
An Encrypted Payload Protocol and Target-Side Scripting Engine

Dino A. Dai Zovi
Dino.DaiZovi@twosigma.com

Abstract
Modern exploit payloads in commercial and open-source
penetration testing frameworks have grown much more
advanced than the traditional shellcode they replaced.
These payloads permit interactive access without launch-
ing a shell, network proxying, and many other rich fea-
tures. Available payload frameworks have several lim-
itations, however. They make little use of encryption to
secure delivery and communications, especially in earlier
stage payloads. In addition, their richer features require
a constant network connection to the penetration tester,
making them unsuitable against mobile clients, such as
laptops, PDAs, and smart phones.

This work introduces a first-stage exploit payload that
is able to securely establish an encrypted channel using
ElGamal key agreement and the RC4 stream cipher. The
key agreement implementation requires only modular
exponentiation and RC4 also lends itself to an implemen-
tation requiring a very small amount of executable code.
This secure channel is used to send further executable
code and deliver a fully-featured interpreter to execute
mission logic written in the high-level Lua scripting lan-
guage. This scripting environment permits secure code
delivery as well as disconnected operation and execution
of penetration testing mission logic.

1 Introduction

Although much work has gone into detecting, mitigat-
ing, and preventing their exploitation, remote code ex-
ecution vulnerabilities remain one of the most preva-
lent and serious vulnerability classes in software today.
While reported remote code execution vulnerabilities in
common server software have gotten more rare, they are
still highly prevalent in web browsers, office suites, me-
dia players, anti-virus suites, and other local application
software.

Remote code execution vulnerabilities are exploited
by injecting a small amount of executable machine code

into the remote process and then triggering the vulnera-
bility (the injection vector) in order to cause the remote
process to execute the injected code (the payload). Tra-
ditionally, these payloads have been written in processor-
specific assembly language, assembled, and extracted by
hand into reusable machine code components. These
payloads were typically small and executed an operating
system shell, causing them to be commonly referred to
as shellcode. Common shellcode variants included func-
tionality such as restoring dropped privileges, breaking
out of chroot environments, and attaching the shell to
an inbound or outbound network connection. This style
of payload construction was both labor and skill inten-
sive.

With the growth of commercial penetration testing
services and especially commercial penetration test-
ing products, exploit payloads have gotten considerably
more capable and complex. These payloads have facil-
itated the construction of products that help less experi-
enced penetration testers better demonstrate the risk pre-
sented by exploitable security vulnerabilities. In addi-
tion, the increased prevalence of layered host security
defenses require that payloads be more robust and ca-
pable of more complex logic. The Unix chroot sys-
tem call is typically used to run a network service in a
restricted file system environment. Extensions includ-
ing FreeBSD’s jail [1] extend this model to assign
a dedicated IP address to a jail. More recent devel-
opments include the Windows Integrity Mechanism in
Windows Vista. The Windows Integrity Mechanism is
a Biba Integrity Model[2] Mandatory Access Control
security system used to implement Internet Explorer’s
“Protected Mode” and User Account Control (UAC).
Protected Mode Internet Explorer runs as a low-integrity
process that prevents it from writing to anywhere except
designed places on the file system or in the registry, re-
gardless of the discretionary access control list on the
objects. Escalating privileges in these restricted permis-
sion environments, pivoting through networked hosts, or



achieving mission objectives from these restricted execu-
tion environments requires complex payload logic.

This work addresses two shortcomings of the exist-
ing exploit payloads found in commercial and open-
source penetration testing tools. The first is a lack of se-
cure payload delivery and communication mechanisms.
Most available systems offer partial solutions to this at
the present time by either only supporting encryption in
later-stage executable agents or by only supporting sim-
ple XOR-based traffic encoding. The second area that
this work addresses is the applicability of existing pay-
loads against mobile clients. Most of the existing frame-
works require a constant network connection to the com-
promised target in order to carry out mission objectives.
This paper introduces a target-side scripting environment
in order to push mission-objective logic onto the target.
The secure channel established by the earlier stage pay-
load ensures that mission objective logic is not compro-
mised in transit to the target.

This paper is organized as follows. First, a summary
of existing advanced payload techniques and frameworks
is presented in the next section. Afterwards, Encrypted
Payload Protocol describes a system for cryptographi-
cally securing exploit payload delivery and communica-
tion. The final stage of this payload system, a lightweight
and powerful remotely scripted agent is introduced in the
section titled Target-Side Scripting. Finally, the paper
concludes with some discussion of the security and util-
ity of the described payload system.

2 Related Work

As mentioned above, the development of commercial
penetration testing applications and layered host security
defenses have significantly increased the complexity of
exploit payloads. This section describes the exploit pay-
load systems found in the major available commercial
and open-source penetration testing frameworks.

Syscall proxying[3] is a simple and flexible technique
for simulating remote execution. Syscall proxying im-
plements a fat client, thin server remote procedure call
protocol based on transferring stack frames. To exe-
cute a remote system call, the syscall proxy client mar-
shalls the required argument register values and mem-
ory buffers into a single buffer. The syscall proxy server
writes this marshalled stack buffer directly to its stack
segment, pops the general register values from it, and ex-
ecutes the system call specified. After the system call
returns, the server pushes all the general purpose regis-
ters onto the stack and transfers the stack buffer back to
the client. This general mechanism requires very little
server-side logic, but provides a great deal of flexibility,
allowing the remote client to open files, make network
connections, and even exploit other vulnerabilities on the

same or other remote systems.
There are some limitations, however, with the syscall

proxy’s simple server-side logic. For example, it can-
not handle the fork system call. In addition, file or
socket input and output with the read or write system
calls requires transferring the buffer twice because allo-
cating stack space requires sending unused data in the
marshalled stack buffer. Similarly, a round-trip for each
system call can add significant latency to input/output in-
tensive operations. Finally, all communication with the
syscall proxy server is performed unencrypted. This can
be a concern when a remote penetration tester is gaining
access to sensitive hosts or files. CORE IMPACT [4], a
commercial penetration testing application that employs
syscall proxying, addresses these issues by also employ-
ing more complex agents with richer network transports
that perform encryption. The initial syscall proxy server
can be used to deploy a more capable remote agent, but
this requires writing an executable to the remote system’s
hard drive.

Immunity’s CANVAS [5], a competing penetration-
testing application, uses a custom compiler-based pay-
load construction system called MOSDEF [6]. The
MOSDEF compiler takes a subset of the C programming
language and generates highly position-independent ma-
chine code suitable for dynamic injection into remote
processes. The remotely executed payload can make use
of system functions or other locally compiled functions.
Loops, conditional execution paths, and function calls
are all executed inside the remote compromised process
and only minimal necessary information is transferred
to or from the remote process. This allows the payload
author to create complex payloads that can, for exam-
ple, transfer an entire remote file if successful, or only a
smaller error code if an error occurred.

A compiler-style approach such as MOSDEF ad-
dresses many of the limitations of syscall proxying at
the expense of implementation complexity. A MOS-
DEF program can create multiple processes and perform
a significant amount of work on the client without requir-
ing network round-trips or data transfers. The low-level
flexibility of C also allows a MOSDEF program to per-
form byte-level memory manipulations easily. This is
an important capability as performing a heap metadata
exploit typically corrupts the heap to the point of caus-
ing any subsequent heap operations to crash the program.
A MOSDEF program can systematically repair the heap
before executing higher-level functions that may require
heap memory allocation. MOSDEF, however, does not
encrypt the data in transit or payload code. Immunity
also provides a remote access trojan called Hydrogen that
uses RSA and Twofish to protect communications. The
Hydrogen server executable contains an embedded RSA
key that is used to securely send the randomly generated



Twofish session key to the client. The Hydrogen server
is typically copied to the remote system using MOSDEF
and executed [7].

An alternative approach is remote library injection.
Remote library injection uses special linking and load-
ing techniques to inject arbitrary shared libraries into a
remote compromised process address space. The remote
library injection approach has been implemented for both
Linux ELF [8] and Windows DLL [9] and both imple-
mentations are included in the Metasploit open-source
exploit development framework [10]. The benefit of this
approach is that arbitrarily complex payloads or exist-
ing software can be easily re-linked and remotely exe-
cuted. The existing implementations load the shared li-
brary purely in memory without writing the library to the
remote system’s hard drive.

The Metasploit project has implemented several pay-
loads using DLL injection, including an injected VNC
server [11] for remote graphical control of the host, and
the Meterpreter [12], a dynamically extensible server-
side scripted environment. The Meterpreter consists of
the base Meterpreter library that is remotely injected into
the victim process, the interactive shell running on the
attacker’s host, and custom extensions. Meterpreter ex-
tensions add new functions to the Meterpreter shell that
are implemented as a combination of local scripting lan-
guage code and a remotely injected library. The use of
a local scripting language (Ruby in Metasploit 3.0 and
Perl in prior versions) allows payload functionality to be
rapidly developed and deployed on-the-fly. Meterpreter
can optionally XOR-encode packets in order to evade In-
trusion Detection System signatures.

In a different application but similar spirit, Adam
Young and Moti Yung have investigated many ways that
strong cryptography can augment and prevent computer
viruses [13].

3 Encrypted Payload Protocol

A professional penetration test should not expose the tar-
geted client network to additional security risks in the
process of the penetration test, even if the test is being
performed across untrusted networks (i.e. the Internet).
This includes not sufficiently protecting client data in
transit to the penetration tester or using tools that open up
additional security vulnerabilities on the client’s network
during the test. For example, an attacker on the Internet
route between a penetration tester and their client target
should not be able to piggy-back on the penetration test
in order to gain access to the client’s network. In addi-
tion, the penetration tester may be employing proprietary
vulnerabilities, exploits, and techniques that should not
be compromised by an unauthorized attacker between
the penetration tester and the target network.

We define our attacker to be a passive traffic eaves-
dropper or active traffic manipulator en route between
the penetration tester’s systems and the target client net-
work, but not including an adversary on the client’s net-
work or a honeypot target. Our penetration test scenario
is a client-side penetration test against a client’s enter-
prise network. Client-side penetration tests using web
and e-mail based attacks are becoming more common
as Internet attackers have also been using these attacks
more and more in recent years. In addition, while Inter-
net perimeter security is a relatively mature and under-
stood discipline, client security is still a difficult problem
for most organizations.

An open problem with the existing exploit payload
systems described above is cryptographically secure pay-
load delivery and communication. Several of the systems
described above transmit second-stage agent executables
over their first stage payload’s communication channels.
While the second-stage agents employ strong cryptogra-
phy to protect communications, they are sent in the clear
over the unencrypted first stage payload communication
channel. The executable agents are not polymorphic and
may easily be fingerprinted and identified by a signature-
based intrusion detection system as they are transferred
to the target system. Because they are easily identified,
an active attacker capable of performing a man-in-the-
middle attack could also modify the executables in transit
to the target system. The attacker could do this to gain
access to the compromised hosts without prior knowl-
edge of the vulnerabilities or exploits used by the pen-
etration tester. Even if the agent executable themselves
were made polymorphic, the custom protocols used to
deliver them to the target system may still be identified
and manipulated by an active attacker.

In a client-side penetration test, exploits are typically
delivered as attachments to targeted e-mail messages or
on web pages hosted on the penetration tester’s web
server. The attacks involve some amount of social engi-
neering as the user must be convinced to open the e-mail
message, attachment, or web page in order for the exploit
to be attempted. Protecting the secrecy of these poten-
tially proprietary exploits in use is a difficult problem that
this work does not address. This work does, however,
show how establishing a secure channel in the first stage
payload protects all communications beyond the deliv-
ery of the exploit. This is sufficient to protect against a
passive attacker. If the delivery of the exploit can be se-
cured, for example, by sending exploit e-mails using Se-
cure SMTP over TLS or hosting web-based exploits on
a SSL web server with a certificate granted by a trusted
root certification authority, then the communications be-
tween the penetration tester and target network can even
be secured against an active attacker able to manipulate
traffic. This design provides a secure mechanism for de-



livering the later-stage exploit payloads, as well as a se-
cure transport for payload and remote agent command
and control. This protects the penetration tester’s tools,
mission logic, and remote target communications from a
passive adversary. The polymorphic encoding of the ex-
ploit and first-stage payload makes an active attack rea-
sonably difficult, especially so if the exploit is delivered
over SSL.

3.1 Architecture

The payload delivery is executed in several stages in or-
der to progressively establish more secure and capable
execution environments. In addition, a staged payload
system allows the bulk of high-level functionality to be
implemented in later stages that typically have less con-
straints on their implementation. For example, the first
stage payload, included in the code injection exploit, typ-
ically must be implemented in hand-written assembly in
order to guarantee complete position-independent execu-
tion. In addition, there may be byte value constraints on
the machine code encoding of the payload. This is typi-
cally due to the fact that the payload is included with the
injection vector within a defined file format or network
protocol. The most common example of this constraint
is the inability to use the NULL byte in the payload since
the value is also used as the ASCII string terminator. To
get around this, self-executing payload decoders are typ-
ically used to convert an arbitrary machine code frag-
ment into a string consisting of only “safe” byte values.
More advanced encoders add polymorphism and restrict
the output byte set to printable ASCII, for example.

Our first stage payload initiates communication by ne-
gotiating a shared key and establishing a secure chan-
nel to the payload delivery server. The secure channel is
established by the first stage payload in order to ham-
per an active adversary desiring to identify and inter-
fere with payload communications. This is done in the
first stage because later stage communications may be
easier to identify and tamper with than the initial trans-
mission of the actual code injection exploit. For exam-
ple, consider that browser-based exploits may be deliv-
ered over SSL and that exploit payloads typically em-
ploy polymorphic self-decoders that may be difficult to
identify by signature-based network intrusion detection
(IDS) and prevention (IPS) systems. In both cases, iden-
tifying and intercepting the delivery of the initial exploit
is difficult in principle and impossible using currently
available commercial IPS technology. While technically
possible, intercepting, decoding, and modifying a poly-
morphic payload within an arbitrary exploit in transit is
a very challenging task.

The secure payload delivery protocol was designed to
minimize required code space for the first stage payload

Function x86 machine code bytes
fp exptmod small 135
fp rshd 173
fp mulmod small 80
fp mul comba 559
s fp sub 336
Total 1283

Figure 1: Cryptographic Routine Code Sizes

through the use of simple yet secure cryptographic oper-
ations and algorithms. In addition, custom cryptographic
routines were chosen to maximize portability across tar-
get operating systems. Our first stage payload estab-
lishes the secure channel and must do so given the size
constraints of first stage code injection exploit payloads.
The system uses ElGamal key agreement (alternatively
referred to as Half-Certified Diffie Hellman [14]) to se-
curely establish a session key with the payload server
and the RC4 stream cipher to encrypt communications.
ElGamal key agreement was chosen because it requires
only a single arbitrary-precision integer operation, mod-
ular exponentiation. RC4 is also a very simple stream ci-
pher, generating a keystream by swapping elements in its
internal S-box. The use of public-key cryptography was
chosen over traditional symmetric cryptography in order
to prevent a passive attacker from analyzing the initial
exploit, recovering the key, and decrypting the subse-
quent communications. Using public-key cryptography
to secure all communication prevents post-analysis by an
adversary who has recorded all network traffic.

Both of these cryptosystems were also chosen for their
ease of implementation in assembly language or low-
level position-independent C. Modular exponentiation,
the only mathematical operation required for ElGamal
key agreement, can be implemented compactly using
classical methods or Montgomery exponentiation[14]
for more efficiency. To estimate the code space re-
quired for modular exponentiation, we modified an open
source fast fixed precision math library [15] to use some
more compact algorithms for modular exponentiation
and multiplication. The compact modular exponentia-
tion function fp exptmod small uses right-to-left bi-
nary exponentiation[14]. The compact modular multipli-
cation function fp mulmod small uses repeated sub-
tractions rather than division for the modular reduction
step. The total size of the code required to implement
modular exponentiation is around 1200 bytes. The ex-
act code sizes of the necessary routines are listed in table
3.1.

The RC4 stream cipher, using a single S-box, may
be implemented very compactly. Most stream ciphers
are optimized for hardware implementation, but RC4



requires the least number of operations on a general-
purpose processor. Additional space required for the use
of these cryptographic algorithms is dedicated to the size
of the ElGamal public key, roughly twice the bit length
of the prime modulus p. Using an elliptic curve cryp-
tography equivalent of ElGamal key agreement would
save space for the key at the expense of increased im-
plementation complexity and may actually require more
code space. Elliptic-curve cryptography is typically used
on devices with low processor power and little memory
so the increase in code space in return for smaller keys
and thus less computationally intensive operations is a
reasonable trade-off. The target systems in our case are
assumed to be modern computers with processor power
and memory sufficient for basic cryptographic opera-
tions. The total payload size, including basic socket net-
working, ElGamal key agreement, keys, and RC4 rou-
tines is estimated to be under two kilobytes, assuming a
straightforward x86 assembly language implementation
and 1024-bit ElGamal.

The second stage is downloaded over the secure chan-
nel created by the first stage and is executed in-place
within the vulnerable process’ address space. The sec-
ond stage executes free of code space constraints, but
may be executing in a damaged address space. This im-
pediment is overcome by downloading and executing a
remote agent executable, described in the next section.
Each stage of the payload is described in more detail in
the following sections below.

3.2 Stage 1

The Stage 1 payload is the machine code component
included in the exploit delivered to the target’s web
browser or local application. Many injection vectors
have limited space available for payload code, so the pri-
mary purpose of the Stage 1 payload is to establish com-
munication with a server controlled by the penetration
tester in order to download a subsequent stage payload
that is free of code size constraints. The payload may
be wrapped in a polymorphic decoder in order to evade
intrusion detection and eliminate interpreted byte values
from the exploit buffer.

The payload includes an ElGamal public key for the
payload server (generator g, prime modulus p, public
value x = ga mod p, where a is the secret expo-
nent). The payload proceeds to complete the ElGamal
key agreement protocol and compute a session key for
use in communicating with the payload delivery server.
The payload generates a random number b using an
operating-system provided secure random facility. On
Windows, RtlGenRandom from ADVAPI32.DLL can
be used to easily generate secure random bytes. Sim-
ilarly, on Linux or other Unix-like operating systems

DecodePayload()
b = Random() mod p
y = gˆb mod p
k = xˆb mod p
conn = Connect(server)
Send(socket, y)
iv = Read(conn)
RC4Initialize(iv, k)
While(KeepGoing == True)

length = Read(conn)
If length == 0

Then KeepGoing = False
Break

End
RC4Decrypt(k, length)
code = ReadBytes(conn, length)
RC4Decrypt(k, code)
result = Execute(code)
Send(conn, result)

End

Figure 2: Stage 1 Payload Pseudocode

/dev/urandom can be read for secure random bytes.
The payload then computes y = gb mod p using the
generator g and prime modulus p from the server’s pub-
lic key. The payload also computes the session key
k = xb = (ga)b = gab. Since g is a generator over Z∗

p

and b is cryptographically random, the computed session
key will have sufficient entropy. The payload proceeds
to send y to the payload server and further communica-
tion is encrypted using the session key k and the RC4
stream cipher. The initial 256 bytes of RC4 keystream
are discarded[16] and separate RC4 keystreams are used
for traffic in each direction in order to address weak-
nesses in RC4. In addition, a random initialization vector
is used for each stream to prevent keystream reuse.

Finally, the Stage 1 payload enters a loop repeatedly
downloading, decrypting, and executing code from the
payload server.

3.3 Stage 2

The Stage 2 payload, executing as position independent
machine code fragments within the vulnerable process’
address space, is free of the code space constraints of
the Stage 1 payload, but there may still be other exe-
cution environment constraints. For example, the ex-
ploit may have corrupted the heap metadata and subse-
quent heap operations may cause the process to crash.
In these cases, the Stage 2 payload have to repair the
heap before attempting to execute more complex op-
erations that require explicit or implicit heap alloca-



RepairHeap()
conn = Connect(server)
iv = Read(conn)
RC4Initialize(iv, k)
f = OpenFileForWriting(AGENT)
While(KeepGoing == True)

length = Read(conn)
If (length == 0)

Then KeepGoing = False
Break

End
RC4Decrypt(k, length)
buffer = ReadBytes(conn, length)
RC4Decrypt(k, buffer)
WriteToFile(f, buffer)

End
Execute(AGENT)

Figure 3: Stage 2 Payload Pseudocode

tion. Under Windows XP and later Windows operat-
ing systems, the default heap can be quickly switched to
the low-fragmentation heap using HeapSetInformation(),
thus abandoning the use of a potentially corrupted stan-
dard default heap.

In order to fully escape execution and implementation
constraints, the Stage 2 payload proceeds to download
and execute a binary executable from the payload server.
In the current design, this executable is a specially-built
interpreter for the Lua programming language, described
in the next section.

3.4 Limitations

As described above, the payload delivery protocol is not
perfectly secure against an active attacker. Many of the
design decisions were taken in order to hamper an ac-
tive attacker, but preventing an active attack is not fea-
sible when the delivery of the exploit is not secure. For
instance, an active adversary could modify the first stage
payload to insert its own public key in the payload or pre-
vent the generation or use of true random numbers. The
only defense against this is the use of polymorphic self-
decoders that make identification of the attack more diffi-
cult. Alternatively, the penetration tester could host their
exploits on a secure web server with a certificate from a
trusted root certification authority. This would secure the
delivery of the first-stage payload against modification
by an active attacker. However, later communication is
subject to known-plaintext attacks. The described use of
RC4 does not guarantee integrity of the stream. An ac-
tive attacker with knowledge of the plaintext can choose
bytes in the decrypted stream. As described in the threat

model above, the system is not truly secure against an
active attacker, but takes reasonable effort to make an ac-
tive attack difficult.

4 Target-Side Scripting

While the common targets of code execution exploits
have shifted from servers to client desktops and lap-
tops, most available exploit payloads in commercial and
open-source penetration testing tools assume the target
remains at a fixed network location. This may not be the
case in many modern penetration tests. For example, the
easiest way into a network may be through compromis-
ing a mobile laptop when it is associated to a “hot spot”
wireless network. Existing penetration testing frame-
works require that the target be continually reachable by
the penetration tester in order to maintain command and
control. An exploit payload that supports disconnected
operation would allow the penetration tester to take ad-
vantage of the target’s mobility in order to gain access to
each network that the client connects to.

Several of the existing exploit payload systems offer
dynamic scripting support. All of this support, however,
is for attacker-side script execution. The execution of
these scripts require a constant network connection to
the penetration tester’s machine. This may be infeasible
when targeting mobile clients such as wireless laptops.
In addition, attacker-side logic may require an infeasible
amount of input/output to the target. For example, con-
sider a payload with file searching logic. With attacker-
side logic, this would require a large amount of uninter-
esting data to be downloaded to the attacker. Pushing the
logic onto the target allows the searching to be performed
where the files are local. While attacker-side scripts pro-
tect the payload logic, the cryptographic payload deliv-
ery system described above adequately protects transport
of target-side payload logic to the target. The scripting
engine could implement a similar cryptographic proto-
col or use an available SSL implementation to download
scripts from the penetration tester.

The Lua programming language [17] was chosen as
the target-side scripting language. Lua has many bene-
fits for this type of application. Its interpreter is small
(roughly 200k), very portable by virtue of a pure ANSI
C implementation, and the Lua language is quite flexi-
ble and powerful. Lua has been historically popular as a
scripting and extensibility language for games, however
recently many open source security tools have begun to
use it as well (Wireshark [18], NMAP [19], and Snort
[20]).

The specific Lua interpreter chosen for the target-
side scripting environment includes the C/Invoke [21] li-
brary, the LuaSocket [22] library, and the custom crypto-
graphic routines used in the previously described secure



U32 = clibrary.new("user32.dll",
"stdcall")

MessageBox = U32:get_function(Cint,
"MessageBoxA", Cptr, Cstring,
Cstring, Cint32)

MessageBox(0, "Hello World", "Lua", 0)

Figure 4: Lua C/Invoke Win32 API Example

payloads. This C/Invoke library allows purely scripted
code to load and call into arbitrary dynamic library func-
tions. C/Invoke supports marshaling basic types (ma-
chine types and strings), structures, and even supports
callback functions written in Lua. For these reasons, it
was chosen as an ideal dynamic interface to the system
APIs. As an example, the Lua programmer would use the
code in figure 4 to load the Win32 MessageBox() func-
tion and call it.

The LuaSocket library provides interfaces for TCP
and UDP sockets as well as higher level protocols like
HTTP, SMTP, and FTP. Combined with the included El-
Gamal key agreement and RC4 encryption routines, Lu-
aSocket’s network access can be used to establish secure
connections back to the penetration tester for further in-
structions and to send back encrypted results. At present,
the cryptographic support is limited to key agreement
and symmetric encryption. This is enough, however, to
protect the communication against eavesdropping.

The flexibility offered by the Lua scripting environ-
ment with full system library access allows the payload
author to rapidly develop and deploy arbitrarily complex
payloads. In addition, their implementation as purely
textual scripting code allows them to be easily encrypted,
signed, downloaded, and stored. Further work will build
upon the customized Lua interpreter to build richer cryp-
tographic capabilities.

In the section that follows, we describe several pay-
loads that are difficult or impossible to implement with
existing penetration testing tools but straightforward
with a target-side scripting payload such as the one de-
scribed. These payloads may also be implemented as
free-standing executables, but there are several benefits
to implementing them in a target-side payload scripting
environment. As scripts, they are more transient than ex-
ecutables. For example, script code is easier to down-
load and execute on-the-fly whereas an executable must
be saved to disk first. This facilitates cleaning up target
systems after the penetration testing engagement termi-
nates. The target-side agent could even be configured to
automatically remove itself and any downloaded scripts
and data at a certain time coinciding with the end of the
penetration test.

4.1 Example Payloads

Building rich logic into target-side scripts allows rapid
development of payloads that are better suited for client-
side penetration tests. These payloads may take advan-
tage of the fact that they may execute without a perma-
nent network connection to the penetration tester. This
is useful when attacking mobile clients such as laptops
on wireless “hot spot” networks. For example, it may
be easiest to compromise an internal network by com-
promising a laptop with access to that network when the
laptop is associated to a “hot spot” wireless network in a
coffee shop, airport, or hotel.

An ideal payload for a mobile client would connect
back to the penetration tester from whatever network the
client was connected to. The payload could monitor the
state of the network interfaces, and whenever a network
interface became active, it would “phone home” to a
server on the Internet. The payload could be configured
to automatically terminate at a certain date, coinciding
with the end of the penetration testing engagement.

A second payload style that takes advantage of the
target-side logic is the “file searcher” payload. This pay-
load would search local documents and files on the target
systems’ hard drives for key words or patterns. Matching
files would be collected, encrypted, and sent to the pen-
etration tester for analysis. Performing the file searching
on the target prevents excessive amounts of file data from
being sent across the network.

Finally, remote target-side payloads could scan the
remote network for other vulnerabilities or automati-
cally gain access to other remote systems. For exam-
ple, a long running password brute force may be unrea-
sonable to launch when the penetration tester must be
continually connected to the target system. If the pro-
cess were run autonomously on a compromised system,
the attack could proceed disconnected and report results
asynchronously. A similar model would be beneficial
for other long-running attacks such as network sniffing
and hosting web exploits on the target network. Hosting
web exploits on the target’s internal network typically
grants the attacker some level of privilege escalation as
the exploits are placed within Internet Explorer’s Local
Intranet security zone thus gaining additional privileges
over an Internet-based web attack.

5 Conclusion

The payload described above established an encrypted
channel that is secure against passive eavesdropping dur-
ing or after the attack. It is not, however, perfectly se-
cure against a malicious user able to perform a man-in-
the-middle attack because the public key of the payload
delivery server is included in the exploit. However, an



attacker taking advantage of this must be able to actively
identify and intercept the exploit as it is being delivered
to the target. This is somewhat unlikely as it requires
an exact signature for the specific exploit being used or
a means to identify, simulate, and replace polymorphic
self-decoding executable code.

Assuming that the exploit delivery has not been tam-
pered with, the delivery and communication of the target-
side scripting system is secure against both eavesdrop-
ping and man-in-the-middle attacks. An active attacker
with knowledge of the plaintext may, however, modify
those bytes within the RC4 encrypted streams. The de-
livered executable does nothing to protect itself against
recovery from the target filesystem. This is typically not
an issue in professional penetration testing and intention-
ally makes the payload unsuitable for illicit activities.
The mission-logic encapsulated in Lua script, however,
is never written to disk and is secure against eavesdrop-
ping and filesystem recovery.

Future work will enrich the capabilities of the system
to perform in-memory Lua interpreter injection and im-
plement richer cryptographic support within the Lua in-
terpreter. In addition, research into secure asynchronous
command and control protocols would provide an ideal
remote management system for deployed payloads. The
author believes that penetration-testing techniques and
tools must grow to resemble the Internet attacker tech-
nology used in drive-by downloads, botnets, and e-mail
attacks in order to better evaluate an organization’s de-
fenses against these threats.

References

[1] P.-H. Kamp and R. N. M. Watson, “Jails: Confin-
ing the omnipotent root,” in Proceedings of the 2nd
International SANE Conference, 2000.

[2] K. J. Biba, “Integrity considerations for secure
computer systems,” Tech. Rep. MTR-3153, The
Mitre Corporation, April 1977.

[3] M. Caceres, “Syscall proxying - simulating re-
mote execution.” CORE Security Technical Report,
2002.

[4] CORE Security Technologies, “Impact.”
http://www.coresecurity.com/products/coreimpact/.

[5] Immunity Security, “Canvas.”
http://www.immunitysec.com/products-
canvas.shtml.

[6] D. Aitel, “Mosdef,” in BlackHat Briefings Federal,
2003.

[7] D. Aitel. personal communication, July 2007.

[8] A. E. Cuttergo, “The joys of impurity.”
http://archives.neohapsis.com/archives/vuln-
dev/2003-q4/0006.html, October 2003.

[9] M. Miller and J. Turkulainen,
“Remote library injection.”
http://www.nologin.net/Downloads/Papers/
remote-library-injection.pdf.

[10] Metasploit Project, “Metasploit framework.”
http://www.metasploit.org.

[11] AT&T Laboratories Cambridge, “Virtual network
computing.” http://www.cl.cam.ac.uk/research/dtg/
attarchive/vnc/.

[12] M. Miller, “Metasploit’s meterpreter.”
http://www.nologin.org/Downloads/Papers/ meter-
preter.pdf, December 2004.

[13] A. Young and M. Yung, Malicious Cryptography:
Exposing Cryptovirology. Wiley, 2004.

[14] S. A. V. Alfred J. Menezes, Paul C. van Oorschot,
Handbook of Applied Cryptography. CRC, 1996.

[15] T. S. Denis, “Tomsfastmath.” http://libtom.org.

[16] S. Fluhrer, I. Mantin, and A. Shamir, “Weaknesses
in the key scheduling algorithm of RC4,” Eighth
Annual Workshop on Selected Areas in Cryptogra-
phy, August 2001.

[17] L. H. d. F. Roberto Lerusalimschy, Walde-
mar Celes, “The programming language lua.”
http://www.lua.org.

[18] G. Combs, “Wireshark network analyzer.”
http://www.wireshark.org.

[19] Fyodor, “Nmap security scanner.”
http://www.insecure.org/nmap/.

[20] M. Roesch, “Snort network intrusion detection sys-
tem.” http://www.snort.org.

[21] W. Weisser, “C/invoke.”
http://www.nongnu.org/cinvoke/.

[22] D. Nehab, “Luasocket: Network
support for the lua language.”
http://www.cs.princeton.edu/ diego/professional/
luasocket/.


