
The ND2DB attack: Database content extraction using timing

attacks on the indexing algorithms

Ariel Futoransky Damián Saura Ariel Waissbein ∗

July 31, 2007

Abstract

In this paper we present a new attack technique that
allows extraction of selected database content relying
merely on the attacker’s ability to perform database
transactions (INSERTs or UPDATEs) that are usu-
ally available to any anonymous database user. Our
attack technique uses a side-channel timing attack in
the realm of database indexing algorithms and data
structures. We prove that by exploiting the inherent
characteristics of the most commonly used indexing
data structures and algorithms in today’s commer-
cial database management systems it is possible to
extract privacy-sensitive data from a database. In
particular we prove, both in theory and practice that
it is feasible to do so if the B-tree data structure is
used and the attacker is able to insert records with
chosen data that is used as the search key of one
of the table’s indexes. We present experimental re-
sults of a successful attack implementation against
MySQL and provide conclusions and ideas for fur-
ther research.

1 Introduction

Database management systems (DbMS), the data
stored in them and the applications used to popu-
late, manage and retrieve it constitute a major con-
cern for security-aware organizations seeking to min-

∗Core Security Technologies. Humboldt 1967, 2nd floor.
Cda. de Buenos Aires, Argentina. The authors wish to ex-
press their gratitude to Ivan Arce for his active interest in the
publication of this paper and the anonymous referees for many
helpful comments.

imize their exposure to information security risks.
In the past years, a number of high-profile security
breaches, including incidents in which privacy sensi-
tive information was disclosed, were reported. Con-
sequently, the perils of enforcing effective database
security have become more evident and database se-
curity awareness has increased. The consensus is
that the majority of incidents involving disclosure or
abuse of privacy-sensitive data stored in databases
is caused by miss-configuration of database security
mechanisms, exploitation of software implementation
flaws (bugs) in the applications used to insert or re-
trieve data from the database system —such as SQL
injection vulnerabilities ([15])— or security policy vi-
olations from trusted database users (cf. [16]).

In this paper we present a new attack technique
with which an attacker is capable of extracting
privacy-sensitive data stored in a database system
—such as Credit Card numbers, social security num-
bers, authentication credentials or PINs— using only
the capabilities generally available to anonymous (un-
trusted) users of database applications that execute
only a minimal set of database operations. Namely,
the characterization of our attacker will only require
that he is able to perform an arbitrary number of
INSERT (or alternatively UPDATE) operations (see
[13]) on a table with chosen contents for the field (ta-
ble column) values of the records (table rows) to be
inserted. For example, in a typical attack scenario
an attacker with the ability to add records with his
own credit card numbers would be able to retrieve
valid credit card numbers that belong to the records
of other persons in the database.

The attack technique is based on the application

1

of timing attacks to the algorithm used to insert new
search keys in a B-tree (and variations) —which is
the most common data structure used to implement
table indexes in current DbMS ([10]). In order to exe-
cute our attack against a given table field, we require
that this field is indexed. Indexing has been always
considered in terms of efficiency, and never before in
terms of security. Our result, shows that indexing
has security implications.

Although timing attacks were first applied to
cryptanalysis (cf. [11], [4], [6] and [7]) today they
are also commonly used to exploit a common type
implementation flaw of web applications: Blind SQL-
injection vulnerabilities ([1], [12]). In this later case,
the attacker relies on his ability to amplify a mea-
surable timing difference between successful and un-
successful exploitation attempts of the bug (SQL-
injection vulnerability) when the output of the in-
jected SQL statement is not visible. The attacker
must then be able to create and inject a SQL state-
ment that implements a measurable side-channel on
the target system ([1]). On the other hand, our attack
technique does not rely on the ability to introduce a
new side-channel vulnerability to the database sys-
tem and does not require the existence of a software
bug in the database or its client application. Instead,
the attack leverages an existent side-channel vulner-
ability that is inherent to the use of B-trees for stor-
ing indexes: There is a measurable timing difference
between those search key insertion operations that
require B-tree node splitting and tree re-balancing
and those that do not. We prove that this leak pro-
vides the attacker with enough information to feasi-
bly derive search keys that were already present in
the index before the attack started. Specifically, we
will describe a general methodology that allows to ex-
ploit these information leaks and compute the search
keys of a table. Moreover, we demonstrate this attack
against a MySQL DbMS used with the InnoDB stor-
age engine and reproduce statistics that confirm our
claims. For example, our attack retrieved the first
key of a table of 64-bit integers in about 10 minutes
after making in the order of 10 thousand inserts.

Two earlier works ([9] and [5]) introduce side-
channel timing attacks against different layers of
a web application: web servers and web browsers.

Briefly speaking, these timing attacks profit from op-
timizations at the side of the client (mainly caching)
to recover web-browsing histories ([9]) and other pri-
vate data ([5]) and optimizations at the server side to
determine certain properties of the private data they
host (op. cit.), e.g., knowing whether a given user-
name is valid or estimating the size of private data.

The rest of this paper is structured as follows: In
the next section we describe our attack technique.
We first present databases, tables, indexes, the B-tree
data structure and the search key insertion algorithm.
Next, in Section 2.2 we describe our attack technique
in s generic manner that is applicable to any database
that uses the B-tree indexing. Section 3 describes
the implementation of the attack against a MySQL
database with the InnoDB store engine, where we
first give some clues that help in tuning the attack
for different scenarios (Section 3.1), we then describe
our split detection method (Section 3.2) and finally,
in Section 3.4, we present experimental results of per-
forming our attack against the MySQL-InnoDB pair.
We end this short article with conclusions and ideas
for future work.

2 The attack technique

Our attack recovers search-key values from a given
nonempty table. In many cases, such as with
MySQL-InnoDB, the search-key value and data value
are the same. In any case, (e.g., from the crypto-
graphic standpoint) the search-key value leaks infor-
mation about the data itself.

Given a value x0 in the range of the search-key val-
ues under attack, our attack technique allows you to
recover the smallest search-key value y that is bigger
than x0 and requires making O(n log(y−x0)) inserts,
where n is the block length of this index structure
(described below), e.g., in MySQL we have n ≤ 600.
If all the values are less than k bits long, then this
quantity can be estimated by O(nk). In order to re-
cover a second key y2 from the table, we can launch a
first attack, call this y1 := y, and then start a new at-
tack with x0 := y + 1. This only reuses the attack as
is, although optimizations are surely possible. More
generally, we can estimate the effort required to re-

2

cover s keys from the table by O(nsk).
Central to our attack is the fact that some private

columns of a table are indexed (e.g., with B-trees), an
external user which is able to insert new search-key
values and detect node splits, can therefore estimate
the values of the search keys. In order to understand
this, we follow to explore database internals and pro-
ceed describing a generic attack technique for any
B-tree indexing algorithms.

2.1 The data structure and function-
ing of DbMS

Database Management Systems (DbMS), such as the
Oracle, Microsoft SQL Server, MySQL, Postgres,
DB2, Microsoft Access, and FileMaker implemen-
tations, assist with high-volume and heterogeneous
data storage, retrieval and organization.

DbMSs store collections of tables. A table has bi-
dimensional structure, given by a predefined number
of columns and an arbitrary number of rows. Each
record is stored in a row and the record fields are
divided in columns, e.g., “name,” “age,” etcetera.

A naive search over a table, say for all the records
with a given field value, would require scanning all
the table rows —which is inadmissible in real-sized
applications. In order to make data retrieval, inser-
tion and deletion efficient, DbMSs are configured to
sort some of the columns of a table using a data struc-
ture called indexes. That is, each record receives a
unique identifier and for each index they build a two-
columns table, e.g., a sorted version of the indexed
table column, where each of these values is paired
with a pointer to the record to which it belongs.

B-trees, B+-tree and other variants (see [2], [3],
[10]) are the most popular choice for indexing. In
B-trees, data is organized in blocks and these blocks
in a balanced tree. The tree is said to be balanced
because each path from the root of the tree to any leaf
has the same length. Each node contains at most n
search-key values, for a fixed integer n that is called
the block length and whose value is determined by
the DbMS (op. cit. and [14, Section 14.2.13]). At
the root, except in a border case, there are at least
two pointers: one pointing to each block below.

Figure 1: A B+-tree

In internal nodes, the n+1 pointers point to blocks
in the next level and at least d(n + 1)/2e of these
should be used. Pointers are ordered increasingly and
they represent consecutive nodes in the level imme-
diately after. Explicitly, for j + 1 pointers used there
exist j keys, K1, . . . ,Kj such that all the keys in the
first node in the node level below are smaller than
K1, all the keys in the second node are between K1

and K2, and so forth.
Each leaf can contain at most n and no less than

b(n+1)/2c search keys. Consecutive nodes are linked
by pointers. Each search key is accompanied by a
placeholder for the data. Depending on the imple-
mentation, it will contain a complete copy of the
record (e.g., for clustered indexes) or a pointer to the
actual record. For B+-tree we additionally require
that all the search keys appear in the leaf nodes.

B-tree designs and implementations vary, and with
these the different insertion and sorting algorithms.
When a leaf is full (with search keys K1, . . . ,Kn) and
a new key is inserted in the table, whose value is be-
tween K1 and Kn, a node split or split occurs: a new
leaf is created and the n+1 keys are divided between
the original and the new leaf. Design principles dic-
tate that the values should be split in two halves,
one half for each leaf. However in some cases, such
as with MySQL-InnoDB, the index is optimized and
the search-key values may not be divided in halves.

In DbMS implementations of B/B+-trees each
node is stored in permanent memory in units called
page disks (typically of 8KB, 16KB) and these page
disks are retrieved to RAM only when they are re-
quired. In brief, DbMSs process each data manip-

3

ulation command which is optimized and forwarded
to a “storage engine” which will efficiently search the
indexes and retrieve to RAM the required data. For
example, this implies that when looking up for a given
search-key value, the DbMS will not require to fetch
to memory and inspect all the search keys.

It should be noticed that in DbMSs it is the storage
input/output operations that dominate the cost of
typical data manipulations. And since indexes save
I/O operations, they save considerable time. On the
other hand, a side effect of indexes is that the same
data manipulation operation when performed with
different values, will require different amounts of time
to be completed. For example, inserts that produce
node splits should take more time than inserts than
do not. The next remark demonstrates that B-trees
leak information.

Remark 1 Consider a nonempty table and fix a field
which is indexed by B+-trees. Assume that x1 is the
smallest search-key value in a leaf and that the search
key with value x1 +B falls in this same leaf, for some
positive integer B. Insert the values (x1 +B)+ i, for
i = 0, 1, 2, . . . until there is a split. Then one of the
following is true:

• There is a node split after making k < n inserts.
Then, there are at least n − k − 1 search keys
whose values are between x1 and x1 + B.

• There is a split when x1 + B + n − 1 is added,
then the tree contains no values between x1 and
x1 + B.

• We inserted a duplicate key.

This remark not only proves that B+-tree insertion
leaks information to users if they can detect node
splits, but it also gives a hint into how to exploit
these leaks to design an attack. To apply our attack
technique we need more information on how the B-
tree is implemented in order to exploit this data leak.
Below we describe 3 different cases of node splits with
InnoDB which cover all the splits that take place dur-
ing our attack.

For the first case, assume there is a node with a
single value, i+1. We write this as [i+1] —ignoring

other leaves in the tree. We continue to add values
i + 2, i + 3, The insertion of i + n + 1 produces
a split and a new leaf is created. The two nodes will
then look like [i+1, . . . , i+n][i+n+1]; that is, after
making n inserts (we are not counting i + 1) we end
with two nodes, the left node has n values and the
right node only 1.

For the second case, assume there is a node [i +
1,K] that contains two values i,K with i + 1 < K,
then adding the values i+2, i+3, . . . produces a split
at the insertion of i + n and a new leaf is created.
The two nodes will then look like [i + 1, . . . , i + n −
1][i + n, K]; that is, after making n − 1 inserts (we
are not counting i + 1) we end with two nodes, the
left node has n − 1 values and the right node 2.

For the third case, assume there is a node [i +
1,K1, . . . ,Ks] that contains several values i + 1 <
K1 < · · · < Ks, with 1 < s < n. We continue to add
values i+2, i+3, The insertion of i+n−s produces
a split and a new leaf is created. The two nodes will
then look like [i + 1, . . . , i + n − s,K1][K2, . . . ,Ks];
that is, after making n−s inserts (we are not counting
i + 1) we end with two nodes, the left node has n− s
values and the right node s + 1.

In fact, these cases can be generalized (e.g., only
the last few inserts need to hold consecutive values).
Finally, we mention that InnoDB behaves symmet-
rically, so that the mirror images of the above cases
hold as well.

2.2 Algorithm and results

Let us fix a nonempty table and a search key indexed
using B+-trees. For simplicity, let us assume that
search keys are primary (i.e., if we attempt to in-
sert a repeated value, we receive an error notifica-
tion) and they hold integers. Although the primary
requirement is natural in many scenarios, our tech-
nique could be adapted to handle repeated keys. Let
n denote the page size, i.e., the number of search keys
that fit in a node.

Let us assume that we can connect to the DbMS
(e.g., as a DB user), insert values to the tree and
know whether this operation produced a split. Al-
though this last requirement might seem excessive,
we will prove later on that it can be replaced by a

4

more realistic assumption. In any case, split detec-
tion depends on the DbMS under attack and several
parameters, including network latency, disk caching,
etcetera. See Section 3.2 for more details on split
detection.

The attack algorithm depends on the following in-
put parameters: a value x0 in the range of the fixed
column and integers b and B := br, for some integer
r, standing for a base and an initial step size. The
attack succeeds after computing the minimum value
y in the table that is bigger than x0. Although the
technique is —a priori— general and should be appli-
cable to other database engines, we will describe the
instantiation against MySQL configured to work with
the InnoDB storage engine in its default installation.
This is mainly because our attack technique relies not
only on split detection, but in the changes that splits
produce in the tree, and the fact that B+-tree imple-
mentations differ in each DbMS. In summary, design-
ing and executing this attack against other DbMS is
a difficult task and is out of the scope of this pa-
per. The reader will understand what of the details
we give are particular to the attack, and which are
general and can be applied to other scenarios.

The attack algorithm relies on a procedure that
receives an interval containing the key y, splits it in b
parts of the same size, and detects in which of these
lies y. Due to the particularities of InnoDB our attack
is not straight forward and requires a brief setup. It
can divided in three steps:

• Setup: We prepare the tree for applying the
divide and conquer procedure. Once finished, y
is the smallest value of its leaf and we obtain an
interval of size br containing y (i.e., we obtain
integers l, u such that l < y < u = l + br).

• Divide and conquer: We set k := r and re-
cursively apply a procedure that sets k := k− 1,
takes as input an interval of size bk+1 containing
y and so that y is the smallest value in a leaf,
and returns an interval of size bk containing y,
also y is the smallest value in a leaf.

• Last step: Once we have bk < n we look for
y by an exhaustive search on this interval, that
is, we make an insert for each of the values in

the interval until we receive a “repeated insert”
error —which will mean that we have found y.

Roughly speaking, the setup procedure and each ap-
plication of the recursive procedure require less than
nb inserts. The following lemma summarizes the
complexity of our algorithm.

Lemma 2 Let notions and notations be as before.
Then, there exists an algorithm that given:

• A starting point x0.

• A step value b and a step exponent r.

computes the smallest value in the tree that is bigger
than x0 and requires at the most O(n

∑
0≤j≤r ij) =

O(nb logb y) inserts, where the ij are the b-ary ex-
pression for y; that is, y = ir + ir−1b + · · · + i0b

r,
0 ≤ ij < b for j = 0, . . . , r and i0 6= 0.

This lemma implies that if we set x0 = 0, b = 10
and r = 6 and y = 3020 581 and assume that
n = 500, then our attack requires in the order of
n(3 + 2 + 5 + 1 + 1) = 6000 inserts. We do not prove
this lemma due to space restrictions. A proof would
require describing the complete algorithm and going
through all the possible branches of this algorithm.
As an example, we give the following pseudo-code
snippet, which executes the procedure used in step 2
(divide-and-conquer) of our algorithm, a sketch of the
proof on how it succeeds and estimate its complexity.

m:=0;
k:=k-1;
Repeat
{

Set m’:=m;
Insert keys l,l+1,... until a split is
detected;

Set m the number of inserts made;
l := l + b^k;

} Until m != n;
l := l - b^k + m’;

The input for each run are integers l, k such that
l < y < u := l + bk, y is the smallest value in

5

a leaf and there is no other key between y and u.
More explicitly, let us assume that there are two con-
secutive leaves [l][y, u, . . .], where the search key l
is alone in one leave, and the following leave con-
tains y, u (with y < u) plus possibly other values.
This procedure computes a new value l such that
l < y < u := l + bk−1 and thence two consecutive
leaves in the tree look like [l][y, u, . . .]. To prove this,
we go through the procedure. The procedure first
sets k := k − 1 and checks from first to last, which
of the intervals [l + hbk, l + (h + 1)bk] contains y for
h = 0, 1, . . . , b − 1.

For the first of these intervals, it inserts the values
l + bk, l + bk +1, . . . until there is a split. Then, there
are two possibilities to consider: either l + bk < y or
l+bk > y (if l+bk = y then we have found the key!) If
l+bk < y then the search keys l+bk, l+bk +1, . . . are
inserted in the first of the two leaves, that is [l], and
this results in Case 1 that we described in Section 2.1.
It can be identified by the attacker because in this
case the split will occur precisely after he has made
the n-th insert. Hence, a new leave will be created
and the three affected leaves will look like

[l, l+bk, l+bk+1 . . . , l+bk+n−2][l+bk+n−1][y, u, . . .]

If l + bk > y then the search keys l + bk, l + bk +
1, . . . are inserted in the second of the two leaves,
that is [y, u, . . .], and this results in Cases 2 or 3 that
we described in Section 2.1. It can be identified by
the attacker because in this case the split will occur
before he has made the n-th insert. In this case, a
new leave will be created and the three affected leaves
will look like

[l][y, l + bk, . . .][. . .]

Notice, that in this case, the attacker is able to infer
that l < y < l + bk + m = l + bk + n − 1. Finally, we
must re-set l := l − bk + m′ not to repeat insertions
during the next run of this procedure.

Each execution of the above procedure takes at
most hn inserts, and since h < b we deduce that
the claimed estimates hold.

The first step of the algorithm goes similarly but
is more complicated to describe and is left out of this
short paper.

3 Experiments

To determine the feasibility of our attack technique
we customized it to attack MySQL-InnoDB configu-
rations running in Windows XP. We launched our
attack against tables holding different numbers of
records, ranging from 1 to several thousands. A clus-
tered index with integer search keys was the target
of the attack and the index values were selected uni-
formly, during our first test in the set of 64-bits inte-
gers and at other tests as strings of 8 characters and
32 characters. The attacker connected to MySQL as
a user running in the same server where the DB was
running. Time measurements were taken using ker-
nel32.dll functions QueryPerformanceCounter and
QueryPerformanceFrequency. We also tested this
from another computer a switch away in the same
network as the web server.

The first byproduct of our research was a trick
that allowed us to concentrate on the data leaks pro-
duced by the B+-tree implementation of InnoDB,
without caring about spit detection, and next face the
split detection problem. That is, at a first stage we
produced an instrumented version of MySQL where
splits were very easy to detect and designed the at-
tack to work against it. Once done, we used this
knowledge to implement the attack against the (un-
instrumented) MySQL engine. The next sections de-
scribe these steps.

This same attack design method can be repeated
for customizing our attack technique against other
DbMSs configurations —provided one has the ability
to instrument the detection of splits and read tree
topologies.

3.1 A research and design framework

We produced an instrumented version of the MySQL
engine that behaved exactly like the original one
except that: inserts took 1 millisecond to add a
key when no leaf was split and took 100 millisec-
onds when a split occurred. Additionally, the instru-
mented MySQL took snapshots of the topology of the
tree before and after a split. With this functionality
available, we were able to experiment and design the
attack as described in the above algorithm.

6

3.2 Detecting a split

Once the attack was working for this instrumented
MySQL, we undertook the problem with the MySQL-
InnoDB engines as is and tested it against a sample
of tables of different sizes. Adapting the attack was
not trivial, and it was necessary to develop a special
split detection algorithm that we follow to describe.

In designing our attack, we did some experimental
measurements in a controlled scenario. All measure-
ments are dependent on the computer where the en-
gine runs, the table under attack and the computer
running the attack. However, our algorithm adapts
to variations of these parameters (for example, we
tested the attack from another computer a switch
away and it worked without modifying the code, and
we tested the attack running MySQL in another com-
puter and it worked fine as well). The MySQL en-
gine takes longer time to respond from an insert that
produces a split than from an insert that does not.
MySQL optimizations, hard-drive specifics, caching,
CPU usage and other factors act as noise and, regret-
tably, noise might render an insert which produces a
split indistinguishable from one that does not when
the only information used to decide this is the time
taken by MySQL to make the insert (taking into ac-
count our measurement limitations).

For our split detection algorithm to work we re-
quire that there is a threshold value t∗ so that most
of the inserts that produce splits take more time than
t∗ and most of the inserts that do not produce splits
take less time than t∗. In order to overcome the noise
interference, we devised a statistical test that guesses
when splits occur. This test profits from the fact that
most of the inserts that do no produce splits take
little time to respond (smaller than t∗), and only a
handful of these take as much time as inserts that
split; e.g., during our experiments the mean time of
the inserts that generated splits doubled the mean
time of inserts that did not (the means were 73ms
and 32ms respectively). The following remark is an
immediate conclusion of the existence of this thresh-
old. Notice, however, that if no threshold can be
computed, then there might be other means for as-
sessing these leaks1.

1When attempting to estimate this threshold value in other

Remark 3 Let k be a positive integer. Consider con-
secutive inserts which took time t1, t2 . . . respectively.
Let i be such that ti, ti+n, . . . , ti+kn are all bigger than
t∗. Then, the probability that these timings do not
correspond to splits goes to 0 as k grows, and the
probability that they do belong to splits goes to 1 as k
grows.

Our application of this remark required balancing ef-
ficiency with accuracy, and this was in an ad hoc fash-
ion. Explicitly, to decide whether a split occurred, we
made consecutive inserts and recorded the number of
inserts that took more than t∗, we then matched this
with a table that contained all the possible values and
the associated consequences. For example, if there
were three of these that were each a distance n apart,
then we assumed that they corresponded to the Case
1 described in Section 2.1. In the next section we
show how to combine this with the attack algorithm
described before. In testing this method, we discov-
ered that it has a very low rate of false positives (i.e.,
when our method claims it detected a split, it is be-
cause there was a split), but a less appealing rate of
false negative alarms (e.g., several node splits were
not detected). Luckily, this method was sufficiently
accurate for executing the attack.

3.3 Combining both algorithms

The attack algorithm described in Section 2.2 re-
quires that the attacker is able to detect all the splits
that he generates precisely after he makes the “gen-
erating” insert. However, our split detection method
might fail and this should be taken into account. On
the other hand, as we mentioned in the previous sec-
tion, split detection can fail either detecting a spit
when no split occurs or ignoring a split. In the for-
mer case, our attack algorithm will fail to compute
a key (although some error recognition and rewind-
ing could be implemented, it is out of the scope of
this paper). On the other hand, in the latter case,

computer systems we found evidence of trade-offs that help
or damage the detection probability, e.g., faster hard-drives
make it more difficult to detect splits, but larger search-key
values make it easier. Understanding exactly what are all the
parameters that affect the attack and how they interplay is
outside the scope of this paper.

7

the algorithm can be adapted to compute the key
successfully.

For example, if l < l + bk < y and we insert values
l + bk, l + bk + 1, . . ., then there will be node splits at
l + bk + (n − 1) + hn for h = 0, 1, These are the
node splits covered in Case 1 of Section 2.1, hence
if we detect three of these splits in a row, we deduce
that l+bk < y. If we have that y < l+bk and the leaf
containing y is [y, u], then inserting l+bk, l+bk+1, . . .
will result in node splits at l + bk + (n − 2) + hn for
h = 0, 1, These are the node splits covered by
Case 2. Hence, if we detect three of these node splits
in a row, we deduce that y < l + bk. The situation
where there are more keys in the leaf with y, u can
be tackled similarly.

At any rate, we can precompute a table that de-
scribes all the possible cases, and combine our attack
algorithm with the split detection method we just de-
scribed to produce a complete algorithm that attacks
standard (un-instrumented) MySQL engines.

3.4 Statistics

We executed the attack against different scenarios.
In each case, the MySQL engine (as downloaded from
http://www.mysql.org) ran in a fixed computer un-
der Windows XP.

We executed our attack against a table with a sin-
gle column of 64 bit integers with 1, 101 and 1001
keys. Below find a table with the attacks we exe-
cuted, where columns include the number of keys in
the table, whether the attack was successful or not,
the number of inserts made, and the time in minutes
and seconds spent by each attack.

of keys Result # of inserts time elapsed
1 Success 14291 09:48
1 Success 14864 11:13
1 Success 13145 10:52
101 Success 13145 10:54
101 Success 13145 10:53
101 Success 13145 10:11
1001 Success 12858 09:56
1001 Failed 10590 08:34
1001 Failed 20094 15:47
1001 Success 12592 08:33
1001 Success 15723 11:09

4 Final remarks

We have devised a general technique that allows us
to retrieve keys from a table in a database engine,
only by requiring that we are allowed to make inserts
and compute the time the database engine takes to
answer.

We mention some open questions. First, it remains
to understand under what the conditions does the
attack technique work. That is, can we apply a pro-
cedure that will tell us a priori if our attack can be
successful against a given setting? We already have
some means that help to answer this question, and
that is our split detection algorithm. If the split de-
tection algorithm detects splits with good probabil-
ity, this means that we can detect information leaks
and (might probably) be able to execute the attack.
However, we believe that this algorithm could be re-
placed with a split detection method which is more
efficient and has a better success probability. This is
left for future work.

Another question that one can make is what coun-
termeasures could one take to block this attack
methodology, or if not to block, to detect attacks
which are ongoing or have occurred. Again, we can-
not answer this question but give partial solutions.
For example, implementing some sort of transaction
throttling (e.g., limiting the number of inserts per
database user or IP address); using anomaly detec-
tion techniques in the connection to the DbMS to
statistically detect known forms of this attack (e.g.,
a large number of splits or consecutive inserts); one
could also apply a blinding operation to each search-
key value (see, e.g., [8], [11], [4]); or altering the B-
tree algorithms to thwart information leaks. Doing
these analysis from security logs might be easier, so
after-the-fact detection will probably be more accu-
rate.

It further remains to analyze how to tune up our
attack for the different scenarios with a fixed DbMS
(e.g., with MySQL and InnoDB), how to extrapo-
late the attack to other DbMSs, and analyze whether
more efficient attacks can be designed (e.g., can we
optimize the attack to compute all the keys in the
table).

8

References

[1] Chris Anley. Advanced SQL injection in SQL server
applications. NGSSoftware Insight Security Re-
search (NISR) Publication, 2002.

[2] Rudolf Bayer and Edward M. McCreight. Organi-
zation and maintenance of large ordered indexes. In
Record of the 1970 ACM SIGFIDET Workshop on
Data Description and Access, November 15-16, 1970,
Rice University, Houston, Texas, USA (Second Edi-
tion with an Appendix). ACM, 1971.

[3] Rudolf Bayer and Karl Unterauer. Prefix B-trees.
ACM Trans. Database Syst., 2(1):11–26, 1977.

[4] Daniel Bleichenbacher. Chosen ciphertext attacks
against protocols based on the RSA encryption stan-
dard PKCS #1. In Hugo Krawczyk, editor, Advances
in Cryptology - CRYPTO ’98, Santa Barbara, Cal-
ifornia, USA, August 23-27, 1998, Proceedings, vol-
ume 1462 of LNCS, pages 1–12. Springer, 1998.

[5] Andrew Bortz, Dan Boneh, and Palash Nandy. Ex-
posing provate information by timing web appli-
cations. In World Wide Web Conference (WWW
2007), Track: Security, Privacy, Reliability and
Ethics. May 8–12, 2007. Banff, Alberta, Canada,
2007.

[6] David Brumley and Dan Boneh. Remote timing at-
tacks are practical. In 12th Usenix Security Sympo-
sium, Washington DC, August 4–8, 2003, proceed-
ings of, 2003.

[7] B. Canvel, A. Hiltgen, S. Vaudenay, and M. Vuag-
noux. Password interception in a ssl/tls channel.
In Dan Boneh, editor, Advances in Cryptology -
CRYPTO 2003, 23rd Annual International Cryptol-
ogy Conference, Santa Barbara, California, USA,
August 17-21, 2003, Proceedings, Lecture Notes in
Computer Science, 2003.

[8] David Chaum. Blind signatures for untraceable pay-
ments. In David Chaum, Ronald L. Rivest, and Alan
T. Sherman, editors, Proceedings of CRYPTO ’82.
Plemum, New York, 1983, pages 199–203, 1982.

[9] Edward W. Felten and Michael A. Schneider. Tim-
img attacks on web privacy. In Proceedings of the
7th ACM Conference on Computer and Communica-
tions Security. November 1-4, 2000, Athens, Greece.
ACM, 2000, 2000.

[10] Hector Garcia-Molina, Jeffrey D. Ullman, and Jen-
nifer Widom. Database System Implementation.
Perntice Hall, 2000.

[11] Paul C. Kocher. Timing attacks on implementa-
tions of Diffie-Hellman, RSA, DSS, and other sys-
tems. In Neal Koblitz, editor, Advances in Cryp-
tology - CRYPTO ’96, 16th Annual International
Cryptology Conference, Santa Barbara, California,
USA, August 18-22, 1996, Proceedings, volume 1109
of LNCS. Springer, 1996.

[12] Mateo Meucci (editor). The OWASP test-
ing guide v2. http://www.owasp.org/index.php/

Image:OWASP_Testing_Guide_v2_pdf.zip, 2007.

[13] Anthony Molinaro. SQL Cookbook. O’Reilly, 2005.

[14] MySQL. MySQL 5.0 Reference Manual, 2007.

[15] Rain Forest Puppy. NT web technology vulnerabili-
ties. Phrack Magazine, 8(54), 1998.

[16] Andrew van der Stock, Jeff Williams, and Dave
Wichers. The ten most critical web-application se-
curity vulnerabities (2007 update). OWASP tech-
nical report. URL: http://www.owasp.org/index.

php/Top_10, 2007.

9

