
Maverick: Providing Web Applications with Safe and Flexible Access to
Local Devices

David W. Richardson and Steven D. Gribble
Department of Computer Science & Engineering

University of Washington

Abstract
Web browsers do not yet provide Web programs with

the same safe, convenient access to local devices that
operating systems provide to native programs. As a re-
sult, Web programmers must either wait for the slowly
evolving HTML standard to add support for the device
classes they want to use, or they must use difficult to de-
ploy browser plug-ins to add the access they need.

This paper describes Maverick, a browser that pro-
vides Web applications with safe and flexible access to
local devices. Maverick lets Web programmers imple-
ment USB device drivers and frameworks, like file sys-
tems or streaming video layers, using standard Web pro-
gramming technologies such as HTML, JavaScript, or
even code executed in a native client sandbox. These Web
drivers and Web frameworks are downloaded dynami-
cally from Web servers and executed by browsers along-
side Web applications. Maverick provides Web drivers
with protected access to the USB bus, and it provides Web
drivers and frameworks with event-driven IPC channels
to communicate with each other and with Web applica-
tions.

We prototyped Maverick by modifying the Chrome
Web browser and the Linux kernel. Using Maverick, we
have implemented: several Web drivers, including a USB
mass storage driver and a Webcam driver; several Web
frameworks, including a FAT16 filesystem and a stream-
ing video framework; and, several Web applications that
exercise them. Our experiments show that Web drivers,
frameworks, and applications are practical, easy to au-
thor, and have sufficient performance, even when imple-
mented in JavaScript.

1 Introduction

Web browsers do not yet provide Web programs with the
same safe, convenient access to local devices that OSs
provide to native programs. Digital devices like cameras,

printers, scanners, smartphones, and GPS trackers are in-
creasingly pervasive, yet browsers currently provide little
support to Web applications for accessing them. The sup-
port that does exist is limited to a handful of HTML tags
for accessing a small number of common device classes,
such as Webcams or microphones.

Today, Web programmers that want to use unsup-
ported or exotic local devices must either wait for HTML
standards to evolve to include them, or they must im-
plement, deploy, and support browser plug-ins that users
may be reluctant to install. Such poor choices limit the
functionality of Web applications and discourage the de-
velopment and adoption of new, interesting local devices.

In this paper, we describe Maverick, an experimen-
tal browser that gives Web applications safe and flexible
access to local USB devices. Maverick takes the aggres-
sive approach of removing the responsibility for manag-
ing devices and device frameworks from the host oper-
ating system and empowering the browser to execute de-
vice drivers and frameworks alongside Web applications.
Specifically, instead of requiring users to install USB de-
vice drivers into their host OS, Maverick dynamically
finds, downloads, and executes Web drivers that are writ-
ten with standard Web programming technologies like
HTML, JavaScript, or Native Client (NaCl) [24], and that
directly communicate with the USB devices they drive.

Similarly, instead of relying on device frameworks
within the host OS, such as file systems or video frame-
works, Maverick finds, downloads, and executes Web
frameworks to provide Web applications with convenient
high-level abstractions. Maverick permits Web appli-
cations to communicate directly with Web frameworks,
which in turn communicate with Web drivers.

Maverick’s approach has several advantages. Web de-
velopers can add support for new USB devices and make
them immediately accessible to any Maverick user and
Web application without waiting for updates to slowly
moving standards bodies, browser vendors, or operating
systems. Maverick also inherits many of the safety and

security benefits of running drivers in user-level, such as
insulating the OS from driver bugs.

Maverick addresses three main challenges:

1. Security. Maverick must isolate Web drivers and
Web frameworks to prevent access to unauthorized
devices or interference with unrelated Web appli-
cations and native software. Maverick uses exist-
ing JavaScript and NaCl sandboxes to contain Web
drivers and frameworks. In addition, Maverick ex-
poses a virtualized USB bus to Web drivers, grant-
ing each driver the ability to send and receive USB
messages only to the devices for which it is autho-
rized. So that Web drivers, frameworks, and appli-
cations can interact flexibly and efficiently, Maverick
provides them with protected event-driven IPC chan-
nels.

2. Performance. Web drivers and frameworks must be
efficient. We prototyped Maverick by modifying the
Chrome browser and the Linux kernel, implemented
several drivers and frameworks in both JavaScript
and NaCl, and compared them to native Linux equiv-
alents. Not surprisingly, user-level drivers in gen-
eral, and JavaScript drivers and frameworks in partic-
ular, are significantly slower than their Linux coun-
terparts. Nonetheless, our experiments demonstrate
they are fast enough to support many interesting USB
devices and applications. As well, we show that NaCl
can achieve performance closer to that of in-kernel
drivers and frameworks.

3. Usability. Maverick must avoid burdening users
with making confusing and error-prone decisions on
how to select trustworthy and compatible drivers and
frameworks for Web applications. To do this, Mav-
erick allows users to configure their browsers to trust
one or more Maverick domain providers. A domain
provider is a trusted third-party like Google or Mi-
crosoft that is responsible for selecting and bundling
together a set of interoperable Web frameworks and
drivers.

We have prototyped several Web drivers and frame-
works and applications that exercise them, including:
a USB mass storage driver, a Webcam driver, a FAT
filesystem framework, and a streaming video framework.
Overall, our experience with Maverick suggests that Web
drivers and frameworks are straightforward to imple-
ment, and are safe and practical from a performance, se-
curity, and usability standpoint.

The rest of this paper is structured as follows. In Sec-
tion 2, we present a brief overview of USB. Section 3
describes the architecture of Maverick, and Section 4
presents our prototype implementation. In Section 5, we
evaluate the performance and security of Maverick and

we showcase several applications. After discussing re-
lated work in Section 6, we conclude.

2 A Brief Overview of USB

Maverick exposes USB devices to Web drivers and appli-
cations. We chose to focus on USB for two reasons; first,
it has become the predominant interconnect for most
consumer devices, making it an attractive target. Second,
since USB is message-oriented, it was relatively straight-
forward to expose USB message transmission and recep-
tion to JavaScript and NaCl. In contrast, we believe it
would be much less natural to expose complex device in-
terconnects, such as PCI, that use more architecturally-
dependent features like DMA and memory-mapped I/O.

In this section, we provide a brief overview of USB
device abstractions and protocols. Readers familiar with
USB may choose to skip to Section 3.

2.1 USB Devices and Communication
Channels

A USB bus connects a host, such as a laptop or desktop,
to multiple peripheral devices over a star topology. Some
USB devices consist of more than one logical device; for
example, a Web camera might consist of a video camera
and a microphone packaged together into a single physi-
cal box. Each of these logical devices would appear as a
separate addressable entity on the USB bus.

A logical device consists of one or more communica-
tion endpoints associated with some specific function of
the logical device. A host establishes a pipe to an end-
point to communicate with it. There is a one-to-one map-
ping between pipes and endpoint. Each endpoint and its
corresponding pipe are typed. USB supports four kinds
of pipes:

• Control. A control pipe facilitates the bidirectional
exchange of small control messages used to query or
control a device. The USB specification mandates
that hosts must reserve 10% of the USB bus band-
width for control traffic. All devices have at least one
control endpoint.

• Interrupt. An interrupt pipe is a unidirectional chan-
nel used to convey messages from a device to a host.
For example, USB keyboards generate interrupt mes-
sages when key press events occur. Interrupt mes-
sages are latency sensitive; hosts must poll interrupt
endpoints sufficiently frequently to ensure respon-
siveness.

• Isochronous. An isochronous pipe is a unidirec-
tional channel used to transfer a continuous stream
of data, such as video frames or audio packets. Hosts

must schedule USB messages to provide a guaranteed
amount of bandwidth to an established isochronous
pipe. Isochronous pipes may experience occasional
data loss.

• Bulk. Bulk pipes are unidirectional channels that pro-
vide reliable data transfer but no bandwidth guaran-
tees. USB bulk storage devices and printers often use
bulk pipes.

2.2 Host OS Abstractions and Duties

USB bus bandwidth is allocated and scheduled into time
slices called frames. For high speed USB 2.0 devices,
frames have a 125 micro-second interval, permitting
up to 8,000 frames per second. The host operating
system is responsible for scheduling USB packets into
frames. Because USB mandates reserved bandwidth for
isochronous pipes and responsiveness for interrupt pipes,
the OS must queue USB packets, potentially delaying
some to meet the scheduling demands of isochronous
and interrupt traffic. Packets associated with bulk and
control transfers are scheduled whenever a frame has
available bandwidth not already consumed by interrupt
or isochronous transfers.

Operating systems typically abstract USB transactions
into a data structure called a USB request block (URB).
A URB encapsulates a single, asynchronous interaction
between the host and a device. The URB structure ac-
commodates a request, data to be transferred, and a com-
pletion status message. Device drivers allocate and sub-
mit URBs to low-level, device-independent USB pro-
cessing code within an OS. The OS schedules the trans-
mission of messages and data indicated by the URB, and
upon completion, notifies the driver.

While programmers can manually construct URBs for
any type of data transfer, operating systems typically
supply USB libraries with higher-level abstractions for
constructing, sending, and receiving URBs based on the
specified type of data transfer.

3 Architecture

Maverick splits a computer into two worlds (Figure 1):
a legacy desktop world that contains the underlying host
operating system, its drivers and frameworks, and appli-
cations, and the Maverick world that executes on top of
a browser. Each world is isolated from the other with re-
spect to the USB devices they can access: a given device
is assigned to one of the two worlds, and the other cannot
observe or influence it.

The assignment of USB devices to worlds is managed
by the USB world splitter in the host OS. When a new
USB device is detected, the splitter prompts the user

O
S

Maverick USB
Virtualizer (MUV)

U
se

r L
ev

el

Desktop WorldMaverick World

USB device

Desktop
Applications

Browser Kernel

Web Drivers,
Frameworks,
Applications

USB
Device Drivers

Device
Frameworks

USB device

H
ar

dw
ar

e

USB world splitter user
input

Figure 1: Maverick “World Splitting.” Maverick splits com-
puters into the legacy desktop world and the Maverick web
world. USB devices are partitioned between the two worlds;
each world runs its own drivers, frameworks, and applications.

to assign the device to either the desktop or Maverick
world. The splitter then enforces this assignment when
routing messages between devices and the two worlds.

3.1 The Desktop World

The desktop world exists to facilitate incremental de-
ployment and backwards compatibility. Users can run
unmodified legacy device drivers, frameworks, and ap-
plications in it: besides the presence of the USB world
splitter, the desktop world is unaware of the existence of
the Maverick world. Thus, in the desktop world, USB
device drivers are installed into the host OS and com-
municate with devices using the USB core libraries pro-
vided by the OS. Drivers abstract away the details of
specific devices and interfaces with frameworks, such as
file systems, network stacks, and video frameworks. A
framework, which is typically implemented partially in
the host OS kernel and partially as sets of user-mode li-
braries, provides high-level, device-independent abstrac-
tions to applications.

3.2 The Maverick World

The Maverick world has some similarity to the legacy
desktop world, in that the structural relationship between
drivers, frameworks, and applications is the same in both
cases. However, unlike the legacy world, in Maverick
these components are (1) dynamically downloaded rather
than installed, (2) implemented using Web programming
technologies such as JavaScript and NaCl, and (3) exe-
cuted by a browser kernel entirely at the user-level.

Figure 2 shows the architecture of the Maverick world.

M
av

er
ic

k
Br

ow
se

r K
er

ne
l

USB Device Manager

Br
ow

se
r i

ns
ta

nc
es

local USB
devices

Web Driver

sandbox

Web Driver

sandbox

Web Driver

sandbox

Web Driver

sandbox

Web Driver

sandbox

Web Framework

sandbox

Web Driver

sandbox

Web Driver

sandbox

Web Application

sandbox

driver
events

framework
events

application
events

Maverick
IPC

Event Router

Web Instance Manager

Web
(drivers, frameworks, apps)

USB
messages

HTTP
transactions

browser
instance

policy

device
access
policy

Figure 2: The “Maverick World.” The Maverick world
consists of a trusted browser kernel and untrusted browser in-
stances. The kernel manages instances, provides IPC channels,
and relays USB messages between authorized drivers and local
USB devices.

At a high-level, the world is deconstructed into two com-
ponents: untrusted browser instances and the trusted
browser kernel. We describe each component below.

3.2.1 Maverick Browser Instances

Maverick browser instances contain untrusted code pro-
vided by a remote Web service. Browser instances are
sandboxed from each other, the browser kernel, and
the legacy desktop world. Instances can implement
device driver functionality, framework functionality, or
application-level functionality using standard Web pro-
gramming technologies. We focus on two variants:
JavaScript and NaCl instances (Figure 3). Similar to
browsers like Chrome [20], a JavaScript instance con-
tains DOM bindings, a JavaScript interpreter, and an
HTML renderer, in addition to the browser instance’s
code itself. A NaCl instance contains x86 code that is
verified and contained by the NaCl sandbox.

When an instance is instantiated, it has access to a reg-
istration IPC channel provided to it by the browser ker-
nel. When the instance has initialized itself, it uses the
registration channel to alert the browser kernel, which
then establishes point-to-point IPC channels between the
instance and other instances with which it must commu-
nicate. We discuss the policy by which the browser ker-
nel interconnects devices, frameworks, and applications
in Section 3.3.

3.2.2 The Maverick Browser Kernel

The Maverick browser kernel serves two main roles.
First, it provides the standard functions of a “typical”

browser sandbox

registration
channel

USB
device

channel

HTML
renderer

DOM
access

JS
engine

Web driver
(JavaScript + HTML)

framework
channel

NaCl sandbox

driver
channels

registration
channel

Web framework
(NaCl)

application
channels

Web
drivers

Web
applications

Web instance
manager

Web instance
manager

USB device
manager

Figure 3: Maverick Web Browser Instances. Web drivers,
frameworks, and applications execute inside browser instances.
Instances contain JavaScript+HTML or NaCl code, and they in-
teract with each other and the browser kernel via IPC channels.

browser kernel, including: managing standard Web stor-
age like cookies, cache, and history; providing net-
work access to browser instances; enforcing the same-
origin policy; and, implementing the browser’s user in-
terface [20]. We have not modified these functions, and
will not describe them further in this paper.

Second, the browser kernel provides Web drivers with
safe access to local USB devices and facilitates secure
communication between drivers, frameworks, and appli-
cations. The Maverick browser kernel consists of three
modules: (1) the USB device manager, (2) the Web in-
stance manager, and (3) the event router. The USB de-
vice manager stores device information such as vendor
and device IDs for devices made available to Maverick
via the world splitter. As well, the device manager es-
tablishes the channel between a Web driver and its local
USB device: messages transmitted by a driver are routed
to device manager, which verifies that they are properly
formatted and addressed to the driver’s authorized device
before relaying them down to the host OS.

The Web instance manager downloads and instantiates
Web driver and framework instances. The Web instance
manager is also responsible for establishing the point-
to-point IPC channels between drivers, frameworks, and
applications. The IPC channels are managed by the event
router: each channel implements a reliable, point-to-
point FIFO queue. Browser instances communicate over
these channels using events that contain a name, untyped
variable-length payload, and destination. Within these
constraints, browser instances are free to define and use
any communication protocol.

3.2.3 The Maverick USB Virtualizer

The Maverick USB Virtualizer (MUV) is a device-
agnostic USB driver that lives inside the host OS. It virtu-
alizes the USB API provided by the core USB libraries in
the kernel, translating and packaging up USB messages
from the kernel’s USB core into events that delivered to
the browser kernel, and from there, routed to the appro-

priate Web driver. USB events sent from Web drivers are
routed from the browser kernel to the MUV and trans-
lated into appropriate calls into the host OS’s USB core.

3.3 Naming and Binding of Web Drivers
and Frameworks

As previously mentioned, Maverick must decide how
to select, download, and interconnect Web driver and
framework instances to applications. The policies it uses
to do this are critical, as they impact safety, reliability,
and compatibility: the policy must prevent users from be-
ing exposed to malicious drivers and frameworks, ensure
that the set of drivers and frameworks that are instanti-
ated are compatible with each other and with the appli-
cations, and that the applications can depend on a stable,
coherent set of framework abstractions and interfaces.

We have experimented with several policies, and we
describe two below. However, we feel that we are still
just beginning to explore this topic: there are still many
difficult and interesting research challenges to solve.

Application-driven. Under this policy, each Web ap-
plication declares to Maverick the URLs of the frame-
works that it requires. Similarly, each instantiated frame-
work declares to Maverick the URLs of the drivers that it
trusts and is compatible with. When a user navigates to
an application, Maverick instantiates its declared frame-
works, observes which drivers the framework is willing
to have loaded, and identifies the subset of drivers that
match available, underlying USB devices. Before the
drivers are loaded and bound to USB devices, Maver-
ick prompts the user for authorization: the prompt in-
forms the user of the URLs of the application, frame-
works, drivers, and devices that are involved.

This policy is simple, but has many disadvantages.
First, since different applications may select different
frameworks, there is no opportunity for frameworks (and
their drivers) to form a coherent, interoperable set of ab-
stractions. Two different applications may cause vastly
different frameworks to load, and those frameworks will
have no basis for interoperating or sharing the underly-
ing devices between applications. Second, users likely
have no basis to make reasonable authorization deci-
sions: users know they want to use an application, but
they cannot know whether the frameworks and drivers
selected are trustworthy, especially since URLs in and of
themselves are not particularly informative.

Domain-driven. Under this policy, users can config-
ure their browsers to trust one or more Maverick domain
providers. A domain provider is a trusted third-party that
is responsible for selecting and bundling together a set of
interoperable Web frameworks and drivers. Users name
domain providers by URL; the document behind this
URL contains the list of authorized framework and driver

URLs. We anticipate that organizations like Google, Mi-
crosoft, or the FSF could be domain providers.

When loaded, an application declares to Maverick the
domain provider it wants to use, and the frameworks
within that domain that it requires. If the user has au-
thorized the specified domain provider, Maverick will
demand load the required frameworks. Once loaded,
the framework declares the Web drivers that it requires;
Maverick verifies that they are on the domain’s autho-
rized list, and loads them if so. Frameworks are respon-
sible for prompting users before granting a Web applica-
tion access to particular device or device class.

A given framework within a domain is loaded only
once. Multiple applications that use the same domain
are bound to that single instance, permitting the frame-
works to facilitate sharing across those applications, as
appropriate. Of course, this implies that the frameworks
must provide adequate protection as well!

The benefit of the domain-driven approach is that the
user makes a single higher-level trust decision and del-
egates to the trusted domain provider the responsibility
for selecting appropriate, safe, and interoperable frame-
works and drivers. As well, the domain provider can en-
gineer its frameworks to be interoperable with each other,
providing much of the same kind of API coherence, re-
source sharing, and protection that today’s operating sys-
tems provide to applications. A disadvantage of this ap-
proach is that it may cause the user to place too much
trust in a small number of domain providers, and it could
lead to significant fragmentation of applications across
domain providers.

4 Implementation

We implemented a prototype of Maverick by modifying
the Chrome Web browser and the Linux kernel. Since
Maverick uses Chrome, we inherit its process model:
each browser instance (driver, framework, or applica-
tion) executes in its own, separate Linux process. As
well, Chrome’s browser kernel executes as its own sepa-
rate, trusted process. Rather than attempting to integrate
our Maverick browser kernel components into Chrome’s
browser kernel, we bundled them into their own trusted
process.

Using our prototype, we implemented several Web
drivers, frameworks, and applications, both in JavaScript
and in NaCl. In this section, we describe our aspects of
the implementation, focusing on non-obvious issues.

4.1 Event Framework
Maverick browser instances communicate with each
other and with the browser kernel using an asynchronous
event-driven model, facilitating a natural integration with

today’s event-driven Web programming languages and
browser abstractions. Our events are untyped, meaning
that Web drivers, frameworks, and applications can ex-
change arbitrary data with each other, giving them the
flexibility to define and implement their own high-level
interfaces and protocols.

Maverick events have three fields: the name of the
event, unstructured data payload, and a routing target ad-
dress. The sender provides each of these fields, specify-
ing a routing target of muv, driverID, frameworkID,
or applicationID. This target address tells Maverick to
route the event to either the MUV (via the USB device
manager), or to a Web driver, framework, or application
with the provided ID. The Maverick event router main-
tains routing tables to determine whether the sender has a
valid communication channel to the target Maverick in-
stance with the specified ID. If so, Maverick routes the
event to the target’s event queue.

4.1.1 Events in NaCl Instances

A programmer might choose to implement a Web driver,
framework, or application using NaCl. To integrate
our event framework into NaCl, we had to solve three
problems. First, we needed to create IPC channels be-
tween NaCl instances and our Maverick browser kernel
process; we implemented UNIX domain sockets as our
channel transport. Second, we needed to be able to mar-
shal Maverick events over that transport; we created a
RPC layer using Google’s protobuf library to do this [9].

Third, we needed to exchange events with the Web
instance code. To do this, we extended the NaCl sys-
tem call interface to permit sandboxed code to send
events over the IPC channel, and to synchronously re-
ceive the next event from the channel. We also pro-
vide instance programmers with an (untrusted by Mav-
erick) support library that spawns a NaCl thread to loop,
issuing blocking receives on the IPC channel and dis-
patching events to a programmer-supplied callback func-
tion. This library provides programmers with convenient
createEvent() and postEvent() functions, as well
as functions for registering event handlers.

4.1.2 Events in JavaScript Instances

JavaScript programmers that want to use Maverick can
include a convenience JavaScript library that we supply.
This library provides an API that is syntactically similar
to the API provided by our NaCl support library. This
simplifies porting a NaCl Web driver to JavaScript, and
vice-versa. Specifically, our library implements the fol-
lowing functionality:

1. To implement the IPC channel to the browser kernel,
the library includes a hidden NaCl component that

implements the IPC mechanisms we described above.
We could have instead modified Chrome’s JavaScript
interpreter to expose this IPC channel, eliminating
the need for NaCl support in the browser, but for the
sake of simplicity we chose to leverage our existing
NaCl code.

2. To deliver events to the instance programmer’s
JavaScript, we take advantage of the NPAPI interface
provided by NaCl to invoke a callback handler on
an object exposed to the instance through the DOM.
The library creates a separate DOM object for each
channel made available to the Web instance by the
browser kernel.

3. The JavaScript library provides the programmer with
convenience routines for base64 encoding and de-
coding binary data within event payloads, as well as
protobuf support for exchanging structured messages
with other browser instances.

4.2 The Maverick Browser Kernel
As previously mentioned, we implemented the trusted
Maverick browser kernel to run as a separate process,
independent of the Chrome browser kernel. At its heart,
the event router component within the Maverick browser
kernel is a threaded RPC server that establishes IPCs
to browser instances and the MUV, and processes and
routes events between them. We implemented the kernel
in C++; for each browser instance, we allocate an event
queue and spawn dedicated send and receive threads.

The Web instance manager component defines and
processes browser instance registration events on behalf
of the browser kernel. When a browser instance be-
gins executing, it is expected to send one of these events
over its registration channel. Similarly, the USB device
manager component defines and processes USB message
events, relaying them between authorized Web drivers
and the MUV. Web drivers can create control or bulk
URBs, start or terminate isochronous streams, and re-
ceive isochronous stream data (see Section 2). We have
not yet implemented support for USB interrupt mes-
sages, as our experimental drivers have not required
them, but doing so would be simple.

4.3 The Maverick USB Virtualizer and
World Splitter

The Maverick world splitter is implemented as a dynam-
ically loaded Linux USB device driver. When a USB
device is attached to the host, the world splitter prompts
the user to decide whether to associate the device with
Maverick or not. For devices associated by the user with
Maverick, the Linux USB subsystem relays the device’s

hardware IDs to the browser kernel which stores these
tags in a registered device ID table that can later be used
to bind compatible Web drivers to registered devices.
The world splitter then routes all received USB callbacks
up to the Maverick USB virtualizer. Devices not associ-
ated with Maverick by the user are bound to native Linux
device drivers.

For every attached USB device, the MUV spawns
a kernel thread devoted to handling that device. This
thread maintains an RPC connection to the Maverick
browser kernel, which it initially uses to register the de-
vice’s vendor and product IDs. USB events are shut-
tled between the browser kernel and the MUV over these
RPC connections; we ported a subset of protobuffer sup-
port into the Linux kernel to marshal events over these
connections. The MUV dispatches events to the Linux
core USB library.

To optimize the transmission of isochronous data from
the Linux kernel to a Web driver, the MUV shortcuts the
process of sending an isochronous URB to the device.
When an isochronous URB completes, the MUV pack-
ages up the URB into a completed urb event and sends
it to the Web driver via the browser kernel. The MUV
then immediately submits the next isochronous URB on
behalf of the Web driver. As we show in Section 5, this
optimization helps to improve bandwidth for streaming
devices by eliminating some of the additional USB la-
tency added by Maverick.

4.4 Example Drivers, Frameworks, and
Applications

We have implemented several experimental Web drivers
and frameworks. We built two versions of each, one
in JavaScript and one in C++ using NaCl. Note that
due to JavaScript’s lack of raw data support, raw data
in JavaScript drivers and frameworks are formatted as
base64-encoded strings:

• USB mass storage driver. The USB mass storage
specification consists of a “bulk-only” transport pro-
tocol used to initialize a device, exchange data, and
handle error conditions. The SCSI command pro-
tocol is layered on top of this; SCSI commands are
embedded inside bulk-only protocol messages. Our
drivers implement enough of the SCSI protocol to ini-
tialize attached drives, probe for capacity, and read
and write blocks. We have primarily experimented
with SanDisk USB flash drives.

• Logitech C200 Webcam driver. Our Webcam
drivers interact with the Logitech camera using Log-
itech’s proprietary protocol; we ported a subset of
this protocol using a Linux driver as reference. The
drivers extract 320x240 resolution video frames at

a rate of 30 frames per second over an isochronous
stream, and post events containing raw frame data to
an attached video framework.

• FAT16 file system framework. We implemented
FAT16 compatible filesystem frameworks that expose
file create, read, write, and delete operations to at-
tached Web applications. The frameworks are also
able to format and partition flash drives.

• Video stream rendering framework. Our video
frameworks first convert raw frame data into a JPEG
image; this only requires reformatting the frame data
by adding an appropriate JPEG header. Next, the
frameworks encode the images into base64 data URI
strings [12], and post events containing them to at-
tached Web applications. Web applications can then
blit JPEGs to the screen by updating an HTML im-
age tag’s source attribute with the received data URI
string.

To test these drivers and frameworks, we wrote a video
streaming Web application called PhotoBooth. Photo-
Booth allows users to view live video from an attached
Webcam, capture the Webcam’s live video stream and
save it to a flash drive, or read and display a previously
captured video stream from a flash drive.

5 Evaluation

In this section, we examine three aspects of our Maverick
prototype: (1) its performance, (2) its security implica-
tions, and (3) its suitability for building device-enabled
Web applications. We have not yet optimized our proto-
type implementation, so performance numbers should be
considered an upper bound for a Maverick system.

5.1 Performance
We evaluate the performance of our prototype in two
parts. First, to understand the overhead of moving device
drivers out of the kernel and into the Web browser, we
provide microbenchmarks that compare the performance
of Web drivers to their native Linux drivers. Then, we
evaluate the end-to-end performance of Maverick Web
applications. Our measurements were gathered on an 8-
core, 2GHz Intel Xeon machine with 6GB of RAM, run-
ning our modified Linux kernel.

5.1.1 Microbenchmarks

Our first set of experiments quantify the latency, through-
put, and CPU utilization of Maverick Web drivers. To
do this, we constructed a series of microbenchmarks that
exercise both the JavaScript and NaCl versions of our

Linux USB core +
bus/device (0.17)

MUV (0.004)

browser kernel (0.14)

NaCl module (0.35)

JavaScript driver (1.92)

RPC (0.11)

IPC (0.21)

JS invoke (1.38)

Linux USB core +
bus/device (0.18)

MUV (0.004)

browser kernel (0.15)

NaCl driver (0.26)

RPC (0.11)

IPC (0.21)

Linux USB core +
bus/device (0.19)

kernel driver (0.0003)

(a) JavaScript driver
total RTT: 4.30 ms

(b) NaCl driver
total RTT: 0.91 ms

(c) Linux kernel driver
total RTT: 0.19 ms

Figure 4: Driver Latency. The event flow and latencies of
transacting a USB bulk URB with a USB flash drive, using (a)
a JavaScript driver, (b) a NaCl driver, and (c) a Linux kernel
driver. Numbers in parenthesis indicate time spent in that com-
ponent or channel, in milliseconds.

storage and Webcam drivers. For a fair comparison, we
also back-ported our NaCl drivers to run as native Linux
drivers.

To measure the latency of performing USB opera-
tions from Web drivers, we instrumented our system to
measure the time spent in various Maverick components
when sending a single bulk message URB to a USB flash
drive and receiving the response. Figure 4 depicts the in-
volved components, the time spent in them, and the total
round-trip time between the driver and device. Results
are reported for each of the JavaScript, native client, and
kernel drivers, averaged over 600 trials.

Not surprisingly, the JavaScript driver has the high-
est total latency. Its dominant factors are the latency of
dispatching an event from the NaCl glue to JavaScript
and the JavaScript driver execution itself. The NaCl glue
overhead could be eliminated by modifying Chrome’s
JavaScript interpreter to deliver events rather than using
our indirect NaCl route. The NaCl driver avoids these
sources of overhead, but is roughly four times slower
than the kernel driver due to the marshaling and trans-
port of events from the Linux kernel to the browser.

To measure Web driver throughput and CPU utiliza-
tion, we tested whether our Logitech C200 drivers were
efficient enough to keep up with the isochronous URB
transaction rate of 250 URB/s corresponding to a frame
rate of 30 frame/s. For this experiment, we isolated driver
performance by modifying our drivers to simply receive
and drop URBs without further processing. Table 1
shows the URB rate sustained by each of our drivers, as
well as the total CPU utilization (out of 8 cores). Only
the JavaScript driver is unable to sustain the full stream-
ing rate, as it saturates a single core, resulting in a loss
of roughly one frame per second. However, future im-
provements to JavaScript execution engines should eas-
ily nudge this driver above the required 250 URB/s.

 sustained URB rate CPU utilization

JavaScript Web driver 240 URB/s 13.4%
NaCl Web driver 250 URB/s 2.7%

Linux kernel driver 250 URB/s 0.25%

Table 1: USB Webcam Driver Throughput. This table
shows the URB transaction rate that each driver could sustain,
as well as the CPU utilization of the machine. The camera
emits isochronous messages at a rate of 250 URBs per second.

5.1.2 End-to-End Performance

We now evaluate the end-to-end performance of Web ap-
plications in Maverick. Our application benchmarks ex-
ercise two drivers (USB storage and Webcam) and two
frameworks (FAT16 and video). As before, we will com-
pare using JavaScript, NaCl, and native kernel versions
of the drivers.

To measure end-to-end latency, we instrumented the
system to measure time spent in each major Maverick
component when sending a storage operation from Pho-
toBooth and receiving a response. These components
consist of the application, framework, driver, and the rest
of Maverick. Time spent in Maverick includes all IPC
and RPC channels, the browser kernel, the Linux kernel,
and the USB bus and device itself. All reported measure-
ments represent the average of 600 trials.

Table 2 shows our results. Not surprisingly, the
JavaScript stack has the highest latency. Similar to our
microbenchmark results, this overhead is mostly due to
the 10 expensive IPC crossings between native client and
JavaScript that are required because our prototype does
not implement event delivery directly in Chrome. The
JavaScript driver is also slow at processing byte-level
data. The native client stack avoids most of these IPC
overheads, but is still slower than the native desktop stack
because of the cost of routing events from the kernel into
user-space drivers and frameworks.

To measure Maverick’s end-to-end throughput and
CPU utilization, we benchmarked file create+write and
file read operations on 20KB-sized files in PhotoBooth
with the FAT16 framework and USB flash driver. As in
earlier experiments, we compare three cases: the Pho-
toBooth application driving a JavaScript framework and
a JavaScript driver, PhotoBooth driving a NaCl frame-
work and a NaCl driver, and a native C application that
issues similar file workload as PhotoBooth driving an
in-Linux-kernel combined framework and driver. Our
benchmarks leveraged Maverick’s ability to run drivers
and frameworks in parallel in separate Chrome processes
and pipelines file system operations through them.

Table 3 shows our results. For all three versions, the
file create+write benchmark achieved lower throughput
than file reads, since file creation and file append both re-

time spent in component
PhotoBooth latency

application framework driver Maverick
end-to-end

latency

JavaScript
driver/framework 0.8ms 1.7ms 3.3ms 8.7ms 14.5ms

NaCl
driver/framework 0.8ms 0.35ms 0.44ms 3.1ms 4.7ms

native “app/FW” and
Linux kernel driver

0.05 ms
(“app”)

0.22ms
(kernel driver + RPC) 0.27ms

Table 2: PhotoBooth Latency. The total roundtrip time for
sending an event from the PhotoBooth Web application through
a framework and driver to a USB flash device. We compare a
JavaScript driver and framework, a NaCl driver and framework,
and a native desktop “application” using a Linux kernel driver.

quire additional FAT16 operations to update file system
metadata. As before, the JavaScript driver and frame-
work are the slowest, while NaCl achieves closer perfor-
mance to the in-kernel driver and framework.

As a final test, we measured the frame rate at which
PhotoBooth could render a live video stream for the
JavaScript and NaCl versions of the driver and frame-
work. The NaCl version could render at the full rate of 30
frames per second, but inefficient, byte-level operations
to process URBs and video frames in the driver became
a bottleneck of the JavaScript version, achieving only 14
frames per second.

5.1.3 Performance summary

Unsurprisingly, JavaScript and the use of user-level
drivers introduce significant performance overhead rel-
ative to in-kernel, native device drivers. However, we
believe that JavaScript and NaCl drivers are sufficiently
fast to be practical for many USB device classes, includ-
ing storage devices and video cameras, in spite of the
fact that we have not attempted to optimize them, or our
user-mode driver framework, in any significant way.

5.2 Security Implications
There are serious security implications to exposing local
USB devices to Web programs using Maverick. In this
section, we define Maverick’s threat model and use it to
describe the possible attacks against Maverick. For each
attack, we discuss how Maverick defends against the at-
tack and identify where our current security mechanisms
are lacking.

5.2.1 Threat Model

Our threat model is similar to that assumed by modern
browsers when handling untrusted extensions [1]. We as-
sume that the browser kernel, the browser instance sand-
boxes, and the Maverick components inside the host OS
are correctly implemented and vulnerability-free. Thus,
Web drivers, frameworks, and application instances can

20KB file create+write 20KB file read

throughput CPU util. throughput CPU util.

JavaScript Web driver 11.2 files/s 27% 28.0 files/s 24%
NaCl Web driver 44.1 files/s 18% 134.4 files/s 18%

Linux kernel driver 65.5 files/s 0.4% 509 files/s 1.1%

Table 3: File Throughput. The throughput and CPU uti-
lization of two file benchmark applications, 20KB file cre-
ates+writes and 20KB file reads, in three cases.

only be directly attacked through Maverick’s IPC chan-
nels; we assume that attackers cannot directly access or
modify DOM objects in Web instances, or attack Web
instances by corrupting the browser kernel.

5.2.2 Attacks, Defenses, and Limitations

Given this threat model, Maverick is vulnerable to two
broad classes of attacks: (1) attacks aimed at compro-
mising trusted Web instances that are benign but buggy,
and (2) attacks aimed at tricking Maverick into running
malicious Web instances.

Benign-But-Buggy Web Instances. This class of at-
tacks exploits bugs in trusted Web instances to expose
a user’s local devices to an attacker. Local devices often
contain highly sensitive user information that an attacker
might like to access, delete, modify, or corrupt. Ex-
amples include data stored on USB storage devices, en-
vironmental information obtained via audio, video, and
GPS input devices, and sensitive information transmitted
to printers or other peripheral devices.

Because trusted frameworks and device drivers in
Maverick are Web programs, buggy implementations can
be vulnerable to conventional Web-based attack tech-
niques such as cross-site scripting, cross-site request
forgery, and framing attacks. Additionally, if trusted Web
instances are served over an insecure channel, attackers
could mount man-in-the-middle attacks to eavesdrop on
and hijack local devices.

Maverick does not provide any additional mechanisms
for defending against such attacks beyond those already
provided by browsers, nor does it make mounting these
attacks any easier. Instead, Maverick elevates the con-
sequences of writing buggy Web programs. Web devel-
opers will need to adopt best practices for eliminating
common vulnerabilities, and ensure that Web instances
are transmitted only through SSL-protected channels.

Maverick’s domain-driven naming, binding, and au-
thorization policy described in Section 3.3, in which a
user configures their browser to trust a domain provider’s
choice of frameworks and drivers, makes it so that the av-
erage user need only trust a small number of well-known
Web instance providers such as Google or Microsoft. Of
course, power users that opt-out of this default setting

and choose to adopt the more flexible application-driven
policy will face an increased burden in vetting the quality
of Web instances.

Malicious Web Instances. This second class of attacks
relies on an attacker being able to run a malicious Web
driver or framework in the user’s browser. If successful,
the consequences could be serious: because Maverick
exposes the USB subsystem to Web drivers, a malicious
Web driver can not only control the associated local de-
vice, but can inject arbitrary device commands into the
USB subsystem. This could allow the attacker to intro-
duce malware onto the device, or exploit bugs in the USB
software stack that could give the attacker unfettered ac-
cess to the user’s system.

Maverick’s security mechanisms are designed primar-
ily to prevent attackers from running malicious Web in-
stances in the first place. To try to trick Maverick into
running a malicious Web instance, attackers might lever-
age existing network-based and social engineering at-
tacks.

Example network-based attacks include DNS rebind-
ing and DNS cache-poisoning which redirect valid DNS
mappings in the browser to malicious URLs. Maver-
ick could defend against these attacks by using stronger
naming mechanisms such as secure DNS or certificate-
based naming. Maverick also protects against social en-
gineering attacks by relying on the domain-driven nam-
ing, binding, and authorization policy to prevent users
from authorizing malicious drivers or frameworks.

If a malicious Web instance somehow does manage
to run in the browser despite these safeguards, Maverick
currently has limited ability to protect the local system.
At best, Maverick’s IPC channels serve to help mitigate
the damage an attacker can do by limiting the compro-
mised device driver’s access to a single USB device. In
general, once an attacker has the ability to run a mali-
cious Web driver or framework, we consider the user’s
computing environment to be compromised.

5.3 Experiences with Maverick
Our experience with programming Maverick drivers and
frameworks has been positive. JavaScript and NaCl
drivers and frameworks enjoy Maverick’s clean event
model. Programmers do not need to worry about ker-
nel synchronization, pitfalls of interrupt-context code, or
the vagaries of kernel memory allocation. If a driver
is buggy, that browser instance will crash, but other
browser instances and the host OS continue to execute.
NaCl makes it easy to port existing C kernel drivers and
frameworks into Maverick. While JavaScript is slower
and not yet ideally suited for manipulating raw, binary
data, JavaScript code is dynamic and flexible, so manag-
ing complexity like callback function pointers is straight-

forward. Overall, we found that for the majority of de-
vices we considered, the advantages of programming in
higher-level languages and abstractions far outweighed
any performance limitations.

To showcase the power and flexibility of Maverick, we
built two additional Web applications. The first, called
SquirtLinux, makes it trivial to install Linux onto a USB
flash drive. Linux thumbdrives are useful for rescuing
data from a damaged system or carrying a portable, se-
cure boot environment. SquirtLinux consists of com-
bined Web application and framework instance that ex-
ploits our existing JavaScript-based USB mass storage
driver. SquirtLinux communicates with a Web server,
having it prepare a “Puppy Linux” USB installation im-
age on behalf of the user; it then uses AJAX to pipeline
downloading blocks of the image with writing it to an at-
tached drive. As a result, the user simply needs to find a
Maverick browser, attach their flash drive, browse to the
SquirtLinux service, and press a single button to manu-
facture a bootable thumbdrive.

Our second application, WebAmbient, uses a Del-
comm USB LED indicator to build an ambient display.
The LED supports a custom USB protocol that lets it be
programmed to emit any color as a combination of red,
green, and blue light. We wrote a JavaScript Web driver
and Web framework for it that exposes a high-level color
toggling interface to applications. Next, we wrote a Web
mashup that fetches real-time stock prices, making the
LED grow redder as price drops, greener as it increases,
and blue if it is flat. Maverick’s flexibility made it simple
for us to support the custom USB protocol and expose
high level functions without requiring any change to the
host OS, browser, or HTML standards.

6 Related Work

Maverick builds upon architectural features and tech-
niques explored by prior work. We discuss related work
below.

6.1 User-Level Drivers and Frameworks

Maverick moves device driver and framework code out
of the OS and into (user-level) Web applications. Our ap-
proach of running drivers and frameworks as Web appli-
cations is new, but the general approach of deconstruct-
ing a monolithic OS and moving its components to the
user-level is well studied. Mach [6] and L3 [16] ex-
plored microkernels, small OS kernels that provide ba-
sic hardware abstraction and rely on user-level servers to
implement major OS subsystems. Maverick also shares
features with exokernels [14], which allocate and pro-
tect hardware resources within a small, trusted kernel and

delegate the higher-level abstractions to user-level pro-
grams.

Prior work has explored OS support for user-level
drivers. Decaf [22] and Microdrivers [7] use static pro-
gram analysis and code annotations to automatically par-
tition kernel drivers into user-space and kernel compo-
nents, leaving just the performance critical components
(like I/O) in the kernel. Other user-level driver frame-
works have been implemented on top of Linux [15, 5]
and Windows [17].

Maverick’s virtualization of the USB hub is perhaps
closest to the open source libusb [4] and Javax.USB [11]
projects, which expose the Linux USB core API to user-
level code. Like libusb and Javax.USB, Maverick ex-
poses familiar USB API functions, but unlike libusb and
Javax.USB, Maverick Web drivers are untrusted and dy-
namically located, downloaded, and executed.

6.2 Browser Architecture
Maverick inherits many of the safety and reliability ben-
efits of the Chrome browser. Chrome maps Web ap-
plications into OS processes, providing better isolation
and resource management [20, 19, 21]. Chrome’s pro-
cess model allows Maverick instances to run in parallel
on multicore systems, and its sandbox isolates untrusted
code.

Other research browsers have similar properties. For
example, Gazelle [23] isolates Web applications into
processes using the same origin policy (SOP), placing
mashup content from separate Web origins in different
trust domains. Gazelle plugins execute in their own pro-
cesses, and the browser kernel protects updates to the
display. OP decomposed the browser architecture into
multiple trusted components, but it did not provide full
compatibility with existing sites [10]. SubOS provided
a process abstraction for Web applications, but did not
explore in detail a process model or the interactions be-
tween processes [13]. Tahoma provided safe and flexible
isolation between Web applications by embedding each
in a Xen virtual machine [2]. Tahoma did not consider
the problem of exposing local devices to Web applica-
tions, but rather provides them with a limited set of stan-
dard virtual devices.

6.3 Web Application Access to Devices
ServiceOS’s browser architecture is designed to isolate
Web applications and allow them to directly monitor and
manage device resources [18]. As with Chrome OS [8],
ServiceOS envisions itself as a browser OS. However,
ServiceOS exposes devices to Web applications by in-
cluding DOM objects and system calls in the browser
kernel on a device-per-device basis. This solution is

clean and simple, but suffers from the same drawbacks as
adding new HTML tags to the HTML specification: new
device support requires modifications to the browser. In
contrast, Maverick lets Web developers add support for
new devices and functionality without requiring browser
vendor or OS cooperation.

The Javax.USB [11] project allows signed Java applets
to access USB devices. This work is complimentary to
the Web drivers piece of Maverick. However, Javax.USB
requires use of the heavy-weight (and potentially unsafe)
Java browser plugin, and provides no explicit support for
safe IPC channels for direct framework and application
communication with drivers.

6.4 Client-Side Code Sandboxes

Maverick uses Native Client [24] to provide a safe,
client-side sandbox for executing x86 Web drivers and
frameworks built with languages like C and C++. These
languages handle certain aspects of driver development
such as byte-level data manipulation more efficiently
than JavaScript, and supporting them in Maverick makes
porting existing kernel drivers much easier. Similar tech-
nologies to Native Client exist, most notably Xax [3].
Other client-side sandboxes include Flash, Java, Sil-
verlight, and ActiveX. Although our current implementa-
tion focuses only on JavaScript and Native Client, Mav-
erick could support these sandboxes in the future.

7 Conclusions

The Maverick browser gives Web applications safe ac-
cess to local USB devices, and permits programmers to
implement USB device drivers and frameworks using
standard Web programming technologies like JavaScript
and native client (NaCl). With Maverick, Web drivers
and Web frameworks are downloaded dynamically from
servers and safely executed by the Maverick browser
kernel, allowing new drivers and frameworks to be im-
plemented, distributed, and executed as conveniently as
Web applications.

The main challenges faced by Maverick are safety and
performance. Our prototype system, built by extending
the Chrome browser and Linux kernel, relies on existing
sandboxes to isolate Web drivers and frameworks from
each other, the Maverick browser, and the host operat-
ing system and applications. As well, our system is ar-
chitected to be flexible in supporting a range of policies
and trust models for authorizing Maverick driver, frame-
work, and application access to specific USB devices,
and for resolving which drivers and frameworks ought
to be downloaded and executed to satisfy application de-
pendencies.

We prototyped several JavaScript and NaCl drivers
and frameworks, and evaluated them using microbench-
marks and application workloads. While our measure-
ments confirm that JavaScript Web drivers and frame-
works suffer from much higher latency and lower
throughput than NaCl or Linux equivalents, we also
showed that they perform sufficiently well to drive inter-
esting USB devices, including Webcams and USB flash
storage devices. Finally, we described two Web applica-
tions that showcase the flexibility and power of the Mav-
erick approach.

Acknowledgments

We thank Paul Gauthier, Charlie Reis, Roxana Geam-
basu, and Ed Lazowska for their feedback and help. We
also thank our anonymous reviewers, and our shepherd
Jon Howell, for their guidance. This work was supported
by NSF grants CNS-0627367 and CNS-1016477, the
Torode Family Career Development Professorship, and
gifts from Intel Corporation and Nortel Networks.

References

[1] Adam Barth, Adrienne Porter Felt, Prateek Saxena, and
Aaron Boodman. Protecting browsers from extension
vulnerabilities. In Proceedings of the 17th Network and
Distributed System Security Symposium (NDSS 2010),
San Diego, CA, February 2010.

[2] Richard S. Cox, Steven D. Gribble, Henry M. Levy, and
Jacob Gorm Hansen. A safety-oriented platform for Web
applications. In Proceedings of the 2006 IEEE Sym-
posium on Security and Privacy, Washington, DC, May
2006.

[3] John R. Douceur, Jeremy Elson, Jon Howell, and Jacob R.
Lorch. Leveraging legacy code to deploy desktop appli-
cations on the Web. In Proceedings of OSDI 2008, San
Diego, CA, December 2008.

[4] Daniel Drake and Peter Stuge. libusb. http://www.
libusb.org/.

[5] J. Elson. FUSD: A Linux framework for user-space de-
vices. http://www.circlemud.org/˜jelson/
software/fusd/.

[6] Alessandro Forin, David Golub, and Brian Bershad. An
I/O system for Mach 3.0. In Proceedings of the USENIX
Mach Symposium, Monterey, CA, November 1991.

[7] Vinod Ganapathy, Matthew J. Renzelmann an Arini Bal-
akrishnan, Michael M. Swift, and Somesh Jha. The de-
sign and implementation of Microdrivers. In Proceedings
of ASPLOS 2008, Seattle, WA, March 2008.

[8] Google. Chromium OS. http://www.chromium.
org/chromium-os.

[9] Google. Protocol buffers. http://code.google.
com/p/protobuf/.

[10] Chris Grier, Shuo Tang, and Samuel T. King. Secure Web
browsing with the OP Web browser. In Proceedings of the
2008 IEEE Symposium on Security and Privacy, Wash-
ington, DC, May 2008.

[11] IBM. Javax.USB. http://www.javax-usb.org/.
[12] IETF. RFC 2397: The data URL scheme. http://

tools.ietf.org/html/rfc2397.
[13] Sotiris Ioannidis and Steven M. Bellovin. Building a se-

cure Web browser. In Proceedings of the FREENIX of the
USENIX ATC, Boston, MA, October 2001.

[14] M. Frans Kaashoek, Dawson R. Engler, Gregory R.
Ganger, Hctor M. Briceo, Russell Hunt, David Mazires,
Thomas Pinckney, Robert Grimm, John Jannotti, and
Kenneth Mackenzie. Application performance and flex-
ibility on Exokernel systems. In Proceedings of SOSP
1997, Saint Malo, France, September 1997.

[15] Ben Leslie, Peter Chubb, Nicholas Fitzroy-dale, Stefan
Götz, Charles Gray, Luke Macpherson, Daniel Potts,
Yueting Shen, Kevin Elphinstone, and Gernot Heiser.
User-level device drivers: Achieved performance. Jour-
nal of Computer Science and Technology, 20(5), 2005.

[16] Jochen Liedtke, Ulrich Bartling, Uwe Beyer, Dietmar
Heinrichs, Rudolf Ruland, and Gyula Szalay. Two years
of experience with a µ-kernel based OS. SIGOPS Oper-
ating System Review, 25(2), 1991.

[17] Microsoft. Architecture of the user mode driver
framework. http://www.microsoft.com/whdc/
driver/wdf/UMDF-arch.mspx, February 2007.

[18] Alexander Moshchuk and Helen J. Wang. Resource man-
agement for Web applications in ServiceOS. In MSR-TR-
2010-56, Redmond, WA, May 2010.

[19] Charles Reis, Brian Bershad, Steven D. Gribble, and
Henry M. Levy. Using processes to improve the reliability
of browser-based applications. In University of Washing-
ton Technical Report UW-CSE-2007-12-01, Seattle, WA,
2007.

[20] Charles Reis and Steven D. Gribble. Isolating Web pro-
grams in modern browser architectures. In Proceedings
of EuroSys 2009, Nuremberg, Germany, April 2009.

[21] Charles Reis, Steven D. Gribble, and Henry M. Levy. Ar-
chitectural principles for safe Web programs. In Proceed-
ings of HotNets 2007, Atlanta, GA, November 2007.

[22] Matthew J. Renzelmann and Michael M. Swift. Decaf:
Moving device drivers to a modern language. In Proceed-
ings of the USENIX ATC, San Diego, CA, June 2009.

[23] Helen J. Wang, Chris Grier, Alexander Moshchuk,
Samuel T. King, Piali Choudhury, and Herman Venter.
The multi-principal OS construction of the Gazelle Web
browser. In Proceedings of USENIX Security 2009, Mon-
treal, Canada, August 2009.

[24] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley
Chen, Robert Muth, Tavis Ormandy, Shiki Okasaka,
Neha Narula, and Nicholas Fullagar. Native Client: A
sandbox for portable, untrusted x86 native code. In Pro-
ceedings of the 30th IEEE Symposium on Security and
Privacy, Oakland, CA, May 2009.

