Heat of the Moment: Characterizing the Efficacy of Thermal Camera-Based Attacks

Keaton Mowery (UC San Diego)
Sarah Meiklejohn (UC San Diego)
Stefan Savage (UC San Diego)
Code-based access control

The problem: what if there is a *camera watching you* type in your code?
Filming keypads

The solution: just shield the keypad!

Another problem: this only protects the code while it is being typed, not after
Filming keypads

The solution: just shield the keypad!

Another problem: this only protects the code while it is being typed, not after

Turns out heat is transferred in the process of entering the code, heat residue is left after code entry
Filming keypads

The solution: just shield the keypad!

Another problem: this only protects the code while it is being typed, not after

Turns out heat is transferred in the process of entering the code, heat residue is left after code entry

Our attack: this residue can then be recorded by a thermal camera
Previous work
Previous work

Feasibility of this attack was demonstrated in 2005 by Michał Zalewski
Previous work

Feasibility of this attack was demonstrated in 2005 by Michał Zalewski
Feasibility of this attack was demonstrated in 2005 by Michał Zalewski.
Previous work

Feasibility of this attack was demonstrated in 2005 by Michał Zalewski.

He was able to retrieve thermal residue for between five and ten minutes after code was entered.

(images from lcamtuf.coredump.cx/tsafe)
This work
This work

We broaden the picture by considering different:
This work

We broaden the picture by considering different:

- **Keypad materials** (metal vs. plastic)
This work

We broaden the picture by considering different:

- **Keypad materials** (metal vs. plastic)
- **Keypad users** (cold- vs. warm-blooded, etc.)
This work

We broaden the picture by considering different:

- **Keypad materials** (metal vs. plastic)
- **Keypad users** (cold- vs. warm-blooded, etc.)
- **Review methods** (automated vs. visual inspection)
We broaden the picture by considering different:

- Keypad materials (metal vs. plastic)
- Keypad users (cold- vs. warm-blooded, etc.)
- Review methods (automated vs. visual inspection)
- Degrees of success (exact code vs. partial information)
This work

We broaden the picture by considering different:

- Keypad materials (metal vs. plastic)
- Keypad users (cold- vs. warm-blooded, etc.)
- Review methods (automated vs. visual inspection)
- Degrees of success (exact code vs. partial information)

Find that results vary substantially as we change above variables
Outline
Outline

Experiment design
Outline

- Experiment design
- Camera data
Outline

- Experiment design
- Camera data
- Analyzing the data
Outline

- Experiment design
- Camera data
- Analyzing the data
- Conclusions
Outline

- Experiment design
- Camera data
- Analyzing the data
- Conclusions
Our setup: equipment
Our setup: equipment

FLIR A320 IR camera
- 320 x 240 resolution
- $18,000 to purchase
- $2,000/month to rent
- Operates at 9Hz
Our setup: equipment

FLIR A320 IR camera
- 320 x 240 resolution
- $18,000 to purchase
- $2,000/month to rent
- Operates at 9Hz

Metal ATM keypad
Our setup: equipment

FLIR A320 IR camera
- 320 x 240 resolution
- $18,000 to purchase
- $2,000/month to rent
- Operates at 9Hz

Metal ATM keypad

Plastic ATM keypad
Our setup: getting things ready
Our setup: getting things ready

Set keypad in a vise and camera on a tripod across from it
Our setup: getting things ready

Set keypad in a vise and camera on a tripod across from it

Worked at two different distances: 14 and 28 inches
Our setup: getting things ready

Set keypad in a vise and camera on a tripod across from it

Worked at two different distances: 14 and 28 inches

Used software to indicate ten regions of interest on the keypad (0-9)
Our setup: code entry
Our setup: code entry

At each distance, had 21 people type in 27 different codes
Our setup: code entry

At each distance, had 21 people type in 27 different codes

• Wanted to allow for different body temperatures, key-pressing styles, etc.

• 7 of these codes contained repeats (e.g., 6688 or 8728)
Our setup: code entry

At each distance, had 21 people type in 27 different codes

- Wanted to allow for different body temperatures, key-pressing styles, etc.

- 7 of these codes contained repeats (e.g., 6688 or 8728)

Filmed the keypad for 3 seconds before code entry, then 100 seconds after, recorded 3 frames per second
Outline

- Experiment design
- Camera data
- Analyzing the data
- Conclusions
Filming metal was a complete failure!
Filming metal was a complete failure!

Brushed metal acted as a **thermal mirror**, hard to even get any reading
Filming metal was a complete failure!

Brushed metal acted as a thermal mirror, hard to even get any reading

Figure 5. An oxidized old brass plate with a lot of surface roughness in the 1µm scale or below is scattering light diffusely for visible light, but at least in part specularly for thermal IR radiation of λ≈10µm.

(images from “Identification and suppression of thermal reflections in infrared thermal imaging,” Henke et. al., InfraMation 2004.)
Filming metal was a complete failure!

Brushed metal acted as a **thermal mirror**, hard to even get any reading.

![Image of a metal plate and a thermal image of a face](image)

Figure 5. An oxidized old brass plate with a lot of surface roughness in the 1μm scale or below is scattering light diffusely for visible light, but at least in part specularly for thermal IR radiation of λ≈10μm.

(images from

“Identification and suppression of thermal reflections in infrared thermal imaging,”

Henke et. al.,

InfraMation 2004.)

High conductivity of metal meant **residue spread within seconds**.
Filming metal was a complete failure!

Brushed metal acted as a **thermal mirror**, hard to even get any reading

![Image](image_url)

Figure 5. An oxidized old brass plate with a lot of surface roughness in the 1μm scale or below is scattering light diffusely for visible light, but at least in part specularly for thermal IR radiation of λ ≈ 10μm.

(images from

“Identification and suppression of thermal reflections in infrared thermal imaging,”

Henke et. al.,

InfraMation 2004.)

High conductivity of metal meant **residue spread within seconds**

So the rest of our results are only for **plastic** keypads
An ideal run
An ideal run
Results can vary widely

Even in the first frame after entry, see very different pictures:
Results can vary widely

Even in the first frame after entry, see very different pictures:
Results can vary widely

Even in the first frame after entry, see very different pictures:
Results can vary widely

Even in the first frame after entry, see very different pictures:
Results can vary widely

Even in the first frame after entry, see very different pictures:
Results can vary widely

See similar differences in how residue degrades over time:
Results can vary widely

See similar differences in how residue degrades over time:
Results can vary widely

See similar differences in how residue degrades over time:
Outline

- Experiment design
- Camera data
- Analyzing the data
- Conclusions
Human review
Human review

First approach: human visual inspection
Human review

First approach: human visual inspection

• Examine every 10th frame (in random order) to guess code entered
Human review

First approach: human visual inspection

- Examine every 10th frame (in random order) to guess code entered

Problem: this approach doesn’t scale very well! (looked at ~1800 images)
Human review

First approach: human visual inspection

• Examine every 10th frame (in random order) to guess code entered

Problem: this approach doesn’t scale very well! (looked at ~1800 images)

• Second approach: automated review
Automated review: what to do with all this footage?
Automated review: what to do with all this footage?
Automated review: what to do with all this footage?

calibration
Automated review: what to do with all this footage?

calibration
Automated review: what to do with all this footage?

calibration

hand
Automated review: what to do with all this footage?

calibration

hand
Automated review: what to do with all this footage?

calibration

hand

after entry
Automated review: what to do with all this footage?

- Calibration
- Hand
- After entry
Automated review: what to do with all this footage?

- Calibration
- After entry
Automated review: which buttons were pressed?
Automated review: which buttons were pressed?

Basic idea: for each region, determine if it is hot above a certain threshold.
Automated review: which buttons were pressed?

Basic idea: for each region, determine if it is hot above a certain threshold.
Automated review: which buttons were pressed?

Basic idea: for each region, determine if it is hot above a certain threshold

 calibration
Automated review: which buttons were pressed?

Basic idea: for each region, determine if it is hot above a certain threshold

 calibration

 after entry

$t_0 = 71$
Automated review: which buttons were pressed?

Basic idea: for each region, determine if it is hot above a certain threshold.

calibration $t_0 = 71$

after entry average $t = 73.6$
Automated review: which buttons were pressed?

Basic idea: for each region, determine if it is hot above a certain threshold

$t_0 = 71$

Calibration

Average $t = 73.6$

Can repeat this process for each region, then sort in order of $\Delta = t - t_0$
Automated review: which buttons were pressed?

Basic idea: for each region, determine if it is hot above a certain threshold

Can repeat this process for each region, then sort in order of $\Delta = t - t_0$

Examined regions in isolation because we didn’t observe much heat spread
Automated review: which buttons were pressed?

Basic idea: for each region, determine if it is hot above a certain threshold

Can repeat this process for each region, then sort in order of $\Delta = t - t_0$

Examined regions in isolation because we didn’t observe much heat spread

This is the mean method, also use max and binarize variants
How did we do?
How did we do?

First goal: recover the exact code entered
How did we do?

First goal: recover the exact code entered

human review
How did we do?

First goal: recover the exact code entered

human review

automated review
How did we do?

First goal: recover the **exact code** entered

Bad news: the picture doesn’t get much better if we allow for slight mistakes (transpositions, one wrong key, etc.)
How did we do?
How did we do?

Second goal: recover the **buttons pressed** (not necessarily the correct order)
How did we do?

Second goal: recover the **buttons pressed** (not necessarily the correct order)

human review
How did we do?

Second goal: recover the **buttons pressed** (not necessarily the correct order)

human review automated review
How did we do?

Second goal: recover the **buttons pressed** (not necessarily the correct order)

- **human review**
 - recover ~30% after 1 minute

- **automated review**

Button Recovery

<table>
<thead>
<tr>
<th>% Successfully Recovered</th>
<th>Seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>80</td>
</tr>
<tr>
<td>80</td>
<td>70</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>0</td>
<td>30</td>
</tr>
</tbody>
</table>

Button Recovery

<table>
<thead>
<tr>
<th>% Successfully Recovered</th>
<th>Seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>80</td>
</tr>
<tr>
<td>80</td>
<td>70</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>0</td>
<td>30</td>
</tr>
</tbody>
</table>
How did we do?

Second goal: recover the **buttons pressed** (not necessarily the correct order)

human review

recover ~30% after 1 minute

automated review

recover ~50% after 1 minute
How did we do?

Second goal: recover the **buttons pressed** (not necessarily the correct order)

- **human review**
 - recover ~30% after 1 minute

- **automated review**
 - recover ~50% after 1 minute

Not only is automated review **scalable**, it’s also significantly more **accurate**
Outline

- Experiment design
- Camera data
- Analyzing the data
- Conclusions
Conclusions and future work
Conclusions and future work

Conducted study of the efficacy of thermal cameras in a variety of scenarios
Conclusions and future work

Conducted study of the efficacy of thermal cameras in a variety of scenarios

- **Most effective:** with plastic we recovered ~50% of codes a full minute after
Conclusions and future work

Conducted study of the efficacy of thermal cameras in a variety of scenarios

- **Most effective**: with plastic we recovered ~50% of codes a full minute after

- **Least effective**: metal keypad doesn’t work at all right now
Conclusions and future work

Conducted study of the efficacy of thermal cameras in a variety of scenarios

- **Most effective:** with plastic we recovered ~50% of codes a full minute after

- **Least effective:** metal keypad doesn’t work at all right now

- Also saw that different body temperatures and pressing styles mattered
Conclusions and future work

Conducted study of the efficacy of thermal cameras in a variety of scenarios

• **Most effective**: with plastic we recovered ~50% of codes a full minute after

• **Least effective**: metal keypad doesn’t work at all right now

• Also saw that different body temperatures and pressing styles mattered

Future work and open problems:

• Use a **wider set of choices**: different materials, temperatures, etc.

• Analyzing **footage** rather than individual frames
Conclusions and future work

Conducted study of the efficacy of thermal cameras in a variety of scenarios

- **Most effective**: with plastic, we recovered ~50% of codes a full minute after
- **Least effective**: metal keypad doesn’t work at all right now
- Also saw that different body temperatures and pressing styles mattered

Future work and open problems:

- Use a **wider set of choices**: different materials, temperatures, etc.
- Analyzing **footage** rather than individual frames