
Experiences on a Design Approach for Interactive Web Applications
Janne Kuuskeri

Department of Software Systems
Tampere University of Technology

Korkeakoulunkatu 1, FI-33720 Tampere, Finland
janne.kuuskeri@tut.fi

Abstract

Highly interactive web applications that offer a lot of
functionality are increasingly replacing their desktop
counterparts. However, the browser and the web itself
were originally designed for viewing and exchanging
documents and data and not for running applications.
Over the years, web pages have slowly been transformed
into web applications and as a result, they have been
forcefully fit into an unnatural mold for them. In this pa-
per we present a pattern for implementing web applica-
tions in a way that completes this transition and creates
a more natural environment for web applications to live
in. In the pattern, the full MVC stack is implemented
in the client while the server is completely decoupled
via a RESTful interface. We also present experiences
in building an industrial-scale application utilizing this
pattern.

1 Introduction
Over the recent years, web has become the most im-
portant platform for delivering and running applications.
With the ubiquitous web, these applications are easily
accessible regardless of place and time and without any
installation requirements, end users have begun to favor
web applications over traditional desktop applications.
On the other hand, the rapidly increasing mobile appli-
cation market has proven that web applications are not
always loaded on demand anymore but they are also be-
ing installed on devices.

The fast growth of the web as an application plat-
form has raised the standard for its inhabitants. Rich
and dynamic user interfaces with realtime collaborative
features have now become the norm. Moreover, with the
popularity of social networks, applications are expected
to link or embed information from other web applica-
tions. Finally, if the end user is not immediately satisfied
with the web site, she will simply enter a new URL and
start using another similar service. This has lead appli-
cation developers to push the limits of the browser and
the web standards.

Unfortunately, browsers and the standards of the web
have not quite been able to keep up with the pace. There-

fore, application developers have been forced to work
around the standards and to do whatever it takes to meet
end users’ demands. The application logic and the pre-
sentation have gotten mixed in the mayhem of HTML,
CSS, JavaScript and, some server-side scripting system,
say PHP. Within this technology rush, good software de-
velopment practices and patterns have been somewhat
forgotten. Without extra attention, code base gradually
loses clear separation of concerns and the responsibili-
ties of different components become unclear [11]. For
these reasons many web applications have become diffi-
cult to scale or even maintain.

In this paper, we describe a pattern for building web
applications for scalability both in terms of through-
put and in terms of provided functionality. The sug-
gested pattern advises breaking the application in two
autonomous parts: a RESTful web service and a sin-
gle page web application that utilizes it. Following this
pattern will contribute to having a clean and consistent
design throughout the application, thereby making the
end result easier to test and maintain in general. As a
side effect, the versatility of the application is greatly in-
creased by offering easier adoption for clients other than
browsers.

Neither RESTful interfaces nor single page web ap-
plications are new ideas by themselves. However, in
this paper we suggest using the RESTful API directly
from the JavaScript application using Ajax requests. The
main contributions of this paper are firstly, to describe
the pattern for implementing complex web applications
and secondly, to present experiences from utilizing this
pattern in a real world, large scale application. This
application is currently in production, and experiences
listed in the paper are based on actual feedback. By pro-
viding experiences and comparison we show the benefits
of the suggested pattern.

The rest of the paper is structured as follows. In Sec-
tion 2 we examine the main components of traditional
web applications and identify their weaknesses. Next, in
Section 3, we introduce our pattern for building complex
web applications. In Section 4 we present how to apply
the pattern in a real world application and give insight
as to what kind of design the application has. Section



5 discusses the pros and cons of the suggested approach
and Section 7 provides a review of future work. Section
8 concludes the paper with some final remarks.

2 Traditional Way of Building Web Appli-
cations

In this section, we illustrate the procedure that is en-
dorsed by most of the popular frameworks for building
and running web applications. We briefly describe each
relevant component of a web application from the view-
point of this article. This is done so that we are able to
review our approach in later sections and to show how it
differs from the approach presented here.

2.1 Building Blocks of Web Applications
Today, numerous web frameworks are based on the
MVC [9] pattern. Some frameworks call it something
else and many of them interpret it a bit differently but
at the high level, there are usually three main compo-
nents that comprise a web application: the model, the
view and the controller. Not all applications follow this
structure rigorously but usually these three components
are identifiable in one form or another. Sometimes appli-
cation logic is separated into its own module, sometimes
it is part of one of the other modules, and sometimes it
is scattered over multiple modules. In any case, it pro-
vides a good enough abstraction for us to describe the
components of web applications, and their supposed re-
sponsibilities.

2.1.1 The View
In this section, by view, we refer to what the browser
shows and executes. The main components of the view
are defined below.

HTML – Traditionally, the hierarchy and overall lay-
out of a web page is composed using HTML. In the
browser the HTML becomes part of the DOM tree of
the page. The DOM is what ultimately defines the hi-
erarchy of the page. The DOM is dynamic and may be
altered at runtime, thereby making web pages dynamic.

CSS – Cascading Style Sheets are used to define what
the page will look like after it has been rendered on the
screen. If no CSS rules are provided, the browser will
use a set of default rules. CSS has little to do with the
dynamicity of the page; pages with no CSS rules can still
be dynamic and provide client side functionality.

JavaScript – In order to create a web page that has
client side functionality, there must be a programming
language to implement that logic. If we leave out the
option of using any custom browser plugins, JavaScript
is the only choice for implementing any application logic
within the page.

2.1.2 The Controller
In web applications, the role of the controller varies
the most. What is common for all the different inter-
pretations however, is that controller is the component
that takes in all the HTTP requests coming in from the
browser. Many times the controller takes the role of the
dispatcher and forwards the request to appropriate han-
dler in the model and afterwards it finds the correct view
that is associated with the request. When the request
has been processed, controller functions return HTTP re-
sponse back to the browser. In some applications there
is a single centralized controller that handles all requests
while in others there is a controller function bound to
each URL that the web application exposes.

2.1.3 The Model
The model component refers to the database layer of the
application. This does not need to be an actual database,
but commonly web applications have some kind of per-
sistent storage, where objects of the application logic are
stored and retrieved. Many times an Object Relational
Mapper (ORM) such as Hibernate, SqlAlchemy or Ac-
tiveRecord is used to implement the mapping between
the domain objects and the persistent storage. Some-
times the model component is further divided into the
business logic layer and the data access layer.

2.2 Burden of Building Web Applications
As suggested by section 2.1 a typical web application
consists of many different types of resources. These
include (but are not limited to) HTML templates, CSS
files, JavaScript files, image files and the source code for
the server side implementation. The application logic
is usually implemented mainly by the server side but
depending on the application a fair bit of application
logic may also be in the JavaScript files and even in-
side HTML files, which usually incorporate some kind
of templating language. CSS and image files on the other
hand are purely static resources and only affect the ap-
pearance of the application.

When the application grows, a careful design needs
to be in place, not only for the application logic, but
also for the directory hierarchy and the responsibilities;
which part of the application should be responsible of
which functionality. Therefore, when building web ap-
plications with a lot of functionality and dynamic fea-
tures, it has become a common practice to use a set of
existing tools and frameworks to make the development
easier. Frameworks such as Spring [5], Django [1] and
Ruby on Rails [3] do a good job at making it easier for
the developers to implement and maintain their projects.
They even provide guidance on how to assign responsi-
bilities for different components but these guidelines are
not enforced in any way and in the end it is up to the



developer to figure out what works best for a particular
application.

This kind of approach to building web applications
also easily results in tightly coupled systems. Not only
do the server and the client become dependent on each
other but there is also coupling between different com-
ponents or technologies within the application. For ex-
ample, the server usually sends a complete HTML page
to the browser but on some occasions it may only send
parts of the page and rely on the client side JavaScript to
fetch the rest of the data (e.g. XML) using Ajax requests.
Also the application flow has to be agreed in advance be-
tween the client and the server. As a result it would be
very difficult to implement a completely different kind
of user interface for the application without making any
changes to server side components.

2.3 Burden of Running Web Applications

By its very nature, HTTP is a stateless protocol. There-
fore, each request occurs in complete isolation from any
other request. When user clicks on a link on a web page
and another page within the same application is pre-
sented, the browser has to load that new page completely
from the server and forget everything it knew about the
previous page. Thus, from the client’s perspective the
application is restarted each time a page is loaded. How-
ever, many applications require their internal state to be
maintained while the user is running the application and
new pages are loaded. That is why the client side of the
application depends on the server to maintain the appli-
cation state between page loads.

This kind of behavior is usually implemented as a
server side session. Each time the browser sends an
HTTP request, it sends a cookie with the request. Within
the cookie there is a unique identifier that identifies the
client’s session and the server then has to interpret all
the data in the session to see where – in the flow of the
application – the client was. Now the server can resume
the application state and continue into processing the re-
quest. In the following, we list common steps that the
server has to take when a page is requested:

1. Resume the application state by processing the re-
ceived cookie and recovering the associated ses-
sion.

2. Invoke appropriate controller function to execute
the application logic.

3. Use the model to retrive and update associated per-
sistent data.

4. Locate correct view and populate it with the data
from the model.

5. Update the session to reflect the new state of the
client’s application.

6. Return the populated HTML page to the browser.

It should be noted, that we have purposefully left out
things that are not relevant in the scope of this paper.

When the browser receives the newly composed
HTML page it has to parse and render it on the screen.
This includes fetching all the related resources that the
page uses, in essence, CSS, JavaScript and image files.
While some of these resources may come from the
cache, some of them do not. This laborious sequence of
events takes place every time the user performs a func-
tion that requires a new page to be loaded. There has
been a lot of research on how to make web sites faster
([16, 17]) and there are dozens of tricks that developers
need to know and implement in order to minimize the
overhead and latency during page loading.

3 The Partitioned Way of Building Web
Applications

Given the complexity of building, running and maintain-
ing web applications with a lot of functionality we argue
that these applications should be implemented in a sim-
pler way. This simplicity can be achieved by breaking
the application in parts and strictly defining their respon-
sibilities. In the following sections we describe this pro-
cess in more detail.

3.1 Breaking the Application in Two
Based on the fact that the web builds on top of HTTP, ap-
plications using it as their platform are distributed over
the network. Furthermore, as HTTP is a resource ori-
ented and stateless protocol, we argue that web appli-
cations should be broken into services provided by the
server and the client that uses these services to com-
pose a meaningful web application. From this separation
we draw the following set of rules that web applications
should adhere to:

1. Application state is stored in the application, not in
the server.

2. Client application is a self contained entity built on
top of services provided by single or multiple sites.

3. Services that are used for implementing the ap-
plication do not make any assumptions about the
clients using them.

The motivation and consequences of the rules are the
following:

1) As already mentioned, from the client’s perspec-
tive the application is restarted each time a new page is
loaded. Effectively this means that either the application
should be implemented as a so called single page web
application or it explicitly stores its state using services
provided by the server.

2) Making the client application a self contained en-
tity makes the responsibilities explicit and unambigu-
ous: the server decides which services it exposes and



the client is free to use them how it chooses. More-
over, clients become applications in their own right; they
are run (and possibly even started) completely inside the
browser, while using the services of the server only when
they need to. This approach is also utilized by many of
today’s HTML5 mobile applications.

3) When the server side of the application becomes
agnostic about its clients, it completely decouples the
server and the client. They can be developed and tested
independently. Furthermore, it allows any type of client
(not just browsers) to use the service.

Following this pattern, makes the browser a plat-
form for running JavaScript powered applications and
the server a datastore responsible for maintaining appli-
cation’s persistent data. A rough analogy to the world
of traditional desktop applications is that the browser
now becomes the operating system where applications
are run and the services provided by the server become
the remote database for the application. The main dif-
ference being that remote services may actually contain
complex operations as opposed to being a simple data
store.

3.2 Services
In the scope of this paper we are only interested in the
interface of a web service, not its implementation. It is
indeed the interface and its properties that enable clients
to utilize it into building fully working applications. To
support wide variety of clients and functionality, the in-
terface should be as accessible and as general as pos-
sible. Accessibility comes from adhering to widely ac-
cepted standards and picking a technology that is sup-
ported by most of the clients. Choosing the right level of
generality however, can be difficult. The interface must
cover all the requirements laid out for the applications
using it and at the same time, to support scalability, it
should not be needlessly restricted and specific to use
cases it implements.

By choosing the RESTful architectural style [14], the
service interface is able to support any client that im-
plements HTTP protocol. Given that web applications
already use the HTTP protocol, this is not really a re-
striction. In the following we describe how RESTful in-
terface is able to fulfill all the requirements presented
earlier.

Accessibility – The RESTful architectural style ad-
heres to the HTTP/1.1 protocol [8], which is supported
by virtually all clients using the web as their application
platform. Furthermore, REST does not mandate any for-
mat for the transferred data. The representations of the
resources exposed by the RESTful interface may use any
format or even support multiple formats. This makes
RESTful interfaces even more accessible: JavaScript
clients usually prefer JSON format, while some other

client may prefer XML.
Application State – REST makes very clear distinc-

tion between the application state and the state of the
resources. In REST, the server is only responsible for
storing the states of its resources. The state of the ap-
plication must be stored by the client application itself.
There should be no server side sessions: each request
made by the client happens in complete isolation from
any other request.

Generic Interface – The uniform interface of REST
brings with it a certain level of generality automatically.
When the interface is designed in terms of resources
instead of functions, it remains much more generic.
Clients can browse through the resources, apply stan-
dard HTTP operations on them and receive standard
HTTP response codes in return. In addition, REST pro-
motes the use of Hypermedia as the Engine of Applica-
tion State, which means that via the representations the
interface may provide options or guidance to the client
about the direction if should take during the application
flow. Granted, the resources and their representations
still need to be carefully designed to make the interface
more generic, but REST provides a good framework for
doing so.

Scalability – Because of its stateless nature and the
lack of server side sessions, RESTful interface is hor-
izontally scalable by definition. New servers can be
added behind the load balancer to handle the increased
demand. RESTful interfaces are also easy to scale in
terms of functionality because of their resource oriented
architecture (ROA) [14]. When all the relevant artifacts
of the system are modeled and exposed as resources with
the uniform interface, client developers have a lot of lee-
way to implement web applications with different kind
of functionality.

3.3 Clients
Clients of the web services defined above can range from
simple scripts to other web services or JavaScript UIs
running in the browser. Other examples would be nor-
mal desktop UIs, mobile applications or mashup appli-
cations utilizing multiple services. In this paper we are
mainly interested in the UIs that run in the browser, al-
though some of the following discussion will also hold
for other types of clients.

For applications with a lot of functionality and inter-
activity, we endorse creating single page web applica-
tions, where the whole application runs within a single
web page and no further page loads are necessary. This
approach has several benefits when compared to tradi-
tional web applications where the browser is used for
navigating from page to page. We will discuss these ben-
efits further in later on.

Single page web applications are loaded into browser



from a set of static bootstrapping files. These files in-
clude HTML, CSS and JavaScript files. Usually these
files are loaded from the server but they may also be
“pre-installed” onto the device. This is a common sit-
uation for mobile applications. After the application
is loaded into the browser, it behaves like a traditional
desktop application: UI components are shown and hid-
den from the screen dynamically and all user events are
handled by the JavaScript code running in the browser.
When new data is needed from the database, it is fetched
using Ajax requests to server side resources. Simi-
larly Ajax requests are used for creating, modifying, and
deleting resources of the RESTful interface.

With this approach the state of the client side appli-
cation always remains in the browser while the server is
responsible for the server side resources and their states.
This creates a strict and clear separation of concerns be-
tween the client and the server: the server exposes uni-
form interface for a set of resources without making any
assumptions about clients’ actions and the client is free
to use these resources as it sees fit while maintaining the
state of application flow.

The client becoming a “stand alone” application
which uses external resources only when it really needs
to, also has several benefits. The user interface be-
comes much more responsive since the client itself ful-
fills user’s actions as far as possible. This, for one, re-
duces the network traffic down to minimum; only the
data that is actually needed is queried from the server.
All the user interface components and resources only
need to be downloaded once. These advantages also in-
crease the robustness of the application because the use
of possibly unreliable network is decreased.

4 Case: Valvomo
To better illustrate the concept of single page applica-
tions and the partitioned way of implementing web ap-
plications we take a real world example. The applica-
tion is called Valvomo (Fin. control room) and its design
and implementation is joint work between us (the au-
thors) and StrataGen Systems. The application domain
sits in the field of paratransit. In short, paratransit is a
flexible form of passenger transportation. It offers ser-
vices that are not fixed (at least not strictly) to certain
stops or schedules. Services are usually run by taxis or
mini-buses. A typical use case is when a customer calls
into a call center telling where and when she wants to
be picked up and where she wants to go. The dispatcher
at the other end of the line then enters the order into the
system and tells the customer where and when exactly is
she going to be picked up. Orders made by different cus-
tomers may overlap and still be carried out by the same
vehicle. This way the service that the vehicle is driv-
ing becomes dynamic. The level of flexibility offered

to customers and vehicle operators varies considerably
between different system providers.

4.1 Overview of the User Interface
The purpose of the Valvomo application is to enable the
vehicle operators to control their fleet better. Operators
may track their vehicles in real time and see whether the
services are running on time and immediately be noti-
fied if a service is running late. Moreover, operators are
able to browse all the historical data that the vehicle has
sent. This includes for example routes it has driven, cus-
tomers picked up and dropped off, stops visited, breaks
taken and the vehicle’s operating hours. Figure 1 gives
an overview of the user interface of the Valvomo appli-
cation. It is a single page application with five accordion
panels on the left, a map view in the center and a col-
lapsible itinerary view on the right.

User may enter various search criteria using the input
fields in different accordion panels on the left. Vehicle’s
actions are visible as a color encoded polyline on the
map. By clicking either on the itinerary or on the nodes
of the polyline, user is presented with detailed informa-
tion about the corresponding vehicle event. The map
will contain different data about the vehicle based on
which accordion is active. The dockable itinerary panel
on the right hand side contains chronological summary
of the same data that is visible on the map.

Switching between accordions will cause the map and
the itinerary to be refreshed with data related to the ac-
tive accordion. The user interface was implemented so
that each accordion will remember its state and data
so the user is free to switch between accordions with-
out having to worry about losing data. To respect the
asynchronous and event driven programming model of
JavaScript in the browser, all the networking is carried
out with asynchronous Ajax request and the user inter-
face is updated incrementally as data becomes available.
For example when the user has requested a lot of data
(a vehicle can easily have over 1000 events per day) a
throbber icon is shown in the status bar and the user may
navigate to other accordions while waiting for that data.
When the user notices that the download has finished
she can go back to the corresponding accordion and the
data is visible on the map. We should point out that the
user can actually use browser’s back and forward buttons
when going back and forth the accordion panels. Usu-
ally this is a problem with single page applications but
we have taken special care that the application handles
the navigation buttons in order to provide more fluent
user experience.

4.2 Implementation of the User Interface
The user interface is a single page web application im-
plemented in JavaScript, HTML, and CSS. For all the



Figure 1: Valvomo

data it uses RESTful API which in turn is connected to
the paratransit system. To obey the same origin pol-
icy [15] of browsers, the bootstrapping HTML and the
REST API are in the same domain but under differ-
ent paths. Overview of the different components in the
Valvomo web application is given in Figure 2. It follows
strictly the principles laid out in Section 3.

These kinds of highly dynamic user interfaces in
browsers have always been somewhat cumbersome to
implement. Main reasons for this include DOM,
CSS and JavaScript incompatibilities between browsers.
Also, the performance of the JavaScript interpreter and
the DOM tree incorporated in browsers has been quite
low. However, due to the intense competition in the
browser market during the past few years, the perfor-

mance of JavaScript interpreters has gotten significantly
better. This has allowed for bigger and more complex
JavaScript applications to be run in the browser.

The incompatibilities between browsers have made it
almost impossible to implement any kind of dynamic-
ity in web pages without the use of a JavaScript library
that hides these incompatibilities. There are dozens of
JavaScript libraries and toolkits to help developers make
better JavaScript applications for the browser. Some of
them focus on the language itself, some provide merely
UI widgets and effects and some are full blown UI toolk-
its that completely hide the DOM and CSS.

For the Valvomo application we chose the Ext JS (now
part of the Sencha [4] platform) toolkit mainly because
of its suitability for creating single page JavaScript only



Browser

Server

Valvomo

REST APIBootsrap
HTML

Load Ajax

Paratransit System

Figure 2: Valvomo Overview

applications that fill the whole browser viewport. Fur-
thermore, it is very mature and well documented. Ext
JS completely hides the CSS and HTML from the de-
veloper and allows application to be created solely in
JavaScript. The API for creating user interfaces reminds
one of many popular desktop UI toolkits such as Qt or
gtk.

In the implementation we followed the MVC pattern,
used a lot of JavaScript closures for information hid-
ing and put all Valvomo functions and objects under our
own namespace. Because the whole user interface is im-
plemented in JavaScript we were able to implement all
components of the MVC pattern into the client. Our in-
terpretation of the MVC pattern is depicted in Figure 3.
Due to the nature of the resource oriented architecture
of the server, this approach puts the server in the role
of a mere data storage. Therefore, it becomes natural to
wrap the networking code calling the RESTful interface,
inside the model in the JavaScript application.

View – The view consists solely of the declaration of
the user interface and its events. After the user inter-
face and its layout is defined, the events are bound to the
functions of the controller module. Ext JS offers a clean
approach for defining the user interface in terms of –
what Ext JS calls – pre-configured classes. What this
means is that the definition of the user interface is bro-
ken into smaller components whose properties are pre-
configured with suitable values. These components may

View
- UI layout
- bind UI events

events

update update

get data

data received

REST API

Controller

- Business logic

Model
- Ajax requests
- Data mapping
- Cache

Figure 3: The MVC implementation in Valvomo

then be reused and their properties possibly overridden
before rendering on the screen.

Controller – The controller handles all events com-
ing from the view and most of the events coming from
the model. For example, each time the user clicks on a
button, the controller handles the event and possibly uses
the model to perform the desired action.

Model – The model issues all the Ajax calls re-
quired by the Valvomo application. It also implements
automatic mappings between JSON representations of
the service interface and JavaScript objects used by the
Valvomo user interface. Usually, when the data is re-
ceived from the server, a function of the controller mod-
ule is registered to handle it. However some components
of the view module, like data grids and combo boxes, are
updated directly by the model.

4.3 The REST implementation
The RESTful interface on the server side is implemented
in Python using the Django framework. Python was cho-
sen over node.js, which is a very promising server side
JavaScript environment. In Python’s favor was its ma-
turity and the maturity of its frameworks and libraries.
For instance, the paratransit system uses Oracle database
and provides a custom TCP/IP protocol for external con-
nections. Python has a good support for connecting to
oracle databases and excellent event-driven networking
engine called Twisted. Moreover, the Django framework
has a lot to offer for building RESTful web services. It
provides a comprehensive set of plugins, flexible object
relational mapper (ORM) and good test suite.



On top of Django we are using a small library called
Piston, which streamlines the creation of RESTful web
services in Django. It provides utilities such as map-
ping database tables to resources with uniform interface,
mapping errors to proper HTTP response codes and se-
rialization of domain objects into JSON or XML. We
have also done some minor modifications to the library
in order to make it more extensive and suitable for our
use.

4.4 Characteristic of the REST interface
The definition of the Valvomo service interface bears no
surprises; it is a very typical RESTful interface. That ex-
actly is one of the benefits of REST and ROA. When the
whole system is expressed as a set of resources and ex-
posed via the uniform interface, the client developers can
find the interface familiar and intuitive. In the following
we briefly describe the relevant parts of the REST inter-
face.

The paratransit system we are connecting to is a very
mature application suite (15 years in production). There-
fore, the domain model is very stable and well known by
developers, managers, and, customers. Therefore, when
we chose to apply the Domain-driven design (DDD) [7],
we already had the ubiquitous language that all stake-
holders could understand. This also made the identifi-
cation of resources simpler because we were able to do
fairly straightforward mapping from domain entities into
RESTful resources.

URLs used in the interface adhere to the following
scheme:

/api/{version}/{namespace}/{resource}/

Because we expect the interface to grow to cover all
the resources of a fully functional paratransit system,
we used namespaces to collect resources into logical
groups. The resource maps to an entity collection
in the domain model. If the resource is followed by
/{id}/, the URL is mapped to a specific entity. For ex-
ample, to refer to a vehicle number 123 one would use
the URL.

/api/v1/fleet/vehicle/123/

Some of the resources also have subresources such as
fleet/vehicle/events/123/ which would con-
tain all the events that the vehicle has sent. Sometimes a
property of a resource is important enough that it makes
sense to make it explicit and expose it as its own subre-
source. An example would be a list of cancelled orders:

/api/v1/scheduling/order/cancelled/

When a valid order is POSTed into the
order/cancelled/ resource, the underlying

paratransit system performs the order cancellation
function.

As its default data representation format, the interface
uses JSON. XML is also supported and clients may use
it as an alternative. By default, all representations have
links to their related resources. For example, the repre-
sentation of order does not embed any passenger repre-
sentation but instead it contains a link to it. From the
following example we have left out most of the fields of
the order representation. Also the link is shortened to
make it fit better.

{
id: 345,
passenger: {
link: {

href: "scheduling/passenger/567/",
rel: "related"

}
}

}

Similarly the representation of vehicle contains links
to its events and operator. This way the server may assist
the client in finding new resources that may be of interest
to it.

5 Experiences
Despite the fact that the Valvomo is an application that is
still being actively developed, it has also been used suc-
cessfully in production over six months now. New fea-
tures are constantly being added to the user interface and
new resources are added to the REST API. Currently,
the Valvomo system is mainly being used in Finland but
an initial installation is already in place in UK as well.
When the application gets more mature and feature rich
it will become part of StrataGen’s US sites too.

In this section we discuss the experiences of building
a web application in two partitions: a single page web
application with a RESTful API on the server. We also
go into more detail about pros and cons of this approach
compared to a more traditional way of building web ap-
plications defined in Section 2. To gather the experi-
ences presented in this section we used our own expe-
rience and interviewed several employees of the Strata-
Gen Systems who have years of experience in creating
web applications.

5.1 Advantages
The most important benefit of the partitioned way of
building web applications is having the user interface
completely decoupled from the server side implementa-
tion. This division along with making the server agnostic
about its clients spawn several advantages.

1) Accessibility of the service interface. When the ser-
vice makes no assumptions about its clients, any client



that conforms to the interface is allowed to use it. For
example, this includes JavaScript code running in the
browser or in a mobile device as well as programmatic
clients such as other web services.

2) Reusable service interface. RESTful interface al-
lows resources with uniform interface to be used freely
to create new kinds of applications without any modifi-
cations to the server side implementation. When there
is no predefined application flow between the server and
the client, clients have much more control over how and
what kind of applications to implement.

For example, in the case of Valvomo, the RESTful
interface has been separated into its own product and re-
named to Transit API. At the time of writing this the
Transit API already has five other applications running
on top of it. Three of them are programmatic clients
written in C# and two of them are browser applications
written in JavaScript. Moreover, the three JavaScript ap-
plications share code through a common library that in-
terfaces with the Transit API. This kind of code reuse
would be extremely difficult, if not impossible, with the
traditional – tightly coupled – way of building web ap-
plications. In this scenario, there would have to be three
full stack web applications and at least one web service
API.

3) Reusable user interface. Not only does this ap-
proach allow different types of clients to exist but also
the user interface may be transferred on top of differ-
ent service as long as the service implements the same
RESTful interface. For example, in the near future, the
Valvomo application will be run on top of another para-
transit system and there the Transit API will be imple-
mented in C#. In addition, there are plans to implement
the Transit API in front of another logistical system that
is not paratransit at all and yet we are able to use the
same Valvomo user interface without any code modifi-
cations.

4) Responsibilities are easier to assign and enforce.
Traditionally, there has been a lot of confusion and
“gray areas” in assigning responsibilities in web appli-
cations: which tasks should be handled in the client and
which ones in the server? Furthermore, which technol-
ogy should be used: HTML template, JavaScript or the
server side implementation? However, when the client
is completely decoupled from the server the two can be
considered as two distinct products. This makes many
aspects in assigning responsibilities implicit and many
questions obvious. Following paragraphs give few ex-
amples.

Data validation – The server cannot trust any data
that it receives from the client; everything needs to be
validated. Granted, this is what should happen in tradi-
tional web applications too but inexperienced develop-
ers often get confused about this and believe that it is

“their own” HTML page that is sending validated data.
When implementing the server as stand alone RESTful
web service it is much clearer that the data may come
from any type of client and no assumptions can be made
about its validity.

Error handling – The client and the server are both
responsible for their own error handling. In between
there is only HTTP and its standard return codes. When
an error occurs in the server, it will return a correspond-
ing HTTP response code to the client. The client reads
the return code and acts accordingly. When there is
an error in the client, the client handles the error as it
sees best fit and the server never needs to know about
that. In the traditional model where pages are loaded
frequently the error handling is more complex. For ex-
ample, errors may occur with cookies, sessions or page
rendering. Careful design needs to be in place in order
to determine which errors should be handled by which
part of the application and what should be presented to
the user. When this is not the case, users end up seing
error pages like 404 Not Found, 500 Internal
Server Error or a server side stack trace.

Localization – When the server exposes a generic
RESTful interface, only the client needs to be localized.
Error messages, calendar widgets and button labels are
all localized in the client. Furthermore, when the whole
client is implemented in JavaScript, the localization does
not get fragmented over HTML, JavaScript and (for ex-
ample) Java. Of course, textual content such as prod-
uct descriptions need to have localized versions in the
server’s database but even then, the client asks for a spe-
cific version of the resource.

5) Application flow and state. According to REST
guidelines, the application state is stored in the client
and the states of all the resources are stored on the
server. This unambiguously specifies the responsibilities
of states between the client and the server. The client it-
self is responsible for maintaining the application flow
and the server is free from having to store and maintain
clients’ sessions. No more does the client need to send
the cookie to the server and the server does not have to
worry about cleaning up expired and unused sessions.

6) Lucid development model. Traditionally, the de-
velopment of complex web applications has been trou-
bled with fragmentation of application logic over many
technologies. Parts of the application logic are imple-
mented using a server side programming language while
other parts are implemented in say, HTML template lan-
guage or JavaScript. To add to this disarray, the DOM
is many times exploited to work around any limitations
or attempts to do information hiding. However, with the
partitioned way of implementation and a clear distinc-
tion of responsibilities both the client and the server can
be implemented separately both having their own inter-



nal design. Moreover, when the whole client application
is implemented in JavaScript only and using a program-
ming model that we are familiar with from the desktop,
it allows easy adoption of proven software patterns and
best practices.

7) Easier testing. Web applications are traditionally
difficult to test automatically. There are all kinds of tools
that do help this process but still they are far from writ-
ing simple unit tests for a code that does not have user
interface, let alone HTTP connection. The partitioned
way of implementing web applications does not itself
help in testing the user interface but testing the REST-
ful API can be very easy. Some frameworks – such as
Django – offer a way to write unit tests against the REST
API without even having to start a web server when the
tests are run. Even if the framework does not have such
support, automatic regression tests would still be fairly
easy to write using isolated HTTP request and checking
the response codes and possible contents.

8) Network traffic. When the user interface is imple-
mented within a single page, there is no need to down-
load any additional HTML or CSS files after the appli-
cation has been bootsrapped and running. Only the data
that is requested by the user is downloaded from the
server. Thus, there is no overhead in the network traf-
fic and from this follows that the user interface stays re-
sponsive at all times and therefore becomes more robust.
On the other hand, when the services on the server con-
form to the RESTful architectural style, the full caching
capabilities of the HTTP become available. In many of
the traditional web applications the payload data is em-
bedded within the downloaded HTML page. That makes
the data much more difficult – if not even impossible –
to cache efficiently.

5.2 Disadvantages
1) Framework support. Web frameworks offer a lot of
conventions, tools and code generators for building tra-
ditional web applications. While the RESTful service in-
terface can benefit from these tools, the single page user
interface gets no benefit. The level of guidance the de-
veloper gets for building the user interface is completely
dependent upon the chosen JavaScript toolkit.

2) Search engines. It is very difficult for the search
engines to crawl a single page web application. They
could crawl the RESTful service interface but the docu-
ments returned by the interface are without any context
and therefore difficult to rank.

3) Accessibility. For visually impaired, single page
web applications can be difficult to use. In traditional
web applications with more static pages the accessibility
is easier to take into account. While possible, it is much
more laborious to implement a web application that has
good support for accessibility.

4) Lack of HTML. One of the best features of HTML
and CSS is that web pages can be designed and even
written by graphical designers. In single page web ap-
plications, with heavy use of JavaScript, this becomes
impossible. The user interface must be implemented by
a software developer.

6 Related Work
As mentioned earlier, our approach embraces many of
the existing methods and patterns. We now briefly de-
scribe some of these existing approaches and underline
how our solution stands out among them.

6.1 MVC in Web Applications
While there are other approaches into building web ap-
plications – such as continuations [6, 13] – the MVC
pattern is the one adopted by most of the popular web
frameworks today. There has been a lot of research on
how to implement the MVC pattern in the realm of web
applications. Specifically, [12] defines and discusses all
the different scenarios of how the MVC pattern can be
implemented in web applications. The paper elaborates
on how the MVC pattern should be incorporated by Rich
Internet Applications (RIAs). It is also their conclusion
that while the components of MVC may be distributed
differently in different types of applications, for RIAs, it
is best to implement the full MVC stack in the browser.

Another paper [10] suggests a dynamic approach of
distributing the components of MVC between the client
and the server. This is accomplished through a method
called flexible web-application partitioning (fwap) and
it allows for different partitioning schemes without any
modifications to the code. For example, depending on
the use case it may be appropriate to sometimes deploy
controller on the server while at other times it is best to
have it in the browser.

However, for all the popular MVC web frameworks –
such as Struts, Rails or ASP .Net MVC – the term MVC
always refers to the traditional way of partitioning web
applications (as described in Section 2). In this model
the whole MVC stack is implemented in the server and
the view is transferred into the browser after being gen-
erated in the server. Of course, the view may have dy-
namic features through the use of JavaScript and CSS
but it does not affect how the components of the MVC
are laid out.

6.2 RESTful Web Services
For a web site that supports both browser based user
interface and programmable API, it is common to
have, indeed, two separate interfaces for these purposes.
Good examples are Netflix (http://www.netflix.com/)
and del.icio.us (http://del.icio.us/) which both have sepa-
rate interfaces for browser and other clients. Usually the



interface accessed by the browser is so tightly coupled
to the application flow that it would be very difficult for
programmatic clients to consume it. Therefore a sepa-
rate API interface is required. This API can then be a
pure RESTful API that is looking at the same data as the
browser interface.

There also seems to be confusion in the terminology
when REST is being discussed in the context of web ap-
plications. It is often assumed that a web application is
RESTful if the URLs in the browser’s address bar look
readable and intuitive. While this is a good thing, it does
not mean that the web application itself is being REST-
ful. Also it does not mean that interface would be easy
to consume by programmatic clients.

6.3 Mashup Applications
Mashups are fairly good good example of building web
applications according to the partitioned pattern de-
scribed in this paper. Mashup applications indeed de-
couple the user interface from the third party server side
implementations. They use services that are accessible
without predefined application flow to create new kinds
of applications: services are agnostic about their clients
and clients use services as they see best fit.

However, mashups fall into slightly different category
than what is the focus of this paper. Even though mashup
applications consume external service APIs, the applica-
tions themselves may be implemented in the traditional,
tightly coupled, way while only using external services
for some parts of the application. The focus of this pa-
per is to represent a pattern for building complex web
applications and provide experiences in doing so.

6.4 Comparing Our Approach
What differentiates our approach from these existing so-
lutions is that we clearly assign the whole MVC stack
into the browser. Moreover if the application does not
need any services provided by the server that becomes
the whole application. At the minimum however, there
is usually some kind of persistent data that the appli-
cation needs and for that it uses the RESTful service.
Of course, it depends on the application, how many and
what kind of services it consumes. In any case the state
of the application and even the application logic – as
much as possible – stays in the browser.

Another distinctive feature in our approach is provid-
ing a single interface for both applications running in
the browser and programmatic clients accessing the in-
terface from various environments. This explicitly de-
couples the application running in the browser from the
server side implementation because the same interface
must be consumable by other clients too. Therefore, in
the interface, there cannot be any customizations or as-
sumptions made about the browser side application.

7 Future Work
The most important part of future work is the design
and implementation of a unified and more coherent au-
thentication and authorization scheme. Currently, the
Valvomo service API supports traditional cookie based
authentication for browser clients and two legged OAuth
[2] for programmatic clients. The authorization, in turn,
is implemented somewhat specifically for each use case.
The next research topic for will be finding out what is
best way to implement authentication so that the same
method works for both the browser clients and the na-
tive clients. More importantly, this should be done with-
out cookies. As part of this investigation we also seek to
find a generic solution for implementing authorization
of resources. Right now, it seems that some kind of Role
Based Access Control that can be defined per resource
might be suitable.

Another subject for future work is implementing the
Valvomo service API using node.js or another server
side JavaScript framework that conforms to the Com-
monJS specification. Running JavaScript on both sides
of the application would provide a more uniform devel-
opment environment and enable better code reuse be-
cause we would be able to share code like domain ob-
jects, validators, utility libraries and test cases.

8 Conclusions
The high demand for feature rich web applications have
made them very complex to develop and eventually diffi-
cult to maintain. The gradual shift from static web pages
into dynamic web applications has created an unnatural
development environment for them. We need to rethink
how these complex web application should be developed
and run.

In this paper we have presented our experiences in
partitioned way of building complex and feature rich
web applications. This pattern advises into breaking
the application clearly in two parts: the client and the
server. To make the division unambiguous and explicit
the server interface should be implemented as a REST-
ful web service. Browser based clients on the other hand
should be implemented as single page web applications
to maximize interactivity and responsiveness of the user
interface.

To prove the usefulness of the suggested pattern we
have utilized it in a large scale industrial application.
The experiences of this undertaking are presented in sec-
tion 5.

References
[1] Django. http://www.djangoproject.com/, 2011.
[2] Oauth. http://oauth.net/, 2011.
[3] Ruby on rails. http://rubyonrails.org/, 2011.
[4] Sencha. http://www.sencha.com/, 2011.



[5] The spring framework. http://www.springsource.
org/, 2011.

[6] DUCASSE, S., LIENHARD, A., AND RENGGLI, L. Seaside:
A flexible environment for building dynamic web applications.
IEEE Softw. 24 (September 2007), 56–63.

[7] EVANS. Domain-Driven Design: Tacking Complexity In the
Heart of Software. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2003.

[8] FIELDING, R., GETTYS, J., MOGUL, J., FRYSTYK, H., MAS-
INTER, L., LEACH, P., AND BERNERS-LEE, T. Hypertext
Transfer Protocol – HTTP/1.1. RFC 2616 (Draft Standard), June
1999. Updated by RFC 2817.

[9] KRASNER, G., AND POPE, S. A cookbook for using the model-
view controller user interface paradigm in smalltalk-80. J. Object
Oriented Program. 1, 3 (1988), 26–49.

[10] LEFF, A., AND RAYFIELD, J. T. Web-application develop-
ment using the model/view/controller design pattern. Enterprise
Distributed Object Computing Conference, IEEE International 0
(2001), 0118.

[11] MIKKONEN, T., AND TAIVALSAARI, A. Web applications ?
spaghetti code for the 21st century. Software Engineering Re-
search, Management and Applications, ACIS International Con-
ference on 0 (2008), 319–328.

[12] MORALES-CHAPARRO, R., L. M. P. J. C., AND SÁNCHEZ-
FIGUEROA, F. Mvc web design patterns and rich internet appli-
cations. In Proceedings of the Conference on Engineering Soft-
ware and Databases (2007).

[13] QUEINNEC, C. Continuations and web servers. Higher Order
Symbol. Comput. 17 (December 2004), 277–295.

[14] RICHARDSON, L., AND RUBY, S. RESTful Web Services.
O’Reilly, 2007.

[15] RUDERMAN, J. The same origin policy, 2001.
[16] SOUDERS, S. High performance web sites, first ed. O’Reilly,

2007.
[17] SOUDERS, S. Even Faster Web Sites: Performance Best Prac-

tices for Web Developers, 1st ed. O’Reilly Media, Inc., 2009.


