
BlueSniff: Eve meets Alice and Bluetooth

Dominic Spill
University College London

d.spill@cs.ucl.ac.uk

Andrea Bittau
University College London

a.bittau@cs.ucl.ac.uk

Abstract
Much of Bluetooth’s data remains confidential in prac-
tice due to the difficulty of eavesdropping it. We present
mechanisms for doing so, therefore eliminating the data
confidentiality properties of the protocol. As an addi-
tional security measure, devices often operate in “undis-
coverable mode” in order to hide their identity and pro-
vide access control. We show how the full MAC address
of such master devices can be obtained, therefore bypass-
ing the access control of this feature. Our work results in
the first open-source Bluetooth sniffer.

1 Introduction

Bluetooth is a widespread technology used in many de-
vices which receive and transmit confidential data. For
example virtually all modern mobile phones are Blue-
tooth capable, enabling them to communicate with a
headset or a computer. The data transmitted over Blue-
tooth is often sensitive, such as voice data or private files,
hence making the confidentiality of Bluetooth packets a
relevant matter. If it were possible to eavesdrop on Blue-
tooth, attackers could for example have the ability to in-
tercept address books when they are being synchronized
between a phone and computer, thus breaking all of the
confidentiality requirements of these devices.

To provide privacy, Bluetooth supports optional en-
cryption at the link layer. This scheme has been shown
to be vulnerable if the attacker is able to eavesdrop the
paring procedure, which is necessary before two devices
can setup an encrypted link [14]. Thus both encrypted
and unencrypted links would be threatened by attack-
ers with eavesdropping capabilities. The attack on Blue-
tooth’s encryption was not implemented in practice due
to the lack of mechanism for eavesdropping the protocol.
Monitoring a Bluetooth connection is not a trivial task
and various aspects of the protocol implicitly add to its
security and difficulty of eavesdropping.

There are two main hurdles to overcome when at-
tempting to eavesdrop Bluetooth: frequency hopping and
data whitening. Bluetooth sends each packet on a differ-
ent frequency and hops 1,600 times a second. The hop-
ping sequence is unknown to an attacker therefore mak-
ing it impossible for him to follow an entire conversa-
tion, unless the whole spectrum of 79 channels is being
monitored concurrently, which is impractical. The sec-
ond hurdle is that data is whitened (scrambled) making
it impossible for the attacker to inspect the payload, or
indeed the Bluetooth headers. We show that it is possi-
ble to determine the parameters necessary for calculating
the hopping sequence and unwhitening data, thus provid-
ing a practical mechanism for eavesdropping Bluetooth.
We have not yet implemented channel hopping due to
hardware restrictions although we are able to success-
fully eavesdrop on a single channel. By bridging the gap
between the previously theoretical attack on Bluetooth’s
encryption, the protocol’s data should no longer be re-
garded as having any practical confidentiality properties.

Recently, “undiscoverable mode” is being widely used
as a form of protection in Bluetooth devices. This mode
acts in a similar way to a firewall, causing a device to
become stealth without ever making it reveal its MAC
address. Hence only trusted devices which have prior
knowledge of the MAC address would be able to con-
nect to an undiscoverable device. This form of protection
is often used in devices with hardcoded PINs (usually
0000) in order to provide access control. A common ex-
ample of such devices are headsets which can be turned
on in a special manner in order to make them discover-
able for the initial paring, and then switched on in their
normal state of undiscoverable. This protection often is
the only option when the alternative would instead be
to integrate a display with a keypad for configuring cus-
tomizable PIN numbers—which can be larger than the
device itself.

We provide a mechanism for determining the MAC
address of undiscoverable “master” devices, that is, those

1



that initiate the connection. It is no longer the case that
undiscoverable mode can be relied upon as a mechanism
for access control and secrecy—the MAC address can
be obtained. This is a real threat to users which en-
able undiscoverable mode in order to “patch” vulnerabil-
ities in their devices. For example, many mobile phones
have vulnerabilities ranging from allowing attackers to
download arbitrary files to arbitrarily controlling the de-
vice [9, 12]. All of these attacks require knowledge of
the MAC address so one way to mitigate the problem is
to make the device undiscoverable. Unfortunately this is
commonly used and encouraged as a technique to avoid
unwanted connections [5], but it has been shown that it
is still possible to connect to devices in this mode [6] if
the MAC address is known.

Our work brings forward two main contributions.
First, we show that the Bluetooth packets have no con-
fidentiality properties. Specifically we demonstrate how
data can be unwhitened and the hopping sequence cal-
culated. Prior work has shown how the data can be
decrypted if necessary [14]. Second, we show that the
undiscoverable mode does not provide access control to
master devices, nor protects the secrecy of their MAC ad-
dress. We are able to determine the complete MAC ad-
dress of these devices. Finally, all our work was done us-
ing GNU Radio and we therefore provide the first open-
source Bluetooth sniffer, free from any licensing restric-
tions.

2 Bluetooth

Bluetooth is a wireless protocol operating in the 2.4GHz
license-free band. It is often used for low speed data
transfer between low power devices, such as voice calls
between telephones and wireless headsets. Eavesdrop-
ping on Bluetooth packets largely comes down to two
variables held within each Bluetooth device, the MAC
address and the clock. The MAC address is a unique
identifier allocated to the device from the same pool as
the MAC addresses for most modern networking hard-
ware. The clock is a 3.2kHz counter stored in a 28 bit
number, and it wraps approximately every 23 hours.

Bluetooth uses frequency hopping over 79 channels in
order to minimize interference and (usually) hops once
every 625µs, sending one packet per channel. The hop-
ping sequence is determined by the MAC address of the
master device and its clock. The master device is the one
that initiates the connection, and the slave being the one
connected to. Data transfer often takes place on alternate
hops, leaving the intervening hops for acknowledgments,
as shown in Figure 1. The difficulties in eavesdropping
in the presence of channel hopping are therefore deter-
mining the sequence, and hopping quickly enough.

The second hurdle to eavesdropping on data carried

Figure 1: Data transfer is often unidirectional with ac-
knowledgments transmitted in the intervening timeslots.
f(t) is the frequency used at time t, calculated from the
clock and the MAC address.

in Bluetooth connections is that packets are whitened
(scrambled) in order to improve error resilience and se-
curity. The whitening is determined by six bits of the
master device’s clock. Thus, in order to eavesdrop on
a Bluetooth connection two pieces of information are
needed: the MAC address and clock of the master de-
vice. With this information, one can calculate the hop-
ping sequence and tune to the correct radio channel, and
then unwhiten the received packets.

Most Bluetooth devices offer a mode called “undis-
coverable” which prevents a device from advertising its
MAC and clock upon receiving an inquiry. This is of-
ten used by people for access control as suggested by
Bluetooth security advisories [5], so inquiry cannot be
relied upon for determining the MAC and clock. The
MAC address cannot be easily discovered since Blue-
tooth packets do not contain the complete address but
only the lower three bytes, known as the Lower Address
Part (LAP). The clock is not present in standard packets.
There is one packet (FHS), used during the connection
handshake, that contains all the necessary information
(MAC and clock) for listening on a connection. Unfor-
tunately obtaining this packet requires eavesdropping the
start of a connection and being tuned on the (unknown)
correct frequency, which most likely is not possible in
practice. To obtain the clock one can establish a connec-
tion to a device, but in order to do that, the MAC address
is needed. Thus, much of the difficulty of eavesdropping
Bluetooth comes from the secrecy of the MAC address.

2



3 Eavesdropping

We have implemented a proof of concept Bluetooth snif-
fer that operates on a single channel [15]. We are cur-
rently working on channel hopping which is proving to
be difficult due to hardware restrictions. We will how-
ever present our initial results about it.

There are three problems to eavesdropping Bluetooth
in practice. First, standard Bluetooth dongles do not have
a concept of “promiscuous” mode so we need to make
use of special hardware such as software defined radio.
Second, we need to unwhiten the data since all Bluetooth
data is scrambled (whitened) by default. Third, we need
to determine the master’s MAC address since this allows
us to calculate the hopping pattern.

In order to capture packets, we made use of GNU Ra-
dio. We then developed a technique for unwhitening data
which does not require knowledge of the clock. The
use of this technique will leak some bits of the clock
as a side-effect, and these are enough for an attacker to
whiten future data in case that an active attack needs to be
performed. Finally we developed a mechanism for deter-
mining the full MAC address of a device after eavesdrop-
ping one packet and transmitting less than 256 packets.
Having obtained the MAC address we can connect to the
device in order to determine its full clock, giving us all of
the information needed to follow its hopping pattern. All
of these attacks work on undiscoverable devices. We will
now describe them in detail in the sections that follow.

3.1 The USRP

In order to eavesdrop Bluetooth packets from an arbi-
trary connection, a radio device is required and the Uni-
versal Software Radio Peripheral (USRP) [4] was cho-
sen. The USRP is the hardware device associated with
the GNU Radio project [2], which sets out to create an
open source framework for implementing radio devices
in software. This software was used to demodulate and
process Bluetooth packets that had been received by the
USRP hardware. The USRP device consists of a moth-
erboard, which has DACs and ADCs on it, and daughter-
boards which are able to receive, and sometimes trans-
mit, over a specific band of frequencies. For eaves-
dropping on Bluetooth packets the daughterboard used is
locked to the free 2.48GHz ISM band which Bluetooth
devices operate in.

There are two problems to be solved when eavesdrop-
ping with the USRP. First, the demodulator parameters
need to be set up properly so that Bluetooth data can be
recovered on the channel that is being listened on. Sec-
ond, because a Bluetooth connection frequency hops, the
radio must be able to monitor other channels too in order
to eavesdrop the entire conversation and not only pack-

ets that happen to pass by the single channel on which
the USRP happened to be tuned on. There are two ap-
proaches to the latter problem. One solution is to eaves-
drop all Bluetooth channels in parallel. The other ap-
proach is to make the USRP retune in order to follow
the hopping sequence. In the following sections we de-
scribe how we demodulated Bluetooth using the USRP,
how we can monitor multiple channels, and how we plan
to implement channel hopping in the future.

3.1.1 Eavesdropping on a single Bluetooth channel

A USRP with a 2.48GHz daughterboard can be tuned to
any Bluetooth channel. In order to eavesdrop a packet it
is sufficient to stay tuned to a single channel and wait for
a packet to fly by. Since the channel hopping rate is so
high (1,600 hops/s), waiting for one second is more than
enough in order to intercept a packet. However, tuning
the radio is not sufficient since the correct demodulator
needs to be setup and it must be configured in the cor-
rect way. To our knowledge we are the first to eavesdrop
Bluetooth using the USRP and in fact much of our re-
search effort was spent in trying to determine the correct
parameters to enable the radio to demodulate Bluetooth.

Finding a Bluetooth packet for the first time was not
a trivial task. The obvious approach would have been to
transfer a large file containing a known pattern and then
search for the pattern in the output from the demodulator.
This basic approach was not possible since the Bluetooth
data is whitened by the device and the whitened version
is unknown, so we would not know what we were look-
ing for. Thus we were seeking through a sequence of
bits, not knowing which bits to look for, and not even
knowing if our demodulator setup was correct. When
researching the correct demodulator parameters, looking
for packet headers turned out to be unreliable since they
are very short and incorrect demodulator settings yielded
many bits that seemed like a real packet headers but in
reality were just noise.

Fortunately we came across a debug mode of Cam-
bridge Silicon Radio (CSR) based Bluetooth dongles that
causes packets to be sent repeatedly on a single chan-
nel [8]. This allowed us to eliminate variables such as
channel hopping, and since the test packets were not
whitened, we knew the exact bit sequence we were look-
ing for. After several attempts we were able to demodu-
late the packet.

Bluetooth data is modulated using a Gaussian Fre-
quency Shift Keying (GFSK) method, which is not
strictly supported by the GNU Radio demodulation tools.
There is a Gaussian Minimum Shift Keying (GMSK) de-
modulator, and this was tuned to allow for the demodula-
tion of Bluetooth packets. GMSK is a variant of GFSK in
which the frequency shift used to represent data is kept to

3



a minimum. The Bluetooth modulation scheme is within
this limit, so GMSK demodulation is a drop in replace-
ment for GFSK in this scenario.

The main parameters for the demodulator are the mod-
ulation index and the symbol rate given in the form of
number of samples per symbol. These were found with
the help of the CSR debug packets and our modified ver-
sion of the GNU Radio software oscilloscope which al-
lowed the samples per symbol parameters to be calcu-
lated from a received packet. Our modified oscilloscope
allowed file input to be used, which lead to a large sam-
ple being cut in size until it left a sample file containing
a single packet. The packet was measured to be approxi-
mately 400µs in length, with a reported sampling rate of
4,000,000 samples per second. The packet was known to
be 366 bits in length, which gave a samples per symbol
value of four. The modulation index µ, a measure of the
frequency deviation of the unmodulated signal, was de-
rived from the Bluetooth specification [1] which allows
a range from 0.28 to 0.35, and we found 0.32 to produce
good results. Thus, the necessary parameters for demod-
ulating Bluetooth using GNU Radio’s GMSK demodula-
tor are:

• Modulation index µ: 0.32.

• Modulation rate (samples/symbol): 4.

It may be useful to filter the incoming signal to remove
noise caused by signals transmitted in adjacent channels
or other by other wireless systems operating in the same
band. However this is not recommended since all of the
signal processing is done in software and it can therefore
have a negative impact on the performance of the packet
demodulation and parsing processes. The experimenta-
tion showed that, for our setup, filters were not needed,
although this may not be the case in a less controlled en-
vironment, or with a greater distance between the USRP
and the transmitting device.

With these parameters, it is possible to eavesdrop
Bluetooth on any given channel. We now examine the
issue of channel hopping, first by showing how multi-
ple channels can be eavesdropped in parallel, and second
how the radio may be retuned in order to follow the hop-
ping sequence.

3.1.2 Eavesdropping on multiple channels at once

The bandwidth of the USRP is approximately 5MHz and
it is larger than a single Bluetooth channel. This makes
it possible to eavesdrop multiple neighboring channels.
Using translating filters, which are part of the GNU Ra-
dio set of tools, we were able to reliably receive packets
at up to 2MHz on either side of the center frequency.
The translating filters change the center frequency of

the signal in software, allowing multiple channels to be
monitored simultaneously so long as they are within the
bandwidth of the receiver, in this case approximately
5MHz. This equates to five channels being eavesdropped
with one daughterboard and we were able to practically
achieve this, extracting data from packets across five
neighboring channels. Each USRP can take two daugh-
terboards, and therefore can eavesdrop up to ten channels
with a single USRP device.

It is possible for a connection to use a limited num-
ber of channels due to regulatory issues. In fact, the
Bluetooth Adaptive Frequency Hopping (AFH) param-
eter can be used to select the available channels, with
a minimum of twenty channels. Thus, with a man in
the middle attack, it may be possible to reconfigure an
existing connection to use only twenty channels and in
this case only two USRPs would be necessary to eaves-
drop all of the packets involved. We will investigate this
further once we implement transmission and move on to
active attacks.

To listen to the entire range of the 79 Bluetooth chan-
nels, eight USRP devices are needed. All 79 channels
need to be filtered, monitored, and then the packets need
to be ordered before the data can be read from them.
This greatly increases the processing power required, al-
though the captured data can be processed offline or by
a cluster of machines. Ordering packets is necessary
when using multiple USRPs because data is buffered in
a variable way before being delivered and may therefore
result in the packets being received out of order from
the multiple devices. The processing of these packets is
made easier by our technique of deriving the clock signal
from each packet, since it acts as a sequence number and
therefore allows for some ordering of the packets to take
place. More ordering information may be available from
data or headers in layers higher up in the protocol stack.
It is a future goal for the GNU Radio project to get rid
of delays and buffering, so ordering will no longer be a
problem once this is accomplished.

3.1.3 Channel hopping

Bluetooth devices retune their radios 1,600 times per sec-
ond in order to communicate with each other, but unfor-
tunately tuning at such a rate is not an easy task with
the USRP. The 2.48GHz daughterboard is able to retune
within 200µs, which is not fast enough to follow a Blue-
tooth hopping pattern since each time slot is 600µs. Hop-
ping with a tuning delay of 200µs would cause up to one
third of each packet to be lost. There are various solu-
tions to this problem depending on the attacker’s needs.

The attacker could choose which 200µs of the time
slot to miss. For example, if the start of the packet has no
sensitive data, then the attacker would retune at the end

4



of the time slot in order to catch the tail of the packet.
Otherwise the retune could occur before the end of the
time slot in order to catch the head of the next packet.
If the attacker knew that the eavesdropped packets were
short and (say) occupied only half a time slot, the retune
could happen right after the packet ends, and not at the
end of the time slot. This leaves the attacker enough time
to retune to the next frequency and successfully catch
the start of the next packet. Examples of short packets
that contain sensitive information are key presses from a
Bluetooth keyboard.

It may be the case that only one direction of the con-
nection holds sensitive data. For example, a file down-
load will have incoming data and outgoing acknowledg-
ments. Bluetooth uses an alternating scheme for receiv-
ing and transmitting data. Thus, if only one direction
needs to be eavesdropped, the attacker has a whole time
slot in order to retune and the USRP is fast enough for
this. If the whole connection needs to be eavesdropped,
two daughterboards are necessary, and they can be in-
stalled on a single USRP. In this case, one daughterboard
would be listening to the current time slot while the other
one would be retuning to the next time slot. These roles
would be then switched and alternated between the two
boards throughout the entire connection.

The major practical obstacle to any frequency hopping
implementation, and the reason why we still have not
produced a working prototype that supports hopping, is
the buffering and asynchronous nature of the GNU Ra-
dio framework. This introduces a delay which is not con-
stant, and is often large enough to allow multiple pack-
ets to be received before the buffered data receives any
parsing or processing module. The delay means that the
software does not have a chance to synchronize with the
hopping of the device which is being attacked by adjust-
ing the clock on packet reception in order to compensate
for drift. One of the goals for GNU Radio is to allow
more direct flows of data processing through the soft-
ware, removing the delay in processing, meaning that
frequency hopping may be possible with future revisions
of GNU Radio. This refactoring is a non-trivial change
to the GNU Radio software and hence we did not take
the route of doing it ourselves in order to enhance our
Bluetooth sniffer.

3.2 Removing data whitening

Packets that Bluetooth devices transmit are “whitened”,
this means that the data in the header and payload is
scrambled before transmission. The scrambling is set by
the lower 6 bits of the clock, which are known only to
the devices involved in the communication.

Whitening is performed on every packet regardless of
higher level protocol. It involves an XOR of a pseudo-

Figure 2: The linear feedback shift register used to gen-
erate the whitening data. (Figure from the specifica-
tion [1].)

random sequence with the packet data. The sequence is
produced using a six bit value derived from the clock as
input to a linear feedback shift register (LFSR), shown in
Figure 2. This means that there are a total of 64 possible
starting values for the LFSR, which is a small enough set
to bruteforce.

Our mechanism is to generate all 64 candidate un-
whitened packets and then validate which packet is the
correct one using other fields in the packet such as the
link ID (typically 1) or the CRC calculated over the pay-
load (which we can check). This process will also re-
veal six bits of the clock, which can be used to removing
whitening from future packets, or to add whitening to
a packet in the case that an attacker wishes to transmit
data. The clock, once discovered, can be kept synchro-
nized by using the CPU cycle counter as a fine-grained
time source.

We now describe how we generate the 64 candidate
packets. Each of the 64 possible input values are used
in turn to initiate the whitening LFSR, producing 18 bits
of data to be XORed with the packet header. We made
the process faster by creating a look up table because the
whitening LFSR, shown in Figure 2, uses a seven bit reg-
ister and, as this function can be called up to 102,400
times per second in one of only 127 possible states, we
wanted to make this function as efficient as possible.
This algorithm is shown below.

void unwhiten(input, output, clock) {
indices[64] = array of indices

into whitening_data;
whitening[127] = array of outputs

from whitening lfsr;
index = indices[clock];
for(bits in data) {
output = input XOR whitening[index];
index++;
index = index MOD 127;

}
}

For each possible value of the clock, one packet header
is produced. We now need to determine which one is the

5



Figure 3: The three parts of a Bluetooth MAC address.

correct candidate. Each header contains connection state,
such as the link ID, which is constant throughout the du-
ration of a connection and therefore will be the same in
every packet. Over a number of packets these constant
values will emerge, allowing us to filter out candates un-
til the correct one is found. Another technique is to look
for correlations between packets such as the clock value
itself advancing as expected given the packet reception
time.

The most practical method for determining the cor-
rectly unwhitened packet is checking the payload CRC.
With this method, false positive results are extremely un-
likely as the CRC is initialized with a byte of zero and the
UAP, as is the HEC, so a false positive match would have
to match all 16 bits of the CRC initialization (1 in 65,536)
and eight of those bits would have to match the HEC ini-
tialization. There is one caveat because not all Bluetooth
packets carry a payload CRC. However most of the con-
trol data sent between devices uses DM1 packet types
which do have a CRC, and these packets are very fre-
quent so it is not a problem obtaining such packets in
practice.

3.3 Obtaining the MAC

To determine the channel hopping sequence, the mas-
ter’s MAC address and clock need to be known. Of these
two parameters only the MAC address is necessary, since
with its knowledge, the clock can be determined by es-
tablishing a connection with the device. This technique
for obtaining the clock will work even if the device is in
“undiscoverable” mode [6]. Obtaining the MAC address
is also useful for attacking devices which rely on their
secrecy for access control, and often this is their only
protection mechanism.

The MAC address is divided into three parts called the
Lower Address Part (LAP), Upper Address Part (UAP)
and Non-significant Address Part (NAP). The lengths of
these parts are three, one and two bytes respectively, as
shown in Figure 3. In the following sections we show
how these parts can be recovered by eavesdropping on
any single Bluetooth channel.

3.3.1 Lower Address Part

Determining the lower address part (LAP) is straightfor-
ward since it is present in the Bluetooth packet headers.
When raw data is received from the GNU Radio, the start
of a packet needs to be found. The start of every Blue-
tooth packet, as shown in Figure 4, has a constant 72 bit
pattern, called the access code, and it may be used in or-
der to find packets, it contains the 24 bit LAP along its
34 bit checksum and 14 bits of synchronization and error
detection data. Thus the LAP can be simply read from a
packet and validated by its checksum. Unfortunately the
rest of the MAC address is not transmitted in packets and
we need to be more clever about discovering it.

3.3.2 Upper Address Part

The Upper Address Part (UAP) is not stored within each
packet, and is only transmitted as part of the handshaking
procedure. However, each packet has a header with an
error check field which is calculated from the UAP. We
noticed that it is possible to reverse this checksum in or-
der to reveal the UAP. The error checking field takes the
form of a Header Error Code (HEC), which is calculated
over the 10 bits of data in the header, see Figure 4. The
register used for this check is initialized with the 8 bits
of the UAP.

The HEC calculation is based on a linear feedback
shift register (LFSR) which is initialized with the UAP
of the master device. Each bit of the header is fed into
the LFSR in the order it will be transmitted, and the fi-
nal contents of the register is appended to the end of the
header.

This calculation is based on XOR operations and can
be run entirely in reverse, as shown below.

UAPtoHEC(header, HEC) {
for(bits in header) {

HEC = HEC_bit_0 XOR HEC_bit_1;
HEC = HEC_bit_0 XOR HEC_bit_2;
HEC = HEC_bit_0 XOR HEC_bit_5;
HEC = HEC_bit_0 XOR HEC_bit_7;
right_shift(HEC);
HEC = HEC_bit_0 XOR header_bit;

}
return HEC;

}

The LFSR is initialized with the HEC, and each bit
of the header is processed in reverse. The final state of
the register will be the value with which the LFSR was
initialized, i.e. the UAP of the master device.

The following is an algorithm and summary for how
to determine the UAP and unwhiten data from an eaves-
dropped packet, this is also shown in Figure 5.

6



Figure 4: The format of a Bluetooth packet, showing Access Code, Header with HEC and Payload with CRC. The
relevant parts of the packet for LAP and UAP extraction are also shown.

1. Generate 64 candidate packets by unwhitening them
using all the possible 64 inputs to the whitening
LFSR.

2. Reverse the HEC from each packet header and gen-
erate a total of 64 corresponding candidate UAPs.

3. For each of the 64 pairs of packet and UAP, calcu-
late the CRC and see if it matches. If so, the correct
UAP and unwhitened packet has been found.

3.3.3 Non-significant Address Part

The remaining two bytes of the MAC address are re-
ferred to as the Non-significant Address Part (NAP).
None of the information in the packet is based on the
NAP so there is no way to determine them from received
packets. In practice, of the two bytes in the NAP, the first
is virtually always zero. Thus, the remaining byte can
be bruteforced by sending at most 256 pings to all the
possible remaining MAC address combinations.

It is however possible to make educated guesses re-
garding this byte rather than blindly bruteforcing. The
top three bytes of the MAC address (NAP + UAP) corre-
spond to the vendor of the device. MAC address ranges
are assigned by the IEEE to vendors in order to divide
the namespace so that address collisions are avoided.
A complete list of the address ranges is available and
known as the Organizationally Unique Identifier (OUI)
list [10]. The UAP value may be used to filter out pos-
sible candidates from the OUI list. More candidates
can be ruled out by guessing the type of device being
eavesdropped. For example, when eavesdropping mobile
phones, MAC addresses belonging to Nokia are more
likely to be correct rather than those allocated to Sun
Microsystems. Indeed there are relatively few Bluetooth
vendors, and in practice a very narrow set of vendors are
widespread. Using this technique usually yields less than
thirty candidates, which can be bruteforced very quickly.
Instead of using the OUI list, a smaller sample set can
be generated by using a database of common Bluetooth
device MAC address prefixes [18].

The following algorithm is a summary of how to de-
termine the MAC address from an eavesdropped packet.

1. Determine the LAP from the access code.

2. Use our unwhitening and HEC reversal techniques
to obtain the UAP.

3. Use the OUI list to find vendors that end with the
UAP and sort them (e.g. Nokia and CSR first).

4. Bruteforce the candidate set by sending a ping to the
guessed MAC address.

3.4 Determining the Hopping Pattern

In order to calculate the hopping pattern, the MAC ad-
dress and clock of the master device need to be known.
We have shown how to determine the full MAC ad-
dress. We also demonstrated how our unwhitening re-
veals 6 bits of the clock, but the rest of the clock, which
is necessary for calculating the hopping sequence, re-
mains a mystery. By knowing the MAC address, the
solution becomes fairly simple: connecting to a device
reveals its clock. The clock of a device is global and not
per-connection so leaking the value will enable following
any connection from that device. Commodity hardware
can be used for establishing the connection and the clock
value can be read from the device using tools included in
the Linux Bluetooth stack [8]. With this information we
are able to calculate the hopping pattern and in principle
follow it (hardware permitting).

4 Bringing it all together: eavesdropping
an OBEX file transfer

In this section we illustrate how our techniques can be
used to carry out an end-to-end attack. Our work is still
incomplete and lacks channel hopping so we are unable
to eavesdrop on the entire connection, but this example
serves as a proof of concept for our eavesdropping us-
ing GNU radio, MAC address discovery and unwhiten-
ing techniques.

We chose an OBEX [3] file transfer application sim-
ply because we can control the payload of the data (file

7



Figure 5: The flow of data through the processes of unwhitening, UAP extraction and UAP confirmation

contents) making it easier to check whether we are do-
ing things correctly. The OBEX data transfer protocol
is well established and documented. It has been used
for IrDA connections and was chosen as a data transfer
method for Bluetooth using the built in RFCOMM trans-
port method as described in volume 7 of the Bluetooth
specification [1]. RFCOMM is encapsulated in the Log-
ical Link Control and Adaptation Protocol (L2CAP) [1]
to send its data. The L2CAP protocol handles the frag-
mentation of the data to be transferred, and is transmitted
as the payload of Bluetooth packets. The details of these
protocols are unimportant, except that they allow a file
transfer to take place with the file data easily identifiable
in the payload of the packet.

Our setup consisted of two Linux boxes, one acting
as an OBEX ftp server and one as an OBEX ftp client.
A file containing “101010. . . ” was transferred from one
machine to the other while a third box running our GNU
Radio module was intercepting the communication. The
alternating “101010. . . ” file was used simply because it
was easy to find in a large block of output data. We will
now explain how we eavesdropped the data, how we de-
termined the MAC address, and how we unwhitened the
data and recovered the portion of the file being transmit-
ted.

Firstly the USRP was tuned to a channel that Blue-
tooth was known to use, in this case 2.421GHz. The
choice of frequency is unimportant as Bluetooth attempts
to use all channels equally. 2.421GHz was chosen to
avoid interference from neighboring 802.11g sources and
the CPU clock signal. The software was then able to de-
tect packets being received by the USRP. These were de-
modulated using the GMSK demodulator from the GNU
Radio tools.

4.1 Determining the UAP and unwhitening

The LAP of the packets was extracted from the access
code of the first packet found. The UAP was then ex-
tracted using the reversed HEC calculation method, giv-
ing 64 candidate UAP values. For each of these 64 can-
didates the rest of the packet was also unwhitened. The
CRC could now be checked to identify the correct UAP.
The UAP and the six bits of the clock values that are

used for whitening were now known. The CPU’s cycle
counter can be used to maintain the state of the six clock
bits so that future packets can be unwhitened without re-
quiring a bruteforce.

The payload format is fairly straight forward for an
OBEX transfer, it features the L2CAP header, followed
by the RFCOMM header, and finally an OBEX header.
Then the data from the file is carried in plain text, the
packet ends with a single byte RFCOMM CRC and a
two byte packet CRC, as shown in Figure 6. Given this
simple packet layout we were able to extract part of the
file contents as we eavesdropped packets from the air.

4.2 Determining the full MAC address
So far we revealed the bottom four bytes of the MAC
address: 5B:00:FA:C2. Filtering the OUI list for ven-
dor prefixes ending in 5B yields 41 results, meaning that
there are 41 candidates to bruteforce in order to reveal
the NAP. Pinging a Bluetooth device requires approxi-
mately one second. The devices also need to find one
another and identify themselves and this takes up to a
second because both devices have unique hopping pat-
terns, and these need to coincide on a frequency before
communication can take place. Thus the rest of the MAC
address can be determined in under two minutes assum-
ing that the first byte is zero (it was the case). The 41
candidates included companies such as CSR and Nokia,
and Smart Empire Investments and PanelLink Cinema.
An educated guess would attempt CSR and Nokia first
before PanelLink, possibly revealing the MAC address
instantly.

5 Future directions

Our contributions consisted of opening the door for prac-
tical Bluetooth security research, although there is still
work to be done. The largest hole in our current im-
plementation is the lack of frequency hopping support.
In practice, an attacker would probably use GNU Ra-
dio to bootstrap the attack and then feed in the discov-
ered parameters (clock and MAC) to hardware specifi-
cally designed for Bluetooth. For example, it may be
possible to use $10 Bluetooth dongles and develop a cus-

8



Figure 6: The payload of a Bluetooth packet carrying the start of of an OBEX file transfer.

tom firmware that allows the modification of the MAC
address and clock, making this a very economical so-
lution [13]. However, this approach will most likely
have legal and licensing problems. We will therefore fo-
cus our research on channel hopping with GNU Radio,
or more interestingly, in eavesdropping the whole Blue-
tooth radio spectrum in parallel. This latter approach is
of more interest to us since all Bluetooth piconets could
be monitored simultaneously. Furthermore, this would
be a unique feature to our system since a standard Blue-
tooth dongle will never have such a capability due to its
narrow-band, and it will be at an affordable price with
respect to professional wide-band radio receivers.

We intend to investigate transmission and active at-
tacks. With transmission we may be able to reset con-
nections by spoofing a disconnect packet, and therefore
examine how tolerable Bluetooth is to man in the middle
or DoS attacks. We will also assess the security of the
layers above the baseband such as L2CAP, RFCOMM
and OBEX to see if they present any vulnerabilities now
we have enabled the attacker to have full access to the
communication medium.

It is now possible to implement some of the at-
tacks [16, 11, 17, 14] that were only theoretical in nature
before, and attacks such as interception of calls that make
use of a Bluetooth headset become a real threat. Eaves-
dropping is the basic weapon an attacker needs and we
have provided it; at this point the fun research begins.

6 Related Work

The only available Bluetooth sniffer is FTS4BT [7], a
commercial product for eavesdropping Bluetooth in a
controlled environment. It is designed as a tool for diag-
nosing problems and intercepting connections to which
the user already had access. In order for FTS4BT to
work, the master device needs to be discoverable so that
vital parameters such as the MAC and clock can be ob-
tained. These are necessary for unwhitening data and
channel hopping. Our sniffer does not require the master
to be discoverable, and we are able to unwhiten data even
without knowing the clock value. Hence we are able to
eavesdrop in arbitrary environments where as FTS4BT
is limited to those with discoverable devices, which are

now becoming a minority. Because FTS4BT operates on
hardware specifically designed for Bluetooth, it is able to
channel hop and follow an entire connection. We should
be able to match this capability of FTS4BT once the
USRP becomes powerful enough. Another distinguish-
ing feature is that FTS4BT costs approximately $10,000
where as a USRP can be bought for ten times less the
price. Finally, our solution is open-source enabling other
researchers to make use of it without any additional costs
and licensing restrictions.

7 Conclusions

We presented techniques for eavesdropping on Bluetooth
data, therefore eliminating any confidentiality associated
with packets. We show how packets can be intercepted,
unwhitened, and prior work has demonstrated how to de-
crypt data in the case of encryption. We provide the first
single channel open-source Bluetooth sniffer. We do not
yet support channel hopping due to hardware restrictions
although we are able to obtain the necessary parameters
for calculating the hopping sequence, thus making it pos-
sible to (in principle) eavesdrop an entire connection.

We also show how the full MAC address of mas-
ter devices can be obtained, therefore bypassing the ac-
cess control of such devices operating in undiscoverable
mode. We have therefore opened the doors for practical
Bluetooth security research by providing the means for
eavesdropping, and by showing that the common form of
security through obscurity (undiscoverable devices) used
in Bluetooth is futile.

Acknowledgments

We would like to thank Joshua Lackey, Joshua Wright
and Adam Laurie for their invaluable information with
regards to Bluetooth hacking. Many thanks to Mark Han-
dley and Brad Karp too for providing us with much feed-
back on the paper.

9



References

[1] Bluetooth specification v1.2. http:
//download.www.techstreet.com/
cgi-bin/pdf/free/298250/BT_Core_
v1_2%.pdf.

[2] GNU Radio—the gnu software radio. http://
www.gnuradio.org.

[3] Obex v1.3 specification. http://irda.
affiniscape.com/associations/2494/
files/Specifications/OBEX%13_Plus_
Errata.zip.

[4] USRP—Universal Software Radio Peripheral.
http://www.ettus.com.

[5] F-Secure. Security advice. http:
//www.f-secure.com/f-secure/
pressroom/protected/prot-2-2006/
17-407%-3032.shtml.

[6] K. Finisterre. http://www.
digitalmunition.com/HijackHeadSet.
txt.

[7] Frontline Technology. FTS4BT Bluetooth Protocol
Analyzer & Packet Sniffer. http://www.fte.
com.

[8] M. Holtmann. Bccmd, part of bluez - the linux
bluetooth stack. http://www.bluez.org.

[9] M. Holtmann. BlueSnarf. http:
//trifinite.org/trifinite_stuff_
bluesnarf.html.

[10] IEEE. Organizationally Unique Identifier.
http://standards.ieee.org/regauth/
oui/oui.txt.

[11] M. Jakobsson and S. Wetzel. Security weaknesses
in bluetooth. CT-RSA 2001: Proceedings of the
2001 Conference on Topics in Cryptology.

[12] A. Laurie and M. Herfurt. BlueBug.
http://trifinite.org/trifinite_
stuff_bluebug.html.

[13] M. Moser. Busting The Bluetooth Myth—
Getting RAW Access. 2007. http:
//packetstormsecurity.org/papers/
wireless/busting_bluetooth_myth.p%
df.

[14] Y. Shaked and A. Wool. Cracking the bluetooth
pin. In the proceedings of the 3rd USENIX/ACM
Conf. Mobile Systems, Applications, and Services
(MobiSys), 2005.

[15] D. Spill. BlueSniff. http://www.
cs.ucl.ac.uk/staff/a.bittau/
gr-bluetooth.tar.gz.

[16] J. Su, K. K. W. Chan, A. G. Miklas, K. Po, A. Akha-
van, S. Saroiu, E. de Lara, and A. Goel. A prelimi-
nary investigation of worm infections in a bluetooth
environment. In the proceedings of the 4th ACM
workshop on Recurring malcode.

[17] Trifinite group. Trifinite. http://trifinite.
org/trifinite_stuff.html.

[18] J. Wright. Bnap Bnap. http://802.
15ninja.net/bnapbnap/.

10


