
A fistful of red-pills:
How to automatically generate procedures to detect CPU emulators

Roberto Paleari† Lorenzo Martignoni‡ Giampaolo Fresi Roglia† Danilo Bruschi†
† Dipartimento di Informatica e Comunicazione ‡ Dipartimento di Fisica

Università degli Studi di Milano Università degli Studi di Udine
{roberto,gianz,bruschi}@security.dico.unimi.it lorenzo.martignoni@uniud.it

Abstract

Malware includes several protections to complicate their
analysis: the longer it takes to analyze a new malware
sample, the longer the sample survives and the larger
number of systems it compromises. Nowadays, new mal-
ware samples are analyzed dynamically using virtual en-
vironments (e.g., emulators, virtual machines, or debug-
gers). Therefore, malware incorporate a variety of tests
to detect whether they are executed through such envi-
ronments and obfuscate their behavior if they suspect
their execution is being monitored. Several simple tests,
we indistinctly call red-pills, have already been proposed
in literature to detect whether the execution of a program
is performed in a real or in a virtual environment. In this
paper we propose an automatic and systematic technique
to generate red-pills, specific for detecting if a program
is executed through a CPU emulator. Using this tech-
nique we generated thousands of new red-pills, involving
hundreds of different opcodes, for two publicly available
emulators, which are widely used for analyzing malware.

1 Introduction

With the development of the underground economy, ma-
licious programs are becoming very profitable products;
they are used to spam, to perpetrate web frauds, to
steal personal information, and for many other nefarious
tasks [20]. The longer a malicious program survives, the
larger the diffusion and the number of victims, and the
higher the financial income derived from the malicious
activities accomplished by the program. Thus, to im-
prove survivability and to maximize the financial gain,
malware developers are packaging their software with
protections to impede, or at least to make more com-
plex, the analysis (e.g., packing, polymorphism, and anti-
debugging techniques).

To face the increasing complexity of malicious soft-
ware, the research community relays on dynamic

behavior-based analysis techniques: the suspicious pro-
gram is executed and monitored to analyze its behav-
ior. Several architectures have been proposed to perform
such kind of analysis. Nevertheless, the most widely
adopted solution is based on emulated (or virtualized)
environments, that offer realistic execution contexts, and
provide fine grained monitoring capabilities. Typically,
these infrastructures are built on top of off-the-shelf CPU
emulators [3, 8], extended with introspection functional-
ity [2, 4, 10, 22, 23].

In order to be employed for malware analysis, a CPU
emulator should not only provide a bulletproof separa-
tion between the host and guest systems, but it should
also operate transparently. That is, a program should
not be able to notice at all whether it is run in a native
execution environment (i.e., the physical CPU) or in an
emulated environment [5]. The majority of victims of
malware are normal end-users with very modest com-
puter skills and consequently they do not run emulators
or similar tools. Therefore, an analyzed malicious pro-
gram, able to detect the presence of an emulator, could
consider such presence very dangerous for its survivabil-
ity and consequently would alter its behavior to thwart
the analysis.

Developers of malware have built a large arsenal of
tools and techniques to complicate the analysis of their
software. In this arsenal we find a suite of tests that a
program can perform to detect if it is run inside an emu-
lator (or a virtual machine) and thus very likely analyzed
by malware analysts. We refer to such tests as red-pills.
Red-pill was the name of one of the first tests developed
to detect the presence of a virtualized environment (e.g.,
VMWare) [18]. We use this term to indistinctly refer to
the entire class of tests that can be used to achieve the
same goal. Red-pills are typically based on one or more
machine instructions that return particular information
about the system (e.g., the address of the interrupt de-
scriptor table) or that behave differently when executed
in a real system and when executed in an emulated one.

A sample red-pill. An example of a red-pill, able to
detect if a program is run inside QEMU [3], is the byte
sequence 08 7c e3 04, corresponding to the x86 as-
sembly instruction or %bh,0x04(%ebx) (our archi-
tecture of reference is IA-32 and we adopt the AT&T
assembly syntax). The instruction computes the bit-wise
or of the value in the register %bh with the value, in
memory, at address %ebx + 0x04, and stores the re-
sult in the latter. A bug in QEMU causes the instruction
to reference the wrong memory address. Therefore, the
red-pill consists in executing such instruction and then
checking the result of the computation. If a page fault ex-
ception occurs, or if the value at address %ebx + 0x04
does not correspond to the expected result of the logical
operation, the attacker can conclude that the instruction
is executed within QEMU. Otherwise, he can conclude
that the instruction is either executed in the physical CPU
or in another emulator.

Our contribution. Researchers have put a lot of efforts
in studying and mitigating the various mechanisms a ma-
licious application could use to detect the presence of an
emulated execution environment [14, 15, 17]. The tech-
niques discovered so far have been found manually, ei-
ther by analyzing the code of the emulator or by accident.

In this paper we present a fully automated technique
for generating red-pills, specific for detecting when a
program is executed inside a CPU emulator. Our ap-
proach is based on EmuFuzzer, a testing methodology
specific for CPU emulators [9], that is in turn based on
differential and fuzz testing [11, 12]. Given a physical
CPU P and a CPU emulator E, that emulates P , the red-
pills generated using our methodology are based on se-
quences of bytes (representing valid or invalid instruc-
tions) that trigger defects in the implementation of E
and that produce behaviors that differ from the behaviors
found in P . We identify sequences of bytes that produce
different behaviors in P and E by executing the same
sequence in both execution environments and by com-
paring their state at the end of the execution. Any such
sequence is a candidate red-pill and is transformed au-
tomatically into a program that executes the sequence of
bytes, analyzes the state of the environment at the end
of the execution, and returns 0 or 1 according to the re-
sult of the analysis. Candidate red-pills are finally tested,
by running each program in multiple physical CPUs and
multiple versions of the emulator, to detect whether they
are reliable or not.

It is worth noting that our technique, besides being
able to generate red-pills based on bugs in emulators,
can also generate red-pills based on peculiar system
configurations, necessary to virtualize environments on
virtualization-unfriendly CPUs. That is, our technique
can also generate red-pills like the original one presented

by Rutkowska [18].

Our results. We have implemented a prototype tool able
to automatically generate red-pills for detecting when a
program is executed in two state-of-the-art IA-32 CPU
emulators, namely QEMU and BOCHS [3, 8], which are
widely adopted for malware analysis. Using this pro-
totype we discovered a large number of previously un-
known red-pills. Overall, we have discovered 20728 red-
pills for detecting QEMU and 2973 for detecting and
BOCHS. These red-pills involve instructions with 875
and 171 different numerical opcodes respectively.

2 Automatic generation of red-pills

Our technique to generate red-pills consists in two main
steps: (I) generation of candidate red-pills and (II) de-
tection and discharge of unreliable red-pills. The details
described in this paper are specific for IA-32. Neverthe-
less, our technique is generic and could be used also with
other architectures.

2.1 Finding candidate red-pills
Our technique to generate candidate red-pills is based on
EmuFuzzer [9], a testing methodology specific for CPU
emulators that aims at detecting improper behaviors in
emulators. This methodology allows us to identify CPU
states that cause different behaviors in the physical and in
the emulated CPU. We exploit CPU states that produce
different behaviors in the two execution environments to
construct candidate red-pills.

Detecting if a given CPU state is a candidate red-pill.
A candidate red-pill is a CPU state (or configuration) that
causes P , the physical CPU, and E, the emulated CPU,
to behave differently. Let s = (pc, r,m, e) be a CPU
state, where pc is the program counter, r is the state of the
CPU registers (i.e., the value assigned to each register),
m is the state of the memory (i.e., the content of the en-
tire memory), and e is the exception state (i.e., indicates
if a CPU exception has occurred during the execution of
the last instruction). We say that E emulates faithfully P
if, given the same initial CPU state sP = sE , the execu-
tion of the code pointed by pc in both P and E results
in the same output state s′P = s′E . Practically speaking
that means that the two execution environments behave
equivalently and are thus indistinguishable. If instead E
does not faithfully emulates P , we expect the execution
of the code pointed by pc to result in two different output
states s′P 6= s′E . Therefore, from the output state it is
possible to tell which of the two execution environments
executed the code. Any input state sP = sE is a candi-
date red-pill if, after the execution of the code pointed by

CPU state (r)
eax 0x00000025
ebx 0x08090004

Memory state (m)
0x08080000 mov $0x1,%eax
0x08080005 or %bh,0x4(%ebx)
0x08080009 xor %eax,%eax
... ...
0x08090008 11 22

Exception state (e)
⊥

sE

E

CPU state (r)
eax 0x00000025
ebx 0x08090004

Memory state (m)
0x08080000 mov $0x1,%eax
0x08080005 or %bh,0x4(%ebx)
0x08080009 xor %eax,%eax
... ...
0x08090008 11 22

Exception state (e)
⊥

sP

P

CPU state (r)
eax 0x00000001
ebx 0x08090004

Memory state (m)
0x08080000 mov $0x1,%eax
0x08080005 or %bh,0x4(%ebx)
0x08080009 xor %eax,%eax
... ...
0x08090008 11 22

Exception state (e)
⊥

s′
E

E

CPU state (r)
eax 0x00000001
ebx 0x08090004

Memory state (m)
0x08080000 mov $0x1,%eax
0x08080005 or %bh,0x4(%ebx)
0x08080009 xor %eax,%eax
... ...
0x08090008 11 22

Exception state (e)
⊥

s′
P

P

(a)

CPU state (r)
eax 0x00000001
ebx 0x08090004

Memory state (m)
0x08080000 mov $0x1,%eax
0x08080005 or %bh,0x4(%ebx)
0x08080009 xor %eax,%eax
... ...
0x08090008 11 22

Exception state (e)
⊥

sE

E

CPU state (r)
eax 0x00000001
ebx 0x08090004

Memory state (m)
0x08080000 mov $0x1,%eax
0x08080005 or %bh,0x4(%ebx)
0x08080009 xor %eax,%eax
... ...
0x08090008 11 22

Exception state (e)
⊥

sP

P

CPU state (r)
eax 0x00000001
ebx 0x08090004

Memory state (m)
0x08080000 mov $0x1,%eax
0x08080005 or %bh,0x4(%ebx)
0x08080009 xor %eax,%eax
... ...

0x08090008 11 22

Exception state (e)
⊥

sE
′

E

CPU state (r)
eax 0x00000001
ebx 0x08090004

Memory state (m)
0x08080000 mov $0x1,%eax
0x08080005 or %bh,0x4(%ebx)
0x08080009 xor %eax,%eax
... ...

0x08090008 11 26

Exception state (e)
⊥

sP
′

P

(b)

Figure 1: Comparison of the behaviors observed in the physical (P) and in the emulated (E) execution environments
for two different input states: (a) no deviation in the behavior is observed, (b) the wrong memory address is referenced
and an incorrect result is computed (highlighted in gray).

pc in P and E, s′P 6= s′E . Note that we do not consider
information about the state of the CPU which are not di-
rectly observable by a program (e.g., difference in the
content of the caches and difference in the time requested
to execute a particular instruction). However, such infor-
mation could give further opportunities to detect when a
program is not run in a physical environment.

Figure 1 shows how our technique to detect candidate
red-pills works in practice. To ease the representation in
the figure we report only meaningful state information,
we represent the program counter by underlying the in-
struction it is pointing to, and we overlap the states if
they do not differ. The first initial CPU state is sE = sP

(Figure 1(a)), where the program counter points to the in-
struction mov $0x1,%eax. We initialise P and E and
execute in both the aforementioned instruction (the ex-
ception state e =⊥ denotes that the CPU has not raised
any exception). At the end of the execution of the in-
struction we compare the state of the two execution en-
vironments. We observe that s′E corresponds to s′P and
therefore we conclude that the chosen initial state does
not allow to distinguish between the two execution en-
vironments. The second initial CPU state is sP = sE

(Figure 1(b)), where the program counter points to the
instruction or %bh,0x4(%ebx). After having exe-
cuted the instruction in both execution environments, we
observe that sE

′ differs from sP
′: the value of the half-

word at address 0x4(%ebx) has been updated as ex-
pected in P , while the value of the half-word has re-
mained unvaried in E because the emulator dereferenced
a different half-word (not shown in the figure). The anal-
ysis of the state resulting from the execution of the code
pointed by the program counter in state sP can reveal in-
formation about the execution environments in which the
code is executed and therefore the state of the example is
a candidate red-pill. More details about our technique to
detect different behaviors in the physical and in the em-
ulated CPUs can be found in [9].

Generating input CPU states for candidate red-pills
detection. We address the problem of generating in-
put CPU states for candidate red-pills detection using a
mixed technique: data are generated randomly and the
code is generated with the help of the CPU, to include
only valid instructions and with specific operands.

We leverage the physical and the emulated CPUs to
identify sequences of bytes encoding instructions valid

for at least one of the two CPUs and to interpret the for-
mat of the instructions found. We treat the CPU as a or-
acle: if the CPU executes the sequence of bytes we con-
sider the string as a valid instruction. Such approach al-
lows us to discard all input states that would produce the
same predictable output states (i.e., invalid instruction
exception in both environments). We also use the CPU
to decode instructions and to systematically explore the
instruction set. The decoding permits us to narrow the
state space by considering only few peculiar instances of
each instructions, instead of considering all the myriad of
possible combination of opcodes and operands. Thus, we
can search for candidate red-pills in the entire instruction
set of the architecture. For each opcode found, we gener-
ate a small number of instruction instances, by choosing
empirically only those operands that are more likely to
exercise the largest class of behaviors of the instruction
(e.g., to cause an overflow or to cause an operation with
carry).

The decoding of an instruction is trial-based: we mu-
tate an executable sequence of bytes, we query the oracle
to see which mutations are valid and which are not, and
from the result of the queries we infer the format of the
instruction. Such CPU centric approach guarantees com-
plete results; approaches based on assemblers (or disas-
semblers) instead might not allow to generate exotic, but
valid, instructions. Mutations are generated following
specific schemes that reflect the ones used by the CPU to
encode operands (e.g., Mod R/M) [7]. The idea is that,
if a sequence of bytes contains an operand, we expect all
the mutations applied to the bytes of the operand, and
conforming with its encoding scheme, to be valid (i.e.,
the CPU executes only valid mutations). If all the muta-
tions conforming with a particular encoding scheme lead
to valid instructions and some mutations generated with
the other schemes do not, we conclude that the mutated
bytes of the instruction encode the operand and the mu-
tation scheme successfully applied represents the type
of the operand. Moreover, the bytes that precede the
operand constitute the opcode of the instruction. More
details about our technique to explore the instruction set
space of the architecture and to generate valid instruc-
tions for the testing without redundancy can be found
in [9].

Transforming candidate red-pills into programs.
Each candidate red-pill is translated into a program RP
(or procedure) that executes the code of the pill in a
particular CPU state and analyzes the resulting state to
guess in which execution environment the execution took
place. The program RP takes no input and returns 0 if it
is executed on the physical CPU and 1 otherwise. Given
the initial state sP = sE and the diverging states ob-
served in P and E, sP

′ and sE
′, the RP program oper-

// Catch page-fault exceptions
void pf_handler(int i) {

exit(1);
}

void main() {
// Initialize the state:
// - registers
asm("mov $0x1, %eax");
asm("mov $0x08090004, %ebx");
// - memory
memcpy(0x08090000, "...\x11\x22...", 4096);
// - setup handlers to catch exceptions
signal(SIGSEGV, pf_handler);

// Execute the code: or %bh, 0x4(%ebx)
asm(".byte 0x08,0x7c,0xe3,0x04");

// Compare the state (only the potentially
// differing bytes) and exit accordingly
if (memcmp(0x08090008, "\x11\x26", 2) == 0)

exit(0);
else

exit(1);
}

Figure 2: Program for the candidate red-pill of Fig-
ure 1(b)

ates as follows:

1. initializes the state of the CPU to sP ;

2. executes the instruction pointed by pc;

3. compares the state resulting from the execution with
sP

′;

4. returns 0 if the comparison succeeds and 1 other-
wise.

Considering that the syntax of the instructions in can-
didate red-pills is known and that the operands of these
instructions are also well known, the CPU state sP can
be minimized to include only meaningful state infor-
mation, necessary to reproduce the environments re-
quired to execute each instruction. For example, for the
byte sequence 08 7c e3 04 (representing the instruc-
tion or %bh, 0x4(%ebx)), our instruction decoder
is able to decode the two operands: a register and a mem-
ory address encoded in Mod R/M encoding [7]. Thus, we
can predict which memory pages the instruction will ac-
cess, but also manipulate the value of the registers and
the content of the memory to force the instruction to ac-
cess a particular and predetermined page if needed. The
practical advantage is that when encoding sP and sP

′

all non-meaningful state information (e.g., the memory
pages that will not be accessed by the instruction) can be
ignored. This approach allows us to translate red-pills
in very small C programs (with in-lined assembly); their
current average size is about 94 LOC.

Figure 2 shows a simplified RP program for the can-
didate red-pill of Figure 1(b). The program shown in
figure further optimizes the comparison of the resulting
state with the expected state (sP

′) by comparing only the
bytes of the memory where it was found the difference.

2.2 Discarding unreliable red-pills

Some of the candidate red-pills found could be unre-
liable: the output produced is correct only for certain
physical CPUs and certain versions of the emulator, but
not generally. Unreliable red-pills are typically caused
by slightly different versions of the microcode of the
CPU and by different sets of extensions supported by
the CPU (e.g., SSE2, SSE3, SSE4). Different versions
of the microcode can cause different behaviors of the
CPU and thus different observable output states for the
same input state. For example, for logical instructions
the IA-32 specification does not state explicitly the ef-
fects on certain status flags (e.g., the value of the flag AF
is undefined for the instruction and). It is reasonable
to expect different versions of the microcode to produce
different results in such a situation. Moreover, certain
CPUs can support instructions that others do not. For ex-
ample, modern CPUs support different extended instruc-
tion sets (e.g., the SIMD instruction set), not supported
by older CPUs. Red-pills based on instructions belong-
ing to extended instruction sets are clearly unreliable. On
the other hand, different versions of a CPU emulator can
present differences in the emulation code of certain in-
structions (e.g., due to bug fixes or features addition) and
thus to give rise to unreliable red-pills.

Given n different physical CPUs, for the same archi-
tecture (e.g., IA-32), P1, P2, . . . , Pn, we say that a can-
didate red-pill RP is unreliable if: ∃ Pi, i ∈ {1, . . . , n},
such that RP returns 1 (emulated CPU), instead of 0
(physical CPU), when executed in Pi. Similarly, given
m different versions of the same CPU emulator (e.g.
QEMU), E1, E2, . . . , Em, we say that a candidate red-
pill RP is unreliable if: ∃ Ej , j ∈ {1, . . . ,m}, such that
RP returns 0, instead of 1, when executed in Ej . Since
our goal is to discover red-pills capable of identifying
reliably an emulator, we discard those that detect some
versions of the emulator, but do not detect other versions.
However, if one were interested in detecting the partic-
ular version of the emulator used for the analysis (e.g.,
to mount an attack), red-pills should be selected using
different criteria.

In practice, the detection of unreliable red-pills is a
straightforward task. It is sufficient to take each candi-
date red-pill program generated and to run it in different
machines and different versions of the emulator. If in any
of the environments the results obtained differ from the
expected one, the red-pill is considered unreliable and

IA-32 QEMU BOCHS
P 4 (2.0GHz) 0.8.2 (4) 2.3 (2)
P 4 (3.0GHz) 0.9.1 (6) 2.3.6 (4)

P Mobile (1.3GHz) 0.9.1 (10) 2.3.7 (1)
Celeron (2.66GHz) 0.10.4 (1) 2.3.7 (20090416-1)
Core-Duo (2.1GHz) 0.10.5 (1)

Xeon (2.8GHz)

Table 1: Environments used for unreliable red-pills de-
tection. The numbers associated with the two emulators
represent the release number of the GNU/Debian pack-
ages we used for the evaluation.

thus discarded.

3 Evaluation

We evaluated our technique for automatic red-pills
generation with QEMU and BOCHS, two CPU em-
ulators widely used for malware analysis. However,
the same approach could be used to generate redpills
to detect CPU virtualizers (e.g., VirtualBox [19] and
VMWare [21]). Overall, we detected 20728 reliable red-
pills for QEMU and 2973 for BOCHS. The evaluation,
in total took about two hours, and required no manual
intervention. These numbers testify the effectiveness of
the proposed approach and the importance of developing
transparent CPU emulators: malware developers have
too many opportunities to detect environments used to
analyze their software.

For candidate red-pills detection we generated in total
more than 2 millions of different input CPU states and
then we selected a random subset of 50.000 CPU states.
As physical CPU we used an Intel Pentium 4 (3.0GHz)
and as emulated CPU we used QEMU vanilla release
0.9.1 and BOCHS vanilla release 2.3.6. For unreliable
red-pills detection instead we used the environments re-
ported in Table 1.

Table 2 reports the most important numbers of our
evaluation. For each analyzed emulator the table re-
ports the total number of candidate red-pills found, the
number of reliable red-pills, and the number of unique
pills, counted as the number of distinct numerical op-
codes (recall that for each opcode we generated multi-
ple instruction instances using different operands). Op-
codes were identified using the algorithm described in
Section 2.1. For QEMU, we detected 21713 candidate
red-pills, 20728 of which turned out to be reliable. The
latter were based on instructions involving 875 differ-
ent opcodes. For BOCHS, we detected 4671 candidate
red-pills, 2973 of which turned out to be reliable and in-
volved 171 different opcodes.

Table 3 reports a breakdown of the unique reliable red-
pills discovered, divided into classes according to the dif-

Emulator # candidate # reliable # unique
red-pills red-pills red-pills

QEMU 21713 20728 875
BOCHS 4671 2973 171

Table 2: Results of the evaluation

Emulator Registers Memory FPU Exceptions
QEMU 55 24 660 235
BOCHS 1 0 3 171

Table 3: Breakdown of the unique reliable red-pills

ference in the CPU state on which the various red-pills
are based on. Note that some red-pills might belong to
multiple classes. For example, the sample red-pill of Fig-
ure 2 belongs to the “memory” class. The “FPU” class
encompasses all red-pills that exploit differences in the
registers of the Floating Point Unit, while the “registers”
class encompasses those that exploit differences in gen-
eral purpose registers. Figure 3 instead reports some of
the red-pills we found in the two CPU emulators ana-
lyzed.

To demonstrate the effectiveness of our red-pills at
evading widely used system for malware analysis we
tested them against two public malware analysis ser-
vices, namely Anubis [1] and Renovo [16]. Both ser-
vices are based on QEMU, although we do not know on
which versions of the emulator they are based on. We
developed a small set of sample programs, each of which
contained two main disjoint program paths, with easily
distinguishable behaviors, and a different red-pill proce-
dure, such that the path executed at run-time depended
exclusively on the return value of the red-pill procedure.
We submitted these programs to the aforementioned ser-
vices. In all cases the behavior described in the report of
the analysis corresponded to that associated to the pro-
gram path triggered when the return value of the red-pill
procedure was 1 (i.e., emulated environment). This ex-
periment demonstrates the efficacy of our red-pills and
also highlights their dangerousness.

4 Related work
Several researchers have analyzed state-of-the-art CPU
emulators and virtualizers to find unfaithful behaviors
and the corresponding red-pill programs [6, 13, 15, 18].
These results were obtained through a manual scrutiny
of the source code or rudimentary fuzzers, and thus are
largely incomplete. The methodology presented in this
paper instead is automatic and allows to systematically
explore the entire instruction set of the architecture to
detect instructions that can be used to detect the pres-
ence of a CPU emulator, and to generate the appropriate
procedure.

QEMU
bsf -0xc(%esp),%edi Produces differences in

some status flags
\xb9\xff\xff\x00
\x00\x0f\x22

Raises a general protec-
tion fault exception in-
stead of an illegal opera-
tion exception

BOCHS
mulps -0x4(%esp),%xmm1 Does not raise a general

protection fault excep-
tion if the source operand
is not aligned

push $0x407d Alters inexplicably the
state of the FPU

Figure 3: Examples of some of the red-pills discovered

The complementary problem, that is developing a
completely transparent environment to analyze malicious
programs, has been addressed by Dinaburg et al. [5]. The
environment they proposed and developed, called Ether,
is based on a CPU virtualizer and adopts the virtualiza-
tion facilities offered by modern CPUs. In such an envi-
ronment, instructions are executed directly on the phys-
ical CPU and thus the state resulting from the execution
of each instruction necessarily corresponds to the state
that would result from the execution of the same instruc-
tion without the virtualizer. Furthermore, by adopting the
virtualization facilities available in modern CPUs, non-
virtualizable instructions do not open opportunities for
detecting the analysis environment because they do not
need manual handling [17]. Nevertheless, CPU emula-
tor facilitates fine-grained analysis (e.g., hooking of all
machine instructions) because the semantics of each ma-
chine instructions can be easily extended to incorporate
other functionality. Analyzers based on virtualization
instead require the use of debugging exceptions, which
could introduce a high overhead.

5 Conclusions

CPU emulators are very powerful tools and are widely
used to analyze malicious programs. In this paper, we
presented an automatic technique for generating red-
pills, that is, programs (or procedures) capable to detect
whether they are executed in a CPU emulator or directly
in a physical CPU. The proposed technique has been im-
plemented in a prototype, which we used to discover new
red-pills for detecting two state-of-the-art IA-32 CPU
emulators, namely QEMU and BOCHS. We discovered
thousands of new red-pills, involving hundreds of differ-
ent opcodes.

References
[1] Anubis: Analyzing Unknown Binaries. http://anubis.

iseclab.org/.

[2] BAYER, U., KRUEGEL, C., AND KIRDA, E. TTAnalyze: A Tool
for Analyzing Malware. In 15th Annual Conference of the Euro-
pean Institute for Computer Antivirus Research (EICAR) (2006).

[3] BELLARD, F. QEMU, a fast and portable dynamic translator. In
Proceedings of the annual conference on USENIX Annual Tech-
nical Conference (ATEC) (Berkeley, CA, USA, 2005), USENIX
Association.

[4] BÖHNE, L. Pandora’s Bochs: Automatic Unpacking of Malware.
Master’s thesis, University of Mannheim, Jan. 2008.

[5] DINABURG, A., ROYAL, P., SHARIF, M., AND LEE, W. Ether:
Malware Analysis via Hardware Virtualization Extensions. In
Proceedings of the 15th ACM conference on Computer and com-
munications security (2008).

[6] FERRIE, P. Attacks on Virtual Machine Emulators. Tech. rep.,
Symantec Advanced Threat Research, 2006.

[7] INTEL. Intel 64 and IA-32 Architectures Software Developer’s
Manual, Nov. 2008. Instruction Set Reference.

[8] LAWTON, K. P. Bochs: A Portable PC Emulator for Unix/X.
Linux Journal (Sept. 1996).

[9] MARTIGNONI, L., PALEARI, R., FRESI ROGLIA, G., AND BR-
USCHI, D. Testing CPU emulators. In Proceedings of the 2009
International Conference on Software Testing and Analysis (IS-
STA), Chicago, Illinois, U.S.A. (July 2009), ACM. To appear.

[10] MARTIGNONI, L., STINSON, E., FREDRIKSON, M., JHA, S.,
AND MITCHELL, J. C. A Layered Architecture for Detecting
Malicious Behaviors. In Proceedings of the International Sym-
posium on Recent Advances in Intrusion Detection (RAID) (Sept.
2008), Lecture Notes in Computer Science, Springer.

[11] MCKEEMAN, W. M. Differential Testing for Software. Digital
Technical Journal 10, 1 (1998).

[12] MILLER, B. P., FREDRIKSON, L., AND SO, B. An Empirical
Study of the Reliability of UNIX Utilities. Communications of
the ACM 33, 12 (December 1990).

[13] ORMANDY, T. An Empirical Study into the Security Exposure
to Host of Hostile Virtualized Environments. In Proceedings of
CanSecWest Applied Security Conference (2007).

[14] QUIST, D., AND SMITH, V. Detecting the Pres-
ence of Virtual Machines Using the Local Data Table.
http://www.offensivecomputing.net/files/
active/0/vm.pdf.

[15] RAFFETSEDER, T., KRUEGEL, C., AND KIRDA, E. Detecting
System Emulators. In Proceedings of Information Security Con-
ference (ISC 2007) (2007), Springer-Verlag.

[16] Renovo: Hidden Code Extraction for Packed PE files. https:
//aerie.cs.berkeley.edu/.

[17] ROBIN, J. S., AND IRVINE, C. E. Analysis of the Intel Pentium’s
Ability to Support a Secure Virtual Machine Monitor. In Pro-
ceedings of the 9th conference on USENIX Security Symposium
(USENIX’00) (Berkeley, CA, USA, 2000), USENIX Association.

[18] RUTKOWSKA, J. Red Pill. . . or how to detect VMM using (al-
most) one CPU instruction. http://invisiblethings.
org/papers/redpill.html.

[19] SUN MICROSYSTEMS, INC. Virtualbox. http://www.
virtualbox.org/.

[20] SYMANTEC INC. Symantec internet security threat report: Vol-
ume XIV. Tech. rep., Symantec Inc., Apr. 2009.

[21] VMWARE, INC. Vmware. http://www.vmware.com/.

[22] WILLEMS, C., HOLZ, T., AND FREILING, F. Toward automated
dynamic malware analysis using CWSandbox. IEEE Security and
Privacy 5, 2 (2007), 32–39.

[23] YIN, H., SONG, D., EGELE, M., KIRDA, E., AND KRUEGEL,
C. Panorama: Capturing System-wide Information Flow for Mal-
ware Detection and Analysis. In Proceedings of the 14th ACM
Conference on Computer and Communications Security, CCS,
Alexandria, VA, USA (2007), ACM.

