
Putting Out a HIT: Crowdsourcing Malware Installs

Chris Kanich
UC San Diego

Stephen Checkoway
UC San Diego

Keaton Mowery
UC San Diego

Abstract
Today, several actors within the Internet’s burgeoning
underground economy specialize in providing services
to like-minded criminals. At the same time, gray and
white markets exist for services on the Internet providing
reasonably similar products. In this paper we explore a
hypothetical arbitrage between these two markets by pur-
chasing “Human Intelligence” on Amazon’s Mechanical
Turk service, determining the vulnerability of and cost
to compromise the computers being used by the humans
to provide this service, and estimating the underground
value of the computers which are vulnerable to exploita-
tion. We show that it is economically feasible for an
attacker to purchase access to high value hosts via Me-
chanical Turk, compromise the subset with unpatched,
vulnerable browser plugins, and sell access to these hosts
via Pay-Per-Install programs for a tidy profit. We also
present supplementary statistics gathered regarding Me-
chanical Turk workers’ browser security, antivirus usage,
and willingness to run arbitrary programs in exchange for
a small monetary reward.

1 Introduction
When considering the improvement of business processes,
a common trope is that of “cutting out the middleman.”
Imagine a CEO — or whatever passes for a CEO in the un-
derground world of Internet crime — of a Pay-Per-Install
(PPI) affiliate brainstorming new infection vectors for
high-value hosts. “Ah ha!” the CEO thinks, “I’ll just pay
the victims to infect themselves.”

The world of ecrime has undergone a radical shift in
recent years from one of vertical integration — where a
single entity would produce malware, compromise hosts,
install the malware on victim machines, and finally ex-
tract value, for example via online banking fraud — to
one in which each link in the chain from malware to mon-
etization is performed by a different actor [13]. A modern
business model relying upon installing malware on com-
promised machines would involve paying a PPI service

such as Loaderadv or Goldinstall for access to previously
compromised hosts. The PPI service in turn pays affiliates
to install special downloader programs on compromised
hosts which will download and execute clients’ malware.
The complete situation is more complex still with some
PPI services acting as affiliates for competing services
and other arbitrage possibilities. This ecosystem is well
analyzed in Caballero et al. [7].

Here we consider the position of a PPI affiliate who is
paid to install “downloader” programs on behalf of one
or more PPI services. Rather than relying on iframes
inserted into compromised websites, our hypothetical PPI
affiliate entices workers on Amazon’s Mechanical Turk
to visit our website using the incentive of a small reward.

Mechanical Turk is a popular “crowdsourcing” service
where requesters can post jobs, called Human Intelligence
Tasks (HITs) which workers can choose to perform in ex-
change for a monetary reward from the requester. Before
accepting a HIT, the worker will usually preview the HIT
for an example of the task they are being paid to perform.

Returning briefly to our hypothetical PPI affiliate, in
order to infect machines using Mechanical Turk, it posts
HITs with a description that appears profitable enough
for workers to visit the preview page or even perform the
HIT. Once the worker visits the page, the affiliate has a
number of choices for infecting the worker’s computer.
The webpage could exploit vulnerabilities in the worker’s
browser and plugins to initiate a drive-by download or
even ask the worker to download and run an executable
on their computer as part of the HIT.

Ultimately, we wish to discover the hypothetical cost
to install a PPI service’s downloader onto a victim ma-
chine directly. If this can be done cheaply enough that
the amount earned by running one or more download-
ers exceeds the costs, then using Mechanical Turk as an
infection vector is a viable choice.

We find that using Mechanical Turk to take over ma-
chines is economically feasible for high-value machines
in the U.S. and possibly feasible for low-value machines.

1

2 Related Work
One of the main draws in using Mechanical Turk is that
human workers can quickly perform tasks that are difficult
for computers but easy for humans. This has led to a num-
ber of studies where humans are used to provide ground
truth for machine learning or vision algorithms [10, 12,
28]. In addition, Mechanical Turk is also popular with
social science researchers as a source of data. See, for
example, Ruvolo et al. [24], Paolacci et al. [21], and the
references therein for a flavor of the sorts of research con-
ducted using Mechanical Turk. Of course, with so many
researchers turning to Mechanical Turk, it is natural that
Mechanical Turk itself and crowdsourcing more generally
would become a topic of study, both for the academic
community and for the mainstream press [16, 22, 23, 25].

The most comprehensive source of information on the
economics of the Pay-Per-Install is by Caballero et al. [7]
who discuss all facets of the PPI ecosystem from the
malware that clients want installed to the tools used to
avoid detection. Earlier work by Stevens [26] gives ex-
amples of the various tools used by PPI affiliates such
as “crypters” which try to hide malware from antivirus
programs as well as describing the largest PPI brands
such as Earning4u.com. The website http://pay-
per-install.com contains reviews of PPI affiliate
programs with what are ostensibly comments by these
services’ users. However, some of the reviewed services
seem like scams offering more than the market rate per
install. Many of the comments for these services give
supporting evidence that they are indeed scams.

There is evidence that Mechanical Turk is being used
as a method of installing adware or spyware on workers
computers. StopMalvertising reports [19] that some HITs
require workers to fill out CPALead surveys for a 50¢ re-
ward. As part of the survey spyware or adware is installed
on the worker’s computer. And, in the end, the worker is
denied the reward. Such an infection is far more visible
than our proposed method of exploiting browser plug-
ins as workers are required to install browser plugins to
complete the survey, thus alerting the worker to possible
danger.

The works most closely related to ours are a study by
Christin et al. [9] in which the authors pay Mechanical
Turk workers between 1¢ and $1 to run an executable;
Wondracek et al.’s study of the online adult industry [29]
including the susceptibility of adult content viewers’ web
browser plugins; and Acer and Jackson’s preliminary re-
port on using ad networks to evaluate browser vulnerabil-
ity [1].

Christin et al. describe the executable workers run as
a distributed computing client for use as part of a CMU
research experiment. The authors find that between 22%
and 43% of the workers who viewed the HIT ran the
executable. In the present work, we focus on the question

of what percentage of workers had vulnerable browser
plugins; however, we additionally collect information on
the percentage of workers who are willing to download
and run code for an additional bonus.1 Our results which
agree with Christin et al.’s are given in Section 5.3.

Wondracek et al. operate adult websites and buy traf-
fic from web traffic brokers. Similar to our work, they
evaluate browser plugin vulnerability and report that 88%
of the browsers they were able to profile were potentially
vulnerable. Our analysis focuses on a different population
and finds very similar overall statistics; these are shown
along with temporal uptake data in Section 5.2.

Although neither adult web site viewers’ browsers nor
Mechanical Turk workers’ browsers are likely to be rep-
resentative of Internet users’ browsers in general, these
studies in conjunction with Acer and Jackson’s results,
give evidence that the majority of Internet users’ browsers
are at risk. Evaluating a more representative sample of
the Internet is left to future work.

This study uses the same mechanism for plugin enumer-
ation as the Electronic Frontier Foundation’s Panopticlick
project [11]. Whereas Panopticlick aims to fingerprint
individual browser installations, the main pertinent infor-
mation available to us is the installed plugins’ versions,
and only the subset for which exploits are known.

Finally, there is a large body of work involving methods
of driving traffic to a website, for example by buying
ads [2, 6, 15, 18] or other methods of directly purchasing
click traffic [30].

3 Methodology
To test the efficacy and economic feasibility of using Me-
chanical Turk, we post a simple-to-complete HIT to Me-
chanical Turk for small rewards, 1¢ or 5¢, for several days
each. As described in Sections 3.1 and 4, we determine
what fraction of workers are vulnerable to well-known
exploitable vulnerabilities in plugins such as Adobe Flash
and Apple QuickTime. As a bonus, we gain some idea
of what percentage of workers are willing to download
and run programs for a small additional reward as well as
whether workers use antivirus programs, and if their virus
definitions are up to date. Finally, we compare the cost to
acquire hosts via this strategy with bid prices for Pay-Per-
Install affiliate programs to determine economic viability.

3.1 The HITs
On Mechanical Turk, Human Intelligence Tasks range in
complexity from answering a simple question to transcrib-
ing an hour long podcast. The price of the HITs varies
roughly proportionally with the difficulty of the task, with
easy tasks paying only 1¢ and more complex tasks pay-

1As described in Section 6.4, requiring workers to run executables
violates Mechanical Turk’s policies [3] and thus we made it optional.

2

http://pay-per-install.com
http://pay-per-install.com

ing as much as $10. Additionally, bonuses can be paid to
workers who perform exceptionally well or do extra work.

Amazon provides basic data entry and survey answer-
ing services within a HIT creation page available to re-
questers. Amazon hosts both the pages asking for user
input and the back-end recording of these results. Al-
ternately, a requester can create an External Question
which loads a web page within an iframe and allows
the requester to load arbitrary content in the service of
completing the HIT. When the worker finishes the task,
the requester’s page sends a POST message to Amazon’s
servers indicating completion. In our experiments, we
use this feature to both measure the worker’s browser and
solicit survey answers.

In the usual case, before workers accept a HIT, they
view a preview of the task. This preview is just the normal
HIT page loaded from the requester’s webserver with a
fixed assignmentId query parameter and displayed in
an iframe in the worker’s browser.2

Our HITs fall into the extremely simple category. The
HITs we use to collect vulnerability data are shown below.

Please type the name of your antivirus program in the
text box below. If you are not running any antivirus, type
“no antivirus.”

Submit Data

Once the HIT is accepted, the task page includes this
additional text:

For a bonus of 11 cents, we can also collect additional
information about your antivirus if you download and run
this script. This script does not harm or change your
computer in any way. You may inspect the script to verify
this. After the script has run, a Notepad window will pop
up including information about your running antivirus.
COPY and PASTE everything in the Notepad window
into the text box below.

and a text box to receive the requested data. The bonus
is chosen uniformly at random between 1¢ and 15¢ to
determine if there is any correlation between the bonus
reward and the willingness to run programs outside of the
browser.

In addition to the survey HIT, we constructed a second
HIT which was as enticing and easy as possible in order
to maximize the number of workers who complete a low-
reward task. This HIT asks the user to click an HTML
form button as quickly as possible for five seconds, record-
ing the number of clicks and paying the worker immedi-

2We discovered a very small number of cases where a worker man-
aged to accept a HIT without previewing it. We suspect this is due to a
modified Mechanical Turk worker interface such as those provided by
some Greasemonkey scripts.

ately for their time. We emphasize the ease and speed of
the HIT within its description, as well as the fact that all
workers will be paid immediately for their efforts. This
HIT pays 1¢ and does not collect any browser or plugin
information.

To maximize the number of workers who complete
our HITs, we follow the recommendations from Chilton
et al. in crafting our task [8]. Most notably, the titles
“ Anti Virus Survey” and “ 5 second reaction test! Auto-
approve!” include a leading space in order to appear at
the beginning of an alphabetical ordering, we skip the 2¢
price point as it was shown to be less popular than 1¢,
and the HITs have a very short completion time limit to
appear at the top of a time limit ordering (shortest first).

In order to test the effect of the base amount of money
the workers receive upon successful completion of the
survey HIT on the number of workers who view and ac-
cept the HIT, we tested the HIT with a reward of 1¢ and
5¢. Only a single HIT was active at a time and we started
with 1¢ before moving to 5¢. We allowed workers to com-
plete both of the HITs if they so chose, although we only
offered a bonus if they had not previously received one.

3.2 Vulnerability data collection
We collect information from three sources: (1) JavaScript
run in the worker’s browser which POSTs the results
back to our server immediately; (2) the worker’s report
of their antivirus; and, for a bonus, (3) the output of a
program run by the worker outside the browser context.
The first happens automatically whereas the second and
third require the worker to enter text.

As soon as the HIT is accepted, JavaScript collects
information about the worker’s browser and the plugins
that are enabled. We use the PluginDetect JavaScript li-
brary [14] to determine the operating system and browser
version as well as the versions of Adobe Flash, Adobe
Reader, Adobe Shockwave, DevalVR, Java, QuickTime,
RealPlayer, Microsoft Silverlight, VLC, and Windows
Media Player.

As soon as this information is collected it is sent back
to the webserver via an XMLHttpRequest. This hap-
pens without any user action beyond visiting the web
page. Indeed, this information could be harvested as soon
as a worker visits the preview page. Were an attacker
attempting to infect a machine by exploiting a flaw in a
browser or a plugin, this is an ideal place to do so since
workers usually visit the preview page even if they do
not ultimately choose to accept the HIT. As discussed
in Section 6.4, we choose not to collect any information
from the preview page to avoid collecting information
about workers’ browsers without their consent.

The second source of information gathered is the name
of the antivirus software workers have installed. The
workers enter the name of their antivirus, if any, into the

3

Table 1: Plugin vulnerability by OS. Unless a range is specified, lower versions are also vulnerable.

Plugin Windows Mac OS X Linux CVE

Adobe Flash Player 10.2.154.13 10.2.154.13 10.2.154.13 CVE-2011-0609
Adobe Reader∗ 10.0.2 10.0.2 9.4.1 CVE-2011-0610 CVE-2011-0611
Adobe Shockwave Player 11.5.9.615 11.5.9.615 CVE-2011-0557
Apple QuickTime 7.6.8 7.6.8 CVE-2010-3787
Microsoft Silverlight 3.0.50106.0 3.0.40818.0 CVE-2010-1898
Java† 1.6.0–1.6.0.21 1.6.0–1.6.0.21 1.6.0–1.6.0.21 CVE-2010-3571
RealPlayer‡ 11.0–11.1 11.0–11.1 11.0.2.1744 CVE-2010-4397
VLC media player 1.1.7 CVE-2010-3276

∗CVE-2011-0610 affects all three for versions up to 9.4.1; CVE-2011-0611 only affects Windows and Mac OS X.
†CVE-2010-3571 affects many versions of Java 1.4 and 1.5.
‡Many other versions are affected by different vulnerabilities.

text box. This is the least reliable source of information
as there is no incentive for the worker to bother entering
an accurate value since we are willing to pay for “no
antivirus.”3 Despite this, a majority of the users who ran
the bonus program described below reported the same AV
as did the program.

The third source of information is optional and gar-
ners the workers a bonus reward. To receive the bonus,
the worker downloads and runs the program linked from
the description of the bonus. The program is written
in JScript — a dialect of ECMAScript — and is run by
the Windows Script Host. It uses the Windows Man-
agement Instrumentation (WMI) interface to enumerate
the antivirus products installed. For each AV product
installed, the program checks if the virus definition files
are up to date or not. For Windows XP and Vista, this is
a simple matter of examining the productUptoDate
property of the enumerated AV products. For Windows 7,
this property is no longer exposed; however, the undocu-
mented productState integer property has bit 4 set if
the virus definitions are not up to date and clear if they are.
The specific cutoff for whether or not an antivirus product
is up to date is set by the individual vendors. The AV
product name, version (if available), and definition status
are written to a temporary file. This temporary file is
opened in Notepad and the worker then copies and pastes
the contents of the file into the text box in the HIT’s page.

4 Plugin Vulnerability Information
One measure of vulnerability is to examine the version
numbers of plugins and compare them with known vulner-
abilities. On the one hand, this is a fairly coarse measure
as some software’s version numbers do not change when
they are patched. For example, Microsoft Internet Ex-
plorer and Windows Media Player do not change version
numbers when patched. For this reason, we chose not to
include vulnerabilities for these in our analysis.

3In actuality, we paid the workers for anything entered in this box.

Table 1 lists some of the vulnerabilities we considered
when deciding if a particular worker was vulnerable. For
each, we list one of the Common Vulnerabilities and
Exposures (CVE) entries we used to determine if a version
is vulnerable [5].4 We only consider a plugin version to
be exploitable if a CVE lists remote execution of attacker
code.

5 Results
Of primary importance to someone looking to compro-
mise hosts using Mechanical Turk are the cost per thou-
sand hosts and the rate at which they can be compromised.
In this section, we present the results of our study and
answer those questions. In the next section we discuss the
ramifications of these results.

The Mechanical Turk population is mostly located in
the United States and in India [16, 21, 23]. Indeed, our
experiments with Mechanical Turk show roughly similar
distributions of workers: 61.3% in India, 23.2% in the
U.S. with the remaining 15.5% spread among 75 other
countries. Therefore, all of our results in this section are
separated into U.S., India, and Other categories.

5.1 Infection cost
In order for Mechanical Turk to be useful as an infection
vector, the cost to compromise a host must be less than the
value derived from the host. Some percentage of workers
who preview or accept the HIT will be vulnerable. In
order to not arouse the suspicion of the workers, those
who complete the HIT must be paid.

Table 2 answers the question: How much does it cost
to compromise 1000 hosts if each completed HIT pays
5¢, accounting for the 10% Amazon fee? The second
column shows the percentage of workers who accepted
our HIT who had at least one plugin that was vulnerable
per Section 4. The third, fourth, and fifth columns are

4Many of the plugins had multiple exploitable vulnerabilities for a
particular version.

4

Table 2: Cost to compromise 1000 hosts at 5¢ per completed HIT.

% vulnerable % previewed % accepted % completed cost ($/1000 hosts)

U.S. 84.9 99.5 87.9 81.0 52.52
India 96.3 99.5 87.6 80.2 45.83
Other 87.2 98.3 91.3 85.7 54.04

1 2 3 4 5 6 7 8 9
Vulnerable plugins

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f
w

or
ke

rs

U.S.

India

Other

Figure 1: Percentage of workers who have at least n vul-
nerable plugins.

the percentage of workers who, out of all those who in-
teracted with the HIT, previewed, accepted, or completed
the HIT, respectively. Some workers previewed the HIT
without accepting and some accepted it without preview-
ing, although this was far less common. Finally, the sixth
column gives the cost in U.S. dollars to compromise 1000
workers’ computers computed according to

cost = 1000×$0.05×110%× % completed
% vulnerable

(1)

where the 110% accounts for Amazon’s cut.
Figure 1 shows the percentage of workers who have at

least n vulnerable plugins for each n. This shows that the
majority of workers have at least two vulnerable plugins
and a significant fraction have at least four.

Whereas the Panopticlick methodology can differenti-
ate between different browser installs, we make the con-
servative assumption that at most one host can be com-
promised per IP address. Therefore, we only consider the
first worker for a given IP address and HIT.

5.2 Infection rate
Infection rate is the counterpart to infection cost in an
effective machine compromise strategy. In 2007, there
were 100,000 workers [22]; two years later there were
400,000 workers [20]. While in the long term new installs
will be limited by the number of newcomers to the Me-
chanical Turk worker pool, the initial infection rate will
be constrained only by the total active workers, rate of
interest in our HIT, and vulnerability rate.

0 50 100 150 200 250
Hours Passed

0

200

400

600

800

1000

1200

1400

1600

T
ot

al
 W

or
ke

rs
 S

ee
n

1¢ quick

5¢ survey

1¢ survey

Figure 2: Cumulative number of workers seen per reward
level.

The cumulative number of workers who accepted our
HIT over time can be seen in Figures 2 and 3. Figure 2
illustrates the difference in rate controlling for the offered
reward and task type, whereas Figure 3 focuses on ge-
ographic differences in rate within the 1¢ reward quick
HIT.

The acceptance rate begins to wane at approximately
24 hours, with a generally flat rate beyond the first day.
Table 3 expounds upon this dichotomy, presenting the first
day rate and the long term rate over the rest of the data
in our experiments. While the observed rates do not lend
credence to using Mechanical Turk as the main infection
vector for selling malware installs, this strategy can still
be an ongoing supplement to other vectors.

5.3 Antivirus and program execution statistics
Since we ask the workers to run a program to determine
if they have antivirus software installed and, if so, are the
virus definitions up to date, we are able to collect statistics
on both how many workers have no AV or out of date
definitions and how many are willing to run programs for
extra money. Further, we can measure how the size of the
bonus affected the decision to run the program, at least for
workers in India which provided the most information.

Table 4 aggregates the results of the bonus program —
the third source of information described in Section 3.1.
Of all workers who completed our HIT, 38% elected to
participate in the bonus portion. We determined the up-
take rate by instructing the workers to copy and paste
result text into the Mechanical Turk form. A rather sur-
prising number of workers using Windows have an an-

5

Table 3: Observed new worker rate expressed as hosts per day.

1¢ survey 5¢ survey 1¢ quick
first day later days first day later days first day later days

U.S. 58 31 61 29 176 90
India 204 77 291 73 197 61
Other 50 21 55 19 73 35

0 20 40 60 80 100 120 140 160
Hours Passed

0

100

200

300

400

500

600

700

T
ot

al
 W

or
ke

rs
 S

ee
n

U.S.

India

Other

Figure 3: Cumulative number of workers seen per IP
geolocation (1¢ reward quick HIT).

Table 4: Percentage of Windows users with up to date AV

AV installed (%) up to date (%)

U.S. 98.7 22.8
India 92.7 68.7
Other 95.2 37.3

tivirus product installed. We attribute this to two factors.
First, many OEMs ship Windows with an antivirus in-
stalled. Second, the instructions for the bonus were not
clear that the worker would still receive the bonus if they
ran the program even without any AV installed. We hesi-
tate to rely on the self-reported numbers, however roughly
10% of workers on Windows responded that they had no
AV installed. Further, there is likely to be a selection bias
in which worker decided to do the HIT. The name of the
HIT, “Anti-Virus Survey,” seems likely to deter workers
who did not have antivirus installed. Therefore, the re-
sults in Table 4 are likely to overestimate the number of
Mechanical Turk workers who have antivirus installed.

Since the size of the bonus offered to run the program
was chosen uniformly at random between 1¢ and 15¢,
we can compare the effect of price on the percentage of
workers using Windows who opted to run the program.
There are too few data points in each bin for U.S. and
Other to draw any conclusions; however, for India, there
is a clear trend. This is given in Figure 4. There is a
ρ = .56 Pearson linear correlation between bonus and
running the program with a p-value of p = .029.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Bonus (¢)

0

20

40

60

80

100

%
 o

f
In

di
an

 w
or

ke
rs

Figure 4: Percentage of Indian workers who ran the
JScript for a given bonus.

6 Discussion
Our best information regarding how much client installs
of malware cost comes from Caballero et at. [7] who
report that 1000 unique installs on U.S. hosts cost be-
tween $100 and $180 and as little as $7 or $8 on Asian
hosts. Even though we do not know how much a PPI
service pays an affiliate for hosts, we assume that it is a
similar order of magnitude, for example, half what the
clients are charged. Table 2 shows that it costs roughly
$50/1000 hosts, both in the U.S. and around the world.
For hosts in the U.S., Mechanical Turk is almost certainly
an economically viable option using our parameters.

For Indian hosts, the situation is more complicated.
As is, an affiliate could not make money selling hosts
compromised with our set up; however, there are many
factors that could influence the cost/benefit ratio. The
most obvious change is that instead of paying 5¢, the
HIT could pay 1¢. We do not have complete data for
this case, but we believe that the percentage of vulnerable
hosts is unlikely to change much compared to workers
who would do a 5¢ HIT. Similarly, it seems unlikely that
the percentage of workers who look at the preview (and
thus could be compromised if they are vulnerable) but
decide not to accept the HIT would go down. Thus the
% completed in (1) is unlikely to increase. Therefore, we
expect that simply changing from 5¢ to 1¢ would cause
the cost of 1000 hosts to be cut by a fifth down to roughly
$10/1000 hosts. The biggest impact is on the rate at which
workers can be compromised as can be seen in Figures 2
and 3.

6

At $10/1000 hosts, the cost is slightly above the cost to
clients, which would seem to imply that Mechanical Turk
is too expensive a vector for lower-value hosts. There
are a number of options yet unexplored for decreasing
the cost or increasing the benefit. Many PPI affiliates sell
the same compromised host to multiple PPI services [7].
If a host can be sold two or three times, then the benefit
increases enough to justify the cost of compromise.

In addition to increasing benefit, one can drive down
costs. Recall that the cost is proportional to the percentage
of people who completed the HIT, among all of those who
either viewed the preview page or accepted the HIT. One
way to reduce the completed task would be to simply not
allow (some percentage of) workers to submit or to refuse
to pay them afterward. This is unlikely to be a viable
solution in the long term as the workers will complain
to Amazon and warn other workers on Mechanical Turk-
oriented forums such as Turker Nation.5 A better way
to reduce the number who accept the HIT is to provide
a vague description of the task and then on the preview
page show a significantly more complicated task in the
hopes that the workers will move on to easier ways to
earn one penny. Alternatively, one could make the pre-
view page appear non-functional with an error message
or broken images to dissuade workers from accepting
the HIT. Rather than risk not being able to complete the
task, the worker will likely choose another HIT to ac-
cept.

6.1 Drawbacks
While the statistics on the vulnerability of workers’
browsers to known exploits are striking, there are sev-
eral possible sources of error in our estimate. Host-based
or network-based antivirus could detect malicious code
and lower the conversion rate or raise an alarm which
causes workers to report the job to Amazon as malicious.
The hosts could already be compromised and not viable
Pay-Per-Install candidates, however we were not able to
measure this possibility.

Perhaps the most glaring potential drawback is the
scale at which this attack can be performed — some PPI
affiliate programs expect to be provided with hundreds
if not thousands of new installs on a daily basis and the
Mechanical Turk worker pool can not sustain such a rate.
We envision Mechanical Turk exploitation to be a sup-
plementary infection stream, not necessarily an affiliate’s
sole vector.

Notwithstanding the low rate of infection, it is also
fully possible that the startup cost of this exploitation
vector would outweigh the marginal profits per infected
host, even over long timescales. Additional data on the
long-term dynamics of the Mechanical Turk workforce

5http://turkers.proboards.com

are needed to determine the asymptotic rate of new host
acquisition.

Finally, this attack relies upon stealth and to a certain
extent novelty to stay operational; discovery of new ex-
ploits and crafting of believable HITs would be necessary
on an ongoing basis to maintain profitability. Even in
the face of being detected and shut down by Amazon,
however, it is not clear that creating new identities to act
as requesters on Mechanical Turk would pose an insur-
mountable challenge to a motivated attacker.

6.2 Other capabilities
Although we have only studied the use of Mechanical
Turk to compromise machines in the context of PPI, it is
worth noting that this is but one instance of surreptitiously
using a worker’s machine to perform a task in exchange
for a small monetary reward. Here we discuss several
other possible improvements and attack vectors which
might warrant future study.

A first optimization is that Mechanical Turk allows
HITs to be targeted geographically. In this way, one could
completely avoid paying workers in low-value countries,
or tailor specific job costs to individual regions to maxi-
mize task completion while minimizing monetary outlay
on a per-country basis.

One guarantee can be made about the machine be-
ing compromised through this vector: that its user has a
worker account on Mechanical Turk. This tautological ob-
servation means that rather than selling installs in the PPI
market (or perhaps in addition to doing so), the worker’s
Mechanical Turk account could be looted, transferring
the worker’s earned rewards to the attacker’s bank. For
workers who derive a significant fraction of their income
from Mechanical Turk — which could be as high as 50%
of the workers [16] — this could be quite lucrative. It is
also much higher risk since workers are likely to notice
the missing money and complain to Amazon.

Additionally, a malicious requester could also exploit
workers via a clickjacking attack, to force them to un-
knowingly click on hidden ads or Facebook “Like” but-
tons [27]. While Mechanical Turk has in the past been rife
with questionable or fraudulent HITs, the requester would
be explicitly instructing the worker to perform whatever
questionable task was desired [17]. In this format, a non-
questionable HIT would be served in order to entice the
user to fall victim to these attacks.

6.3 Possible solutions
At a fundamental level, the Mechanical Turk host com-
promise strategy relies upon the imbalance between the
selling price of a compromised host and the price of pur-
chasing access to a vulnerable machine. As our results
show, the current state of affairs is such that this attack is
economically viable under our set of assumptions. One

7

http://turkers.proboards.com

can imagine this imbalance being fixed in several ways:
Amazon could extend the capability of their Mechani-
cal Turk interface such that the iframe interface is no
longer needed or allowed; end-users could be educated
about keeping antivirus and web plugins up to date; or
browser developers could streamline the patching pro-
cess. All of these defenses rely on lowering the supply of
compromised hosts, when in fact it is the intersection of
supply and demand that makes this compromise strategy
viable.

Demand, in turn, can be lowered in many ways, includ-
ing making “cash-out” of compromised machines more
difficult through more stringent e-banking security, or
likewise lowering the profitability of other underground
enterprises such as pharmaceutical spam. Ultimately, an
approach that shifts both supply of and demand for com-
promised end hosts should be pursued if the security com-
munity wishes to effectively squelch the Internet’s under-
ground economy.

6.4 Legality and ethics
We conclude this section by discussing the legal and ethi-
cal issues which arose during the course of this work.

Even though U.S. law regarding the enforceability of
website terms of service is not settled, we were very care-
ful to strictly adhere to the Amazon Mechanical Turk Par-
ticipation Agreement [4] and general policies [3]. In par-
ticular, general policies forbid “HITs that require Workers
to download software.” Since all HITs by their very na-
ture require downloading HTML and other code run in
a web browser — even to view the preview — we inter-
pret code to mean code run on the computer, outside of a
browser context. To comply with this, we offer workers a
small bonus if they will download and run our (benign)
JScript code, but it is not required to complete the HIT.
The JavaScript run in the browser for plugin detection is
standard JavaScript used by, for example, the Electronic
Frontier Foundation.

Since an action may be unethical and yet legal, we
carefully considered what we were willing to do without
the workers’ knowledge, and for what we would ask for
explicit consent. Although we do not explain the full tech-
nical process or ramifications, we do explicitly inform the
user that we will be collecting non-personal information
about their browser as part of our survey. Before accept-
ing the HIT, the worker is informed that “the HIT page
will also collect non-personal information about your web
browser capabilities via JavaScript.”

When visiting any website, browsers provide a great
deal of information regarding the content they are willing
and able to display to the JavaScript served by the website.
In particular, when a worker see a preview of our HIT, a
webpage is fetched and displayed in a frame and at this
time, we could have collected most of the information of

interest, even if the Worker then chose not to accept the
HIT. Even though this would not violate the Participation
Agreement, we fell this is unacceptable as we would
be deriving a benefit from a worker without paying for
it. Therefore, no information is collected from workers’
browsers when they chose not to accept our HIT (other
than the fact that the HIT is not accepted).

When offering the bonus to run a program to determine
if the workers’ antivirus software is up to date, there is no
penalty for not opting in to this portion of the survey. Fur-
thermore, we clearly describe the purpose of the program
and suggest that the worker may inspect the program to
verify the veracity of our claim — the program is an un-
obfuscated 58-line human readable text file. There is no
deception in our description and after running the code,
workers can choose not to paste the results back into the
webpage.

Overall, we believe that our performance and disclo-
sure during these experiments are on sound ethical footing
because we (a) do not expose the user to any malicious
code, (b) do not collect any personally identifiable infor-
mation, and (c) do not collect any information until after
the user has been informed of our intent — either by the
HIT description or by the description of the bonus — and
accepted the HIT or the offer of a bonus.

Finally, we note that this work does not require hu-
man subjects approval as per federal regulations6 and our
institution’s guidelines.

7 Conclusions and future work
In this paper, we show that Mechanical Turk can prof-
itably be used as a vector for compromising high-value
computers for sale in the Pay-Per-Install market. The rate
at which machines can be compromised is too low for
Mechanical Turk to be a primary infection vector, but
it could be used to supplement a PPI affiliate’s primary
source of compromised machines. As a bonus, we col-
lected statistics on worker’s antivirus software as well as
their willingness to run arbitrary programs for a small re-
ward; we also corroborated browser plugin vulnerability
measurements taken by other researchers within a dif-
ferent population, suggesting their accuracy and general
applicability [29].

At the end of the day, Mechanical Turk is only one
simple way to drive traffic to our website. There are
many different ways to buy traffic [30] that could prove
even more effective in terms of cost per visit and quantity
of vulnerable machines. We leave to future work the
examination of the economic viability of purchasing other
types of traffic for host compromise.

6“Human subject means a living individual about whom an inves-
tigator. . . conducting research obtains (1) Data through intervention or
interaction with the individual, or (2) Identifiable private information,”
Protection of Human Subjects 45 C.F.R. §46.102(f) (2009).

8

Acknowledgments
We thank the anonymous reviewers for their helpful com-
ments. This paper benefited from discussions with Stefan
Savage, Hovav Shacham, and Geoffrey M. Voelker. This
material is based upon work supported by the National
Science Foundation under Grants No. CNS-0831532,
CNS-0964702, CNS-0963702, NSF-0433668, and NSF-
0831138; and by the Office of Naval Research under
MURI Grant No. N000140911081.

References
[1] Mustafa Acer and Collin Jackson. Critical vulnera-

bility in browser security metrics. In Collin Jackson,
editor, Proceedings of W2SP 2010. IEEE Computer
Society, May 2010.

[2] Gaurav Aggarwal, Elie Bursztein, Collin Jackson,
and Dan Boneh. An analysis of private browsing
modes in modern browsers. In Ian Goldberg, editor,
Proceedings of USENIX Security 2010. USENIX,
August 2010.

[3] Amazon Mechanical Turk General Policies.
https://www.mturk.com/mturk/help?
helpPage=policies.

[4] Amazon Mechanical Turk Participation Agree-
ment, April 2009. https://www.mturk.com/
mturk/conditionsofuse.

[5] David W. Baker, Steven M. Christey, William H.
Hill, and David E. Mann. The development of a
common enumeration of vulnerabilities and expo-
sures. In Deborah Frincke and Ming-Yuh Huang, ed-
itors, Proceedings of RAID 1999. IBM BRS/SANS,
September 1999.

[6] Adam Barth, Collin Jackson, and John C. Mitchell.
Robust defenses for cross-site request forgery. In
Paul Syverson and Somesh Jha, editors, Proceedings
of CCS 2008. ACM, October 2008.

[7] Juan Caballero, Chris Grier, Christian Kreibich, and
Vern Paxson. Measuring pay-per-install: The com-
moditization of malware distribution. In David Wag-
ner, editor, Proceedings of USENIX Security 2011.
USENIX, August 2011. To appear.

[8] Lydia B. Chilton, John J. Horton, Robert C Miller,
and Shiri Azenkot. Task search in a human compu-
tation market. In Raman Chandrasekar et al., editor,
Proceedings of HCOMP 2010, pages 1–9. ACM,
July 2010.

[9] Nicolas Christin, Serge Egelman, Timothy Vidas,
and Jens Grossklags. It’s all about the Benjamins:
An empirical study on incentivizing users to ignore
security advice. In George Danezis, editor, Proceed-
ings of FC 2011. IFCA, February 2011.

[10] Jia Deng, Wei Dong, Richard Socher, Li jia Li, Kai
Li, and Li Fei-fei. Imagenet: A large-scale hierarchi-
cal image database. In Irfan Essa, Sing Bing Kang,

and Marc Pollefeys, editors, Proceedings of CVPR
2009. IEEE Computer Society, June 2009.

[11] Peter Eckersley. How unique is your browser? In
Mikhail Atallah and Nick Hopper, editors, Proceed-
ings of PETS 2010, pages 1–18. Springer, July 2010.

[12] Ali Farhadi, Ian Endres, Derek Hoiem, and David
Forsyth. Describing objects by their attributes. In
Irfan Essa, Sing Bing Kang, and Marc Pollefeys,
editors, Proceedings of CVPR 2009. IEEE Computer
Society, June 2009.

[13] Jason Franklin, Vern Paxson, Adrian Perrig, and
Stefan Savage. An inquiry into the nature and causes
of the wealth of internet miscreants. In Proceedings
of CCS 2007, pages 375–388. ACM, October 2007.

[14] Eric Gerds. Browser plugin detection with Plug-
inDetect, March 2011. http://www.pinlady.
net/PluginDetect/.

[15] Lin-Shung Huang, Eric Y. Chen, Adam Barth, Eric
Rescorla, and Collin Jackson. Talking to yourself for
fun and profit. In Helen J. Wang, editor, Proceedings
of W2SP 2011. IEEE Computer Society, May 2011.

[16] Panagiotis G. Ipeirotis. Demographics of mechan-
ical turk. CeDER Working Papers CeDER-10-01,
Stern School of Business, March 2010.

[17] Panos Ipeirotis. Mechanical turk: Now with 40.92%
spam. http://behind-the-enemy-lines.
blogspot.com/2010/12/mechanical-
turk-now-with-4092-spam.html, Decem-
ber 2010.

[18] Collin Jackson, Adam Barth, Andrew Bortz, Wei-
dong Shao, and Dan Boneh. Protecting browsers
from DNS rebinding attacks. In Sabrina De Capi-
tani di Vimercati and Paul Syverson, editors, Pro-
ceedings of CCS 2007. ACM, October 2007.

[19] Kimberly. Cpalead sneaks into Amazon Mechan-
ical Turk marketplace, August 2010. Online:
http://stopmalvertising.com/spam-
scams/cpalead-sneaks-into-amazon-
mechanical-turk-marketplace.html.

[20] Nicholas Kolakowski. Amazon.com advo-
cates crowdsourcing, Mechanical Turk in NYC.
eWeek.com, November 2009.

[21] Gabriele Paolacci, Jesse Chandler, and Panagiotis G.
Ipeirotis. Running experiments on amazon mechan-
ical turk. Judgment and Decision Making, 5(5),
August 2010.

[22] Jason Pontin. Artificial intelligence, with help from
the humans. New York Times, March 2007.

[23] Joel Ross, Lilly Irani, M. Six Silberman Andrew Zal-
divar, and Bill Tomlinson. Who are the crowdwork-
ers?: Shifting demographics in Mechanical Turk.
In Proceedings of CHI EA 2010, pages 2863–2872.
ACM, April 2010.

[24] Paul Ruvolo, Jacob Whitehill, and Javier R. Movel-

9

https://www.mturk.com/mturk/help?helpPage=policies
https://www.mturk.com/mturk/help?helpPage=policies
https://www.mturk.com/mturk/conditionsofuse
https://www.mturk.com/mturk/conditionsofuse
http://www.pinlady.net/PluginDetect/
http://www.pinlady.net/PluginDetect/
http://behind-the-enemy-lines.blogspot.com/2010/12/mechanical-turk-now-with-4092-spam.html
http://behind-the-enemy-lines.blogspot.com/2010/12/mechanical-turk-now-with-4092-spam.html
http://behind-the-enemy-lines.blogspot.com/2010/12/mechanical-turk-now-with-4092-spam.html
http://stopmalvertising.com/spam-scams/cpalead-sneaks-into-amazon-mechanical-turk-marketplace.html
http://stopmalvertising.com/spam-scams/cpalead-sneaks-into-amazon-mechanical-turk-marketplace.html
http://stopmalvertising.com/spam-scams/cpalead-sneaks-into-amazon-mechanical-turk-marketplace.html

lan. Exploiting structure in crowdsourcing tasks via
latent factor models. Technical Report TR2010.01,
Machine Perception Laboratory, 2010.

[25] M. Six Silberman, Lilly Irani, and Joel Ross. Ethics
and tactics of professional crowdwork. XRDS, 17
(2):39–43, December 2010.

[26] Kevin Stevens. The underground economy
of the pay-per-install (PPI) business, Septem-
ber 2009. http://www.secureworks.com/
research/threats/ppi.

[27] Paul Stone. Next generation clickjacking. Presented
at BlackHat Europe 2010, April 2010.

[28] Peter Welinder, Steve Branson, Takeshi Mita,
Catherine Wah, Florian Schroff, Serge Belongie,

and Pietro Perona. Caltech-UCSD birds 200. Tech-
nical Report CNS-TR-2010-001, California Institute
of Technology, 2010.

[29] Gilbert Wondracek, Thorsten Holz, Christian Plazer,
Engin Kirda, and Christopher Kruegel. Is the inter-
net for porn? an insight into the ouline adult industry.
In Tyler Moore, editor, Proceedings of WEIS 2010.
ACM, June 2010.

[30] Qing Zhang, Thomas Ristenpart, Stefan Savage,
and Geoffrey M. Voelker. Got traffic? An evalu-
ation of click traffic providers. In Carlos Castillo
et al., editor, Proceedings of WebQuality 2011.
WICOW/AIRWeb, March 2011.

10

http://www.secureworks.com/research/threats/ppi
http://www.secureworks.com/research/threats/ppi

	Abstract
	Introduction
	Related Work
	Methodology
	The HITs
	Vulnerability data collection

	Plugin Vulnerability Information
	Results
	Infection cost
	Infection rate
	Antivirus and program execution statistics

	Discussion
	Drawbacks
	Other capabilities
	Possible solutions
	Legality and ethics

	Conclusions and future work
	Acknowledgments
	References

