determine if the data matches



his theory. Rather than perform the entire computa-
tion on the SkyServer surrogate, Dave could instantiate a
computational grid [10] on surrogate computers located
around the internet by downloading and installing grid
middleware on available surrogates.

Bob and Mary are playing a network game. Rather
than using a public game server, which are often over-
run by hormone-drenched teenagers, or running a pri-
vate game server on one of their home PCs, which might
give an advantage to the player who is running the game
server, they instantiate a private game server on an inter-
mediate node roughly equidistant from both of them.

Company X has offices in India and California. Their
system administrator has been instructed to ensure good
connectivity between the two sites to ensure that network
problems do not cause them to miss a crucial deadline
later today. In response, the sysadmin rents cycles on a
surrogate machine provided by Company A and twenty
other surrogates not shown in Figure 1, and uses them to
build a resilient overlay network (RON) [3].

WASCo lets clients run arbitrary programs on surro-
gates and does not restrict clients to using only machines
on which they are completely trusted. Without appropri-
ate security precautions, WASCo could be used by hack-
ers to bypass firewalls or launch denial of service attacks,
by spammers to create spambots, or by content thieves to
access and distribute private or copyrighted data. Stani-
ford et. al. [15] discuss the risks associated with attackers
who are able to gain control of vast number of Internet
hosts. Pai et. al.’s experience with the CoDeeN open
content distribution proxy [13] demonstrates the security
risks that arise even when the functionality available on
an open surrogate is restricted. In contrast, most systems
that enable users to harness the widely distributed com-
pute and storage resources of a large number of organiza-
tions, e.g., PlanetLab [6] or the computational grid [10],
are made available only to trusted users and/or only run
trusted programs. Their security model is based on a sim-
ple access control model. In WASCo, however, we must
address the problems that arise when untrusted users can
run untrusted code.

The Xenoservers project [14] is probably the clos-
est in spirit to our work. However, Xenoserver requires
a trust relationship between clients and surrogates [7],
whereas WASCo supports unknown and untrusted users.
Like Xenoservers, we build upon Xen virtual machine
(VM) technology for single-node resource controls [5],
and thus can allow clients to install and run arbitrary
code without fear that it will interfere with other clients
sharing the surrogate host. Virtual machine technology
provides a simple, yet powerful, substrate on which to
build surrogates [9]. In this paper, we discuss how to ex-
tend the basic resource encapsulation of VMs to avoid
the network security risks that a truly open surrogate in-

frastructure would create.

3 WASCo Network Security

The open nature of WASCo requires us to pay special
attention to security. We use VM sandboxing to restrict
what local resources a client can consume, but a mali-
cious client could misuse the virtual server to launch net-
work attacks as described earlier. The goal of WASCo’s
network security system is to prevent such misuse.

WASCo enforces network security at the virtual ma-
chine monitor (VMM) layer where it can monitor and
control the network traffic going to/from a virtual server.
Our guiding principle is to restrict network access
from/to a virtual server depending on client-specified
needs and the degree to which the surrogate trusts the
client. The less a surrogate trusts a particular client, the
more highly it restricts the client’s network access.

From the perspective of a WASCo surrogate, a client
falls into one of three trust categories: (i) completely
trusted, (ii) semi-trusted, and (iii) untrusted. Trust de-
rives from a variety of factors. Administrative relation-
ships (e.g., machines belonging to a common organiza-
tion), financial relationships (e.g., machines for which a
user has rented access), and trust chains can all impact
the trust assigned to a particular surrogate request.

A user’s home/office machine will typically com-
pletely trust surrogate requests from the user. Virtual
servers owned by completely trusted users can commu-
nicate with any node without restriction.

A university surrogate might consider any request
originating from within the university to be semi-trusted;
similarly, a commercial surrogate may consider any re-
quest for which a client is paying to be semi-trusted. The
basic security policy for semi-trusted users is “trust, but
verify”. Semi-trusted users’ network access is based on
policies defined by the surrogate’s administrator. For ex-
ample, a SkySurvey surrogate server might allow rate-
controlled access only to the IP address and port on
which the database server is listening and the client de-
vice. The surrogate manager can log network traffic by
semi-trusted clients to analyze potentially malicious be-
haviors.

Finally, requests from unknown clients, e.g., some-
body using an open surrogate provided by a p2p system,
will typically be completely untrusted. By default, un-
trusted surrogates are allowed direct access only to the
client node from which the surrogate was requested. This
design is similar to the restrictions imposed on Java Ap-
plets. For many applications, e.g., the surrogate used
to offload speech recognition from a PDA, this highly
restricted network model is sufficient once the surro-
gate has downloaded and instantiated the server software
from a specified data source [11]. Untrusted users can



get access to arbitrary other nodes by tunneling through
the client or by being given explicit permission to access
a particular remote node, as described below.
Tunneling

To limit the potential damage of an untrusted surro-
gate, but let it access arbitrary internet nodes, WASCo
supports IP tunneling from the virtual server to the client
computer. Clients can use software network address
translation (NAT) to masquerade as the client from the
perspective of other nodes, and forward packets from/to
the virtual server via the allowed direct connection. This
mechanism is akin to a virtual private network (VPN) or
mobile IP. Because all packets sent between the surro-
gate and nodes other than the client are routed via the
client, the client is unable to use the surrogate to cir-
cumvent firewall access controls or launch anonymous
network attacks. VNET employs a similar technique for
grid computing [16].
Accessing Authorized Nodes

In addition to tunneling, virtual servers can negotiate
for network access to nodes with whom their user has a
trust relationship. This scheme can be used to bootstrap
interesting applications, e.g., Company X in Figure 1 can
use this to authorize traffic between the rented virtual
servers over which it wishes to establish the RON over-
lay. To do so, a user provides an authorization certificate
(authcert), which the surrogate manager uses to deter-
mine if the virtual server should be allowed access to the
remote node. We assume the existence of a public key in-
frastructure (PKI) that binds a node’s IP address(es) to a
public key. The same public key can be bound to multiple
IP addresses, which we use to allow surrogate managers
to sign certificates on behalf of their virtual servers.

Suppose A is a normal node. In this case, a au-
thcert that allows the user open access to A has the form:
〈KpubA, 〈Aip, Kuser〉KprivA

〉, where Aip is the IP ad-
dress of node A, Kuser is the user’s public key, and
KpubA/KprivA are node A’s public and private keys, re-
spectively. By signing the authcert, node A indicates that
it is willing to accept connections from surrogates be-
longing to Kuser . In response to a request by a client to
allow communication with node A, the surrogate man-
ager first verifies that KpubA is indeed the public key
of node A. Once the surrogate manager has validated
KpubA, it verifies that the authcert is signed by node A

before allowing the untrusted client access to node A.
Now suppose node A is a virtual server running on a

surrogate SA. The PKI will contain information about
SA, but not A, so a surrogate manager cannot verify an
authcert issued by (virtual) node A. In this case, the au-
thcert must include KpubA signed by SA. The surrogate
manager can use this information and the PKI to verify
the identity of SA, to verify that SA has signed KpubA,
and to verify that Aip is an IP address that server SA

can allocate to its surrogates. Because virtual server’s
have limited lifespans, an authcert signed by a surrogate
manager also needs to have a limited lifespan. This can
be accomplished in a number of ways, e.g., by adding
an expiration time on the signed certificate (which re-
quires loosely synchronized clocks), by having the surro-
gate manager on the node requesting access periodically
poll SA to verify that A is still a valid virtual server, or by
having the requesting node register a callback with SA so
that it will be informed when virtual node A terminates.
Traffic Shaping and Rate Limiting

In addition to denying semi-trusted and untrusted
users access to arbitrary remote nodes, we limit the max-
imum bandwidth available to untrusted virtual servers.
The surrogate manager can fairly allocate the local
node’s bandwidth between the surrogate host and various
client virtual servers. Thus, a rogue virtual server cannot
interfere with other virtual server’s network access, nor
can it effectively launch a DoS attack on the surrogate
node’s LAN/WAN connection by flooding packets to au-
thorized nodes (e.g., the client). It also limits the extent
to which semi-trusted users, who are allowed open ac-
cess to a limited number of nodes, can misuse the surro-
gate. WASCo enables the administrator to set different
bandwidth limits to different flows. For example, in the
SkyServer surrogate example the administrator might al-
low very high bandwidth between the surrogate and the
SkyServer database, but limited bandwidth out the Sky-
Server WAN connection.
Attack Detection and Logging

The surrogate VMM can monitor all network traffic
to/from a virtual server and perform sophisticated at-
tack detection, e.g., ReVirt [8]. In addition, the surro-
gate manager can log which nodes a particular surrogate
connects to and its source client, which can be used to
identify the true culprit should a surrogate launch a net-
work attack. Finally, should a virtual server be identi-
fied as launching a network attack, the VMM can re-
move its network access without destroying the virtual
server, there enabling postmortem analysis of the attack
software [17].

4 Network Security Implementation

The current WASCo prototype employs the Xen [5] vir-
tual machine system to support multiple virtual servers
per surrogate node. Xen para-virtualizes an x86 plat-
form, which allows multiple independent OS kernels
(currently either Linux or FreeBSD) to run on a single
machine. In the latest version of Xen (>1.2), the net-
work driver runs in the controller virtual machine do-
main, and is responsible for creating virtual interfaces for
the other virtual machines and connecting them and the
physical network card via a software bridge. Because the



network driver runs in the controller virtual machine do-
main, clients cannot circumvent WASCo’s network ac-
cess controls even if they patch or reconfigure their guest
OS kernel.

WASCo’s basic network security mechanisms are
built using off the shelf Linux tools. Linux supports so-
phisticated network packet filtering and traffic shaping.
We use Linux’s Netfilter/iptable [1] mechanism to filter
packets as they pass through the network stack. Each
virtual server is configured with its own ruleset, which
allows the surrogate manager to restrict which nodes a
particular virtual server can contact based on trust level
and authorization certificates.

To manage the amount of bandwidth that each virtual
server has between arbitrary nodes, we use the Linux
traffic control system (tc) [12]. The surrogate manager
can specify for each virtual server the maximum aggre-
gate outgoing bandwidth that it can send. Using classful
queuing disciplines and iptable together, the surro-
gate manager can classify different traffic flows from a
single virtual server and assign different bandwidth lim-
its to each flow, e.g., in the SkyServer example it can al-
low unlimited bandwidth to the SkyServer database, but
limited bandwidth out via the WAN connection.

To implement tunneling, we use GRE tunneling [12],
available as part of Linux, to establish IP-in-IP tunneling
back to the client. The virtual server sees two network
interfaces, one virtual interface with an IP address in the
surrogate domain and a tunnel interface with an IP ad-
dress specified by the client. IP routes are configured to
use the tunnel interface by default and the surrogate inter-
face for specific IP addresses (e.g., to the local SkyServer
database).

WASCo currently does not employ a log-
ging/intrusion detection mechanism in the VMM,
but we are considering adding one in the future.

5 Conclusion and Future Work

In this paper, we first identify a variety of ways that a
wide-area open surrogate architecture could be misused
and then describe how to build a flexible network security
system that mitigates these problems via selective packet
filtering, IP tunneling, and bandwidth limiting. Our so-
lution uses a mix of available tools, including the Xen
virtual machine system and a variety of network filtering
tools available in recent Linux releases.

To the best of our knowledge, WASCo is the first
wide area surrogate computing infrastructure that sup-
ports fully trusted, semi-trusted, and untrusted clients
running arbitrary code on surrogates. Basing WASCo on
virtual machine technology protects WASCo hosts from
untrusted client code and allows WASCo to implement
a sophisticated network security system by monitoring

and controlling all traffic to/from each virtual server. We
show that while a naive wide-area open surrogate com-
puting could be used to launch devastating network at-
tacks that are not possible in closed domains like grid
systems, the problems can be solved and we believe the
benefits of openness and generality outweigh the risks.

A medium term goal of our work is to release a pub-
licly usable surrogate computing system and deploy sur-
rogates nodes around the world. We plan to more clearly
define what limitations should be applied to semi-trusted
users and develop a simple yet comprehensive set of se-
curity options for system administrators based on differ-
ent trust levels. We will consider reputation systems as
a means for deriving trust levels [7]. We plan to investi-
gate effective ways to integrate traffic logging and mech-
anisms to automatically detect malicious network usage
patterns so that we can reduce the network access re-
strictions imposed on semi-trusted and untrusted users.
Finally, we will evaluate and update WASCo’s security
infrastructure based on the results of real-life usage.
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