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Abstract

Polymorphic worms are self-replicating malware that

change their representation as they spread throughout

networks in order to evade worm detection systems. A

number of approaches to detect polymorphic worms have

been proposed. These approaches use samples of a poly-

morphic worm (and of benign traffic as well) to derive a

signature that can detect all instances of the worm with-

out producing excessive false positives. Even though

these systems claim to be able to generate signatures

for any type of worm, all the examples that are used to

show the ability to detect polymorphic worms are based

on exploits that target memory corruption vulnerabili-

ties. In this paper, we show how a different class of

worms, namely those based on web vulnerabilities and

scripting languages, can be much harder to detect than

“traditional” polymorphic worms. We developed a poly-

morphic engine for PHP code and we tested the ability

of state-of-the-art tools to detect this type of worm. The

results of our experiments show that a PHP-based poly-

morphic worm would be able to successfully evade ex-

isting signature generation systems.

Keywords: Polymorphic Worms, PHP, Attack Muta-

tions, Network Intrusion Detection, Signature Evasion.

1 Introduction

Polymorphic worms represent a serious threat [15]. As

worms, they are able to spread throughout a network in

a very limited amount of time [13, 16]; as polymorphic

malware, they are able to evade simple detection systems

and their signature generation components.

Even though large-scale, highly-polymorphic worms

have not yet appeared in the wild, there has been a sub-

stantial amount of research whose goal is to develop

techniques that can identify polymorphic worms in a re-

liable way [9, 8, 7].

These techniques have been implemented in tools that

appear to be able to generate signatures for polymorphic

worms by analyzing samples of both malicious and be-

nign traffic. Even though most systems claim to be able

to generate signatures for any type of worm, the exam-

ples used to evaluate the proposed techniques are always

based on worms that exploit memory corruption vulner-

abilities (e.g., a buffer/heap overflow or a format string

vulnerability) in order to execute arbitrary binary code.

For example the authors of Polygraph [9] claim that

they surveyed over fifteen known software vulnerabili-

ties, spanning a diverse set of operating systems and

applications, and found that nearly all require invariant

content in any exploit that can succeed. Nonetheless, the

system is then evaluated on attacks such as a hypothetical

worm (based on the Apache-Knacker vulnerability [4])

and the Lion worm (based on the BIND TSIG vulner-

ability [12]), both of which exploit memory corruption

vulnerabilities.

Similarly, in [8] the authors state that Hamsa is based

on the assumption that a worm must exploit one or more

server specific vulnerabilities. This constrains the worm

author to include some invariant bytes that are crucial

for exploiting the vulnerabilities. Even though, this claim

is rather general, the proposed technique is evaluated on

Code Red II, Apache-Knacker, ATPhttpd, and, in addi-

tion, on the CLET [6] and TAPiON [1] shellcode gener-

ation engines.

This lack of coverage of other possible types of worms

prompted us to try to understand if the assumptions made

by these approaches are valid for all types of worms.

Therefore, we developed a PHP-based worm that ex-

ploits a web-based vulnerability. Web-based vulnerabil-

ities are very common. A report published by Symantec

in March 2007 states that, out of the 2,526 vulnerabilities



that were documented in the second half of 2006, 66%

affected web applications [14], and many web-based vul-

nerabilities allow for arbitrary code execution.

Therefore, we developed a polymorphic engine for

PHP, we created a polymorphic worm that exploits an

arbitrary code execution vulnerability, and we evaluated

it with respect to two state-of-the-art tools for polymor-

phic worm detection, namely Polygraph and Hamsa. The

results show that our PHP-based worm is able to evade

detection by existing pattern extraction tools.

The contributions of this paper are the following:

• We developed PHolyP, a PHP polymorphic engine

that is able to encrypt a PHP payload and obfuscate

the corresponding decryption routine.

• We developed a polymorphic worm that exploits

a PHP arbitrary code execution vulnerability, and,

for the first time, we analyzed the ability of exist-

ing polymorphic worm detection systems to identify

this class of worms, showing that this type of worm

is able to evade detection by Hamsa and Polygraph.

The rest of this paper is structured as follows. In Sec-

tion 2, we present our PHP polymorphic engine. In Sec-

tion 3, we present how the detection systems being eval-

uated operate. Then, in Section 4, we describe our PHP-

based worm, and how we experimentally evaluated the

detection rate of the systems being analyzed. Section 5

presents related work on evasion of polymorphic worm

detectors. Finally, Section 6 briefly concludes.

2 PHolyP: A Polymorphic PHP En-

gine

In the virus literature, the term “polymorphism” de-

scribes an approach used to modify a virus’ code in order

to hide its presence from anti-virus software [3].

The same technique can be applied to any form of

malicious code. In particular, a polymorphic worm is a

worm that changes its appearance at each infection. In

general, this is achieved by encrypting the worm body

each time with a different key, and by appending (or

prepending) the code required to decrypt and execute the

payload. The encrypted body also carries a special mod-

ule (usually called polymorphic engine) that is responsi-

ble of generating a different decryption routine at each

infection.

A perfect polymorphic worm should not contain any

recurring pattern of bytes that can be matched by a

signature-based intrusion detection system. However,

writing a perfect polymorphic code is a very difficult

task.

For example, the results of a recent experiment [8]

have shown how even the best mutation engines avail-

able for binary code leave distinctive traces that can be

identified by a properly-written set of signatures.

Our target is to show how, using a web-based worm

written in a scripting language, it is possible to easily

achieve a level of polymorphism that can evade the cur-

rent state-of-the-art systems for polymorphic worm de-

tection.

To support our hypothesis, we designed and imple-

mented a polymorphic engine for the PHP language. The

engine was then integrated in an automated tool called

PHolyP. PHolyP takes a PHP source file as input and

generates the polymorphic version of the code as output.

Both the user code and the polymorphic engine are en-

crypted with a random key and the result is placed in a

temporary variable. At runtime, a decryption routine de-

crypts the payload, retrieves the original code, and finally

executes it through an eval statement.

The only part of the code that can potentially be

matched by a signature is the decryption routine. To

avoid the presence of any constant sequence of bytes, a

number of transformation techniques are applied to the

generation of the decryption code:

• Randomization of variables names:

the name of each PHP variable is substituted with a

random string of variable length.

• Randomization of the cryptographic routine:

the cryptographic algorithm used to encrypt/decrypt

the worm body is randomly chosen at each worm

propagation. The current implementation chooses

between a simple XOR-based encryption, DES,

3DES, BLOWFISH, and XTEA algorithms.

• Comment insertion:

randomly generated comments are inserted inside

each line of code. The comment position and the

delimiter character are also randomly chosen. For

example, the assignment

$X = 2;

can be obfuscated introducing a number of innocu-

ous comments as follows:

$X\*aB88*\=\*-&*\2;#blah

• Space separator substitution:

separator characters can either be removed, or re-



placed with an arbitrary number of spaces, tabs,

newlines, or any combination thereof.

• NOP insertion:

the code is modified by interleaving a number of

NOP-equivalent instructions with the legitimate de-

cryption code. A NOP-equivalent instruction is an

instruction that does not affect the execution of the

program. For example, fake assignments or useless

function calls can be inserted anywhere in the pro-

gram. A very simple and easily randomizable NOP-

like instruction can be generated as a consequence

of the fact that the PHP interpreter ignores any line

containing just a variable name or bare string. For

example:

$A = 1;
$B = 2;

becomes:

$A = 1;
$aX77_aA9AFF0fa_s;
$B = 2;
URqSbhgJ6ahoDlSY8;

• Instruction shuffling:

some of the decryption routine’s instructions can be

safely reordered without altering the code behavior.

For instance, the order in which variables are de-

clared does not affect the execution of the decryp-

tion routine.

• Function name randomization:

in PHP, function names are case-insensitive. This

allows the polymorphic engine to randomly change

the case of the letters that compose any function

name in the code.

• Code nesting:

in order to reduce the total number of semicolons,

the polymorphic engine collapses some of the de-

cryption instructions, nesting most of the instruction

together inside a single line. For example:

$x = "...";
$y = decrypt($x);
eval($y);

becomes:

eval(decrypt("..."));

• String delimiter substitution:

this simple transformation can be used to substitute

all the string delimiters with either single quotes or

double quotes. This can be very important, because

the frequent appearance of a specific type of quotes

would easily be detected by the signature generation

tools.

• Function calls through randomly split string vari-

ables:

another PHP feature that is very useful when obfus-

cating the code is the ability to invoke a function us-

ing a variable that contains the function name. For

example, in order to call the strlen function, in

PHP it is possible to use the following code:

$temp = "strlen";
$len = $temp("hello");

This functionality, combined with the fact that

strings can easily be obfuscated and split in many

different pieces, allows our polymorphic engine to

obfuscate each function call in a very effective way.

For example:

$x = strlen($y);

becomes:

$tmp1 = "e"."N";
$tmp2 = "S"."trL";
$f = $tmp2.$tmp1;
$x = $f($y);

While effective in obfuscating PHP code, some of the

previous transformations can leave in the program some

recognizable footprints (such as an anomalous number

of comment-delimiting characters). In order to avoid the

presence of these patterns, PHolyP applies only a ran-

dom subset of all the possible transformations to gener-

ate a certain worm instance. PHolyP does not, however,

attempt to evade anomaly detection (or other non-pattern

extraction) systems.

The current implementation of the PHolyP polymor-

phic engine consists of only 408 lines of PHP code.

3 Detection of Polymorphic Worms

Signature generation systems, such as Polygraph and

Hamsa, attempt to derive signatures for polymorphic

worms from pools of network traffic (reassembled ap-

plication layer traffic from a number of different network



connections). Before being fed to the signature gener-

ation system, a flow classifier separates network traffic

into two pools: the innocuous pool and the suspicious

pool. The innocuous pool contains traffic known to be

legitimate, while the suspicious pool contains traffic be-

lieved to contain worm instances.

The goal of signature generation is to output one or

more signatures which match a large fraction of the net-

work flows in the suspicious pool while matching at most

a very small fraction of the innocuous pool (0.001%

is typically considered acceptable). Failing to match a

worm instance is known as a false negative while match-

ing an innocuous flow is known as a false positive. In

the following, we use the terms false positive and false

negative to refer to both flows in the training pools and

flows in the testing pools.

Both Polygraph and Hamsa begin signature genera-

tion by extracting tokens (substrings) from the suspicious

pool when they appear in a fraction of flows greater than

some threshold (3 flows for Polygraph, 15% for Hamsa).

The systems differ in the way in which they handle to-

kens that are substrings of another token. Polygraph only

keeps such a token if its occurrence independent of the

other tokens is above the token extraction threshold. By

contrast, Hamsa keeps all tokens regardless of whether

or not they occur independently.

Both systems then attempt to find a combination of to-

kens that yields a good signature. The strategy employed

depends on the type of signature being generated.

• Polygraph Conjunction:

Polygraph’s Conjunction signatures consist of a set

of tokens. A flow matches a signature if, for each

token ti in the signature, ti is also contained in the

flow. A Conjunction signature for a single flow is

the set of tokens present in that flow. To generalize a

Conjunction signature to multiple flows, Polygraph

takes the intersection of the signatures for all flows

in question.

• Polygraph Token Subsequence:

Polygraph’s Token Subsequence signatures are an

ordered set of tokens. A flow matches a signature

if, for each token ti in the signature, ti occurs in

the flow and for all ti, tj , if ti occurs before tj in

the signature, ti must occur before tj in the flow.

A Token Subsequence signature for a single flow

is the ordered set of tokens which appear in the

flow. To generalize a Token Subsequence signa-

ture, Polygraph uses a string alignment algorithm

which attempts to maximize the number of consec-

utive matches in the resulting sequence.

• Hamsa Multiset:

Hamsa’s Multiset signatures are a set of token-

frequency 2-tuples. A flow matches a signature if,

for each signature token ti and the associated fre-

quency ni, the flow has at least ni occurrences of

ti.

To create Multiset signatures Hamsa employs a

model Γ(·) that allows it to generate signatures in

a greedy fashion. The Γ(·) model bounds the max-

imum allowable false positive rate that a signature

may have among the training flows as a function of

the number of tokens in the signature. Hamsa be-

gins with the empty signature. At step i, Hamsa

considers the tokens that, when added to the current

signature, have a false positive rate less than Γ(i).
Among these tokens, Hamsa chooses the token that

is contained in the largest fraction of the suspicious

pool. The process continues until there is no such

token or the maximum number of tokens (15) has

been chosen.

After generating a signature, Hamsa attempts to

lower the potential false positive rate by extending

the length of all tokens in the signature as long as

they do not decrease the signature’s coverage in the

suspicious pool.

When generating signatures, Polygraph can employ a

technique called Hierarchical Clustering. Without Hier-

archical Clustering, signature generation regards the en-

tire suspicious pool as a single cluster and outputs a sin-

gle signature for the whole pool. When employing Hi-

erarchical Clustering, Polygraph places each suspicious

pool flow into its own cluster and generates a signature

for each cluster. It then iteratively merges the two clus-

ters that, when combined, will yield a signature with the

lowest false positive rate in the innocuous pool. When

no two clusters can be merged, Polygraph outputs the

signatures for all remaining clusters. Hierarchical Clus-

tering allows Polygraph to generate more specific signa-

tures than would otherwise be possible if the suspicious

pool were considered as a whole. This is important when

either instances of multiple different worms or noise are

present in the suspicious pool. The suspicious pools used

in our tests contained only instances of our polymorphic

worm without any noise flows.

Finally, Polygraph is also capable of generating

Bayesian signatures. We do not consider Polygraph’s

Bayesian signatures in this work, however, because a

number of very effective ways to evade this type of signa-

ture have already been presented in other papers [11, 10].



4 Experimental Evaluation

The purpose of our experiments is to show how a poly-

morphic web-based worm can successfully avoid the cur-

rent state-of-the-art signature generation tools. However,

it is important to note that our goal is not to develop (nei-

ther to show how to develop) a full-fledged web worm.

In fact, the existence of this type of malware has already

been observed “in the wild” in the past few years. For

example, the Santy worm [5], which was first detected in

December 2004, infected the phpBB discussion forums

using the Google search engine to find its victims.

We started our evaluation by identifying a vulnera-

bility inside a PHP application that allows for arbitrary

code execution. We selected a vulnerability in the Limbo

CMS system [2]. In this case, an attacker can execute ar-

bitrary PHP code on the computer running the vulnerable

application, due to a failure in the application to prop-

erly sanitize the user-supplied Itemid parameter to the

index.php script.

We then wrote a proof-of-concept worm that exploited

the Limbo vulnerability. This simple memory-resident

hit-list worm [13] uploads a copy of itself in Limbo’s

Itemid parameter where it gains execution on the re-

mote system and exploits its portion of the hit-list. In

order to successfully exploit Limbo, the worm formats

itself as a single PHP expression that Limbo includes in

a call to the PHP eval function.

This basic implementation was then transformed into

a polymorphic worm using our PHolyP tool. In addition

to the set of general purpose mutation techniques applied

by our polymorphic engine, we also added a few specific

transformations to increase the randomness of the worm

instances. For example, the worm non-deterministically

chooses the request method and payload encoding for-

mat. It non-deterministically url-encodes certain char-

acters to reduce the presence of certain tokens. Also, it

chooses non-deterministically whether or not to apply a

content encoding to the request body, it pads the length of

the request in order to avoid trivial signatures on the size

of the worm’s representation, it randomizes the order and

appearance of HTTP headers, it non-deterministically

places some of the parameters in the query string, and

it prefixes the payload with random sub-expressions.

Finally, in order to test the signature generation tools,

we needed to create a dataset containing some attack-

free Limbo traffic and a malicious dataset containing in-

stances of our worm. We created the clean dataset as a

composition of outgoing web requests originating from

a local LAN, of traffic collected by manually using the

Limbo application, and of traffic automatically generated

by running a set of scripts that simulated realistic user

activity. The scripts used in the experiments are based

on a browser (the KHTML component that is part of the

KDE library) controlled by a python program. Two sets

of scripts, one simulating a registered user and one sim-

ulating a casual visitor, were programmed to navigate

through the web pages and to randomly submit realistic

data to the various application forms. This traffic was co-

alesced into innocuous training and test pools containing

9,393 and 32,286 flows, respectively.

The malicious traffic was generated by using a worm

instance to repeatedly generate requests designed to ex-

ploit a web server running the vulnerable application.

Each request included a new worm variant randomly

generated by our polymorphic engine.

When testing Polygraph and Hamsa, we used exactly

the same settings presented in the original papers [9, 8].

We conducted 5 trials, each testing suspicious training

pools containing 5, 10, 25, 50, 100, and 200 worm vari-

ants along with a suspicious test pool containing 15,049

variants. In each case, the suspicious pool contained only

variants of a single polymorphic worm without any noise

– a best-case scenario for the signature generation sys-

tems.

Unfortunately, in order to make Polygraph’s runtimes

tractable, we were forced to truncate the worm payload

in all flows to limit the maximum size of each flow to

approximately 1KB. This gave Polygraph an unfair ad-

vantage over Hamsa, however, it was necessary in order

to be able to conduct our experiments in a timely fash-

ion. Also due to performance constraints, we do not give

results for Polygraph’s Hierarchical Clustering (HC) sig-

natures with a training pool size of 200 flows.
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Figure 1: False Negatives by signature type

Figures 1 and 2 depict the median performance of the

different types of signatures over the 5 trials. For Poly-

graph, results are shown with Hierarchical Clustering

both enabled and disabled. Hamsa’s Multiset signature

and Polygraph’s signatures with Hierarchical Clustering
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Figure 2: False Positives by signature type

enabled all exhibit non-negligible false negative rates be-

cause they are overly specific. On the other hand, Poly-

graph’s signatures without Hierarchical Clustering have

no false negatives because they are too general. The Con-

junction signatures have a false positive rate of 52.17%

while the Token Subsequence signatures exhibit a false

positive rate of 50.13% (far too high to be useful).

Hamsa’s signatures pick up a large number of to-

kens that are present coincidentally in the encrypted pay-

load of the worm variants in the suspicious pool causing

matching to fail on many worm variants that do not con-

tain one or more of the tokens. A representative Hamsa

signature can be found in Appendix A.

The Polygraph signatures without Hierarchical Clus-

tering err in the other direction. They effectively block

all requests to the /index.php script – creating a de-

nial of service condition for any URLs that contain the

substring /index.php. Due to their extreme general-

ity, the signatures match a significant number of innocu-

ous flows as well. Examples of Polygraph signatures are

shown in Appendix B.

In the initial version of this paper, we reported the

false negative rates for Polygraph’s HC enabled Con-

junction and Token Subsequence signatures as 82.67%

and 91.57% respectively. While preparing the final ver-

sion of this paper, we discovered that Polygraph was re-

porting inaccurate results when HC was enabled. After

fixing Polygraph we determined that the actual false neg-

ative rates were 15.93% and 18.18%. While these results

are far more modest, they are still non-negligible success

probabilities – more than 1 in 6 worm instances evades

the signatures. Through preliminary additional testing

we have created variants of our worm that achieve me-

dian false negative rates of 15.71% against Conjunction

signatures and 26.85% against Token Subsequence sig-

natures with HC enabled. We believe that these results

could be improved even further with additional develop-

ment effort as we have not fully explored all the possibil-

ities for polymorphism available to worms targeting web

applications.

5 Related Work

In [11], the authors present attacks against Polygraph’s

algorithms both for deriving Conjunction and Token

Subsequence signatures and for deriving Bayesian signa-

tures. The authors demonstrate that an attacker can use

noise injected into Polygraph’s suspicious pool to cause

Polygraph’s clustering algorithm to exclude a worm’s in-

variants from the signatures that are generated. The au-

thors then proceed to demonstrate how including sub-

strings of tokens that are moderately common in innocu-

ous traffic can be used to defeat Polygraph’s Bayesian

learner. A worm containing substrings of tokens found

in innocuous traffic can artificially decrease the match-

ing threshold set by Polygraph. Polygraph’s Bayesian

learner is then forced to choose between unacceptably

high false positive rates or unacceptably high false nega-

tive rates.

Newsome et al. [10] strengthen and generalize the at-

tack on Polygraph’s Bayesian learner presented by [11]

in what they refer to as the Correlated Outlier Attack.

They demonstrate that an attacker can force the learner

to choose between high false positives and high false

negatives without needing to inject noise into the suspi-

cious pool. They also demonstrate that the attack may be

strengthened further by poisoning of the innocuous pool

(perhaps long before the vulnerability is discovered).

Newsome et al. also present several attacks against

Polygraph’s Conjunction and Token Subsequence signa-

tures known as Red Herring attacks. These attacks use

coincidental patterns, or pseudo-invariants, that are re-

moved over time in order to cause Polygraph to derive

signatures that are too specific to match most instances

of a worm. The authors note that, while not immune to

their Red Herring attacks, Hamsa is much less suscepti-

ble than Polygraph.

Rather than attacking Polygraph or Hamsa’s tech-

niques directly, as is the case with previous work, we

demonstrate that the degree of polymorphism available

to worms that do not exploit memory corruption vulner-

abilities can prevent these systems from deriving precise

signatures despite being trained in an idealized (noise-

free) setting. In some sense, the high degree of random-

ness present in our worm could be considered to be a co-

incidental Red Herring attack. However, we have made

no attempt to directly attack either system, only to pro-



duce worm variants with the highest degree of polymor-

phism possible.

6 Conclusions

In this paper we presented an analysis of the ability of

state-of-the-art polymorphic worm detection systems to

detect worms that do not exploit memory corruption vul-

nerabilities. To this end, we developed a novel PHP-

based worm that exploits an arbitrary PHP code execu-

tion vulnerability and we tested the ability of two worm

detection systems to classify this kind of worm. The

results show that many of the assumptions that are at

the basis of existing detection techniques (e.g., the fact

that the address used to overwrite a pointer must contain

some constant part) do not hold for this type of worm.
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A Representative Hamsa Signature

The following (truncated) signature was generated by

Hamsa for a suspicious pool size of 200 variants. It

yields a test pool false negative rate of 91.84% with no

false positives. It consists primarily of tokens that occur

coincidently within the encrypted payload of the worm

variants.

{’G7’: 1, ’G6’: 1, ’G5’: 1, ’G3’: 1, ’G1’: 1, ’G9’: 1,

’G8’: 1, ’G%’: 1, ’GW’: 1, ’GV’: 1, ’GU’: 2, ’GS’: 1,

’GP’: 1, ’GZ’: 1, ’GY’: 1, ’GX’: 1, ’GF’: 1, ’GE’: 1,



’GD’: 1, ’GA’: 1, ’GM’: 1, ’GJ’: 1, ’GI’: 1, ’Gw’: 1,

’Gt’: 1, ’Gq’: 1, ’Gp’: 1, ’Gz’: 1, ’Gg’: 2, ’Gd’: 1,

’Gb’: 1, ’Gj’: 1, ’Gh’: 1, ’Z8’: 1, ’Z6’: 2, ’Z0’: 1, ’Z1’:

1, ’Z2’: 1, ’Z3’: 1, ’ZL’: 1, ’ZM’: 1, ’ZN’: 1, ’ZH’: 1,

’ZJ’: 1, ’ZD’: 1, ’ZE’: 1, ’ZF’: 1, ’ZG’: 1, ’ZB’: 1, ’ZC’:

1, ’ZT’: 1, ’ZU’: 1, ’ZV’: 1, ’ZW’: 1, ’ZS’: 1, ’Zl’: 1,

’Zm’: 1, ’Zb’: 1, ’3f’: 1, ’Zy’: 1, ’Zv’: 1, ’Zw’: 1, ’Zp’:

1, ’Zq’: 1, ’Zr’: 1, ’9i’: 1, ’9h’: 1, ’9j’: 1, ’9l’: 1, ’9d’: 1,

’9y’: 1, ’9x’: 1, ’9p’: 1, ’9s’: 1, ’9r’: 1, ’9u’: 1, ’9t’: 1,

’9w’: 1, ’9v’: 1, ’9H’: 1, ’9M’: 2, ’9N’: 1, ’9C’: 1, ’9B’:

1, ’9F’: 1, ’m4’: 1, ’m6’: 1, ’m1’: 1, ’m0’: 1, ’m3’:

1, ’9U’: 1, ’9T’: 1, ’9W’: 1, ’mE’: 1, ’mD’: 1, ’mG’: 1,

’mF’: 1, ’mA’: 1, ’9%’: 5, ’mU’: 1, ’mW’: 1, ’mV’: 1,

’mQ’: 2, ’mP’: 1, ’mR’: 1, ’91’: 1, ’93’: 1, ’92’: 2, ’mY’:

1, ’mZ’: 1, ’me’: 1, ’mg’: 1, ’mb’: 2, ’mj’: 1, ’mt’: 1,

’mw’: 1, ’ms’: 1, ’mx’: 1, ’mz’: 1, ’Lg’: 1, ’Ld’: 1,

’Le’: 2, ’Ln’: 2, ’Lm’: 1, ’Lj’: 1, ’Lv’: 1, ’Lw’: 1, ’Lr’:

1, ’Ls’: 1, ’LG’: 1, ’LD’: 1, ’LC’: 1, ’LA’: 1, ’LM’: 1,

’LH’: 1, ’LI’: 1, ’LV’: 1, ’LT’: 1, ’LU’: 1, ’LR’: 1, ’L7’:

1, ’L4’: 1, ’L8’: 1, ’1P’: 1, ’1V’: 1, ’V2’: 1, ’V5’: 1,

’1Z’: 2, ’iN’: 1, ’%2F%2’: 1, ’rT’: 1, ’rU’: 1, ’rW’: 1,

’rP’: 2, ’rQ’: 1, ’rR’: 1, ’rX’: 1, ’rY’: 1, ’rZ’: 2, ’rC’: 1,

’rL’: 1, ’rM’: 1, ’rO’: 2, ’rH’: 1, ’rI’: 1, ’rJ’: 1, ’rK’: 1,

’rt’: 1, ’rq’: 1, ’rr’: 1, ’rx’: 1, ’i1’: 1, ’rc’: 1, ’ro’: 2, ’rh’:

1, ’ri’: 1, ’i2’: 1, ’1p’: 1, ’1s’: 1, ’1r’: 1, ’i7’: 2, ’r6’: 1,

’r2’: 1, ’1v’: 1, ’1b’: 1, ’1h’: 1, ’Q1’: 1, ’Q3’: 1, ’Q5’:

1, ’Q4’: 1, ’Q7’: 1, ’Q6’: 1, ’Q9’: 1, ’Q8’: 1, ’Qp’: 1,

’Qs’: 1, ’Qu’: 2, ’Qt’: 1, . . .

B Representative Polygraph Signa-

tures

B.1 Conjunction (HC disabled)

The following signature was generated by Polygraph for

a suspicious pool of 200 variants. It has a 52.16% false

positive rate with no false negatives.

{ ’T /’, ’/index.php’, ’ HTTP/1.1’, ’\nHost: ’ }

This signature will block all HTTP 1.1 requests that

contain the string /index.php – creating a denial of

service condition for all URLs with /index.php as a

substring.

B.2 Token Subsequence (HC disabled)

The following signature was generated by Polygraph for

a suspicious pool of 200 variants. It has a false positive

rate of 50.13% with no false negatives. Like the Con-

junction signature above, this signature blocks all HTTP

1.1 requests to any URL containing /index.php.

(’T ’, ’/index.php’, ’ HTTP/1.1’, ’\nHost: ’)

B.3 Conjunction (HC enabled)

The following Conjunction signatures were generated by

Polygraph for a suspicious pool of 100 variants with Hi-

erarchical Clustering enabled. The total false negative

rate (i.e. instances missed by all signatures) is 15.71%

with no false positives. In all, eight individual signatures

were generated. Four are shown below.

The two following signatures both capture data that

is posted to /index.php with a Content-Encoding ap-

plied.

{ ’ww’, ’\nHost: ’, ’ HTTP/1.1’, ’/in-

dex.php’, ’gzip’, ’\nContent-’, ’ength: ’,

’\nContent-Type: application/x-www-form-

urlencoded’, ’\nContent-Encoding: ’, ’POST /’,

’\n\x1f\x8b\x08\x00\x00\x00\x00\x00\x00\x03’,

. . .}

{ ’ww’, ’com’, ’limbo’, ’/index.php’, ’ength: ’,

’\nHost: www.li’, ’\nContent-Encoding: ’, ’\n\n’,

’POST /’, ’\nContent-Type: application/x-www-form-

urlencoded\n’, ’ HTTP/1.1\nContent-’, ’\x10\xfc\x1a’

}

The following two signatures result from GET and

POST requests without any Content-Encoding. The first

signature captures escape sequences found in the plain

url-encoded payload. The second signature captures se-

quences found in a payload that has been encoded using

quoted-printable encoding.

{ ’%3’, ’%2’, ’li’, ’T /’, ’\nHost: ’, ’ HTTP/1.1’, ’/in-

dex.php’, ’B%’, ’09’, ’%0’, ’%2F’, ’%4’, ’%0A’, ’%6’,

’%23’, ’9%2’, ’%2b’, ’%2f’, ’%2C%’, ’%2f%’ }

{ ’%2’, ’A%3’, ’T /’, ’\nHost: ’, ’ HTTP/1.1’, ’20’,

’%7’, ’/index.php’, ’1%3’, ’B%’, ’a%3’, ’d%3’, ’2C’,

’c%3’, ’dA’, ’%5’, ’e%3D’, ’b%3’, ’f%3’, ’DE’, ’E%’,

’C%3’, ’2%3d’, ’2%3D’, ’%3de’, ’%3d8’, ’%3db’,

’%3D1’, ’%3D0’, . . .}



B.4 Token Subsequence (HC enabled)

The following signatures were generated by Polygraph

with for a suspicious pool of 100 worm variants with Hi-

erarchical Clustering enabled. The total false negative

rate (i.e. instances missed by all signatures) is 26.85%

with no false positives. Polygraph emitted 14 signatures

for the test pool, four of which are shown below. As

with the Conjunction signatures above, these signatures

primarily capture requests to /index.php that either

have a Content-Encoding applied or incorporate a signif-

icant number of url-encoding escape sequences.

(’POST’, ’index’, ’ph’, ’p’, ’HTTP’, ’\nContent-

Type: application/x-www-form-urlencoded’, ’\n’,

’\n\x1f\x8b\x08\x00\x00\x00\x00\x00\x00\x03’)

(’T’, ’/index.php’, ’It%65mi’, ’%’, ’%2’, ’%’, ’%2’,

’%2’, ’%0’, ’%2’, ’%2’, ’%2’, ’%2’, ’%2’, ’2’, ’%2’,

’%2’, ’%2’, ’%’, ’%’, ’%2’, ’9’, ’%2’, ’%2’, ’%2’, ’%2’,

’%2’, ’%2’, ’%2’, ’B’, ’%2’, ’%2’, ’F’, ’%2’, ’%2f’,

’%2’, ’%2’, ’%2’, ’%2’, ’%2’, ’%2’, ’%2’, ’%2’, ’%2’,

’%2’, ’%2’)

(’T ’, ’/index.php’, ’t’, ’e’, ’id’, ’V’, ’L%2’, ’%09m’,

’r’, ’ ’, ’%2’, ’%2’, ’%’, ’%2’, ’%2’, ’a’, ’%’, ’%2’,

’%2’, ’%2’, ’2’, ’A%2’, ’%2’, ’%2’, ’%2’, ’%2’, ’E’,

’2’, ’%2’, ’2’, ’%2’, ’%2’, ’B’, ’4’, ’8’, ’%2’, ’%2’, ’%’,

’2’, ’%’, ’0’, ’%’, ’2’, ’%0’, ’9%09’, ’%2’, ’%2’, ’%2’,

’%’, ’0’, ’%2’, ’B’, ’%29%’, ’0’, ’2’, ’9’)

(’GET’, ’/index.php?’, ’I’, ’%6’, ’%28’, ’rY’, ’ ’, ’%2’,

’ ’, ’e’, ’%2c’, ’%2’, ’E’, ’E’, ’%28’, ’0’, ’%2’, ’%2’,

’8’, ’%2’, ’W’, ’%2’, ’%2’, ’%2’, ’2’, ’C’, ’e’, ’%2’,

’%2’, ’2’, ’D’, ’P’, ’e’, ’S’, ’%2f’, ’%2’, ’%2B’, ’%2’,

’F’, ’%2’, ’B’, ’%2’, ’%2’, ’%2’, ’%29%2’, ’%2C’, ’0’,

’%2’, ’%29’, ’ HTTP/1.1\nHost: www.limbof’, ’r’, ’.’,

’o’, ’\n\n’)


