
Secure Data Preservers for Web Services

Jayanthkumar Kannan
Google Inc.

Petros Maniatis
Intel Labs

Byung-Gon Chun
Yahoo! Research

Abstract
We examine a novel proposal wherein a user who hands off her
data to a web service has complete choice over the code and
policies that constrain access to her data. Such an approach is
possible if the web service does not require raw access to the
user’s data to implement its functionality; access to a carefully
chosen interface to the data suffices.

Our data preserver framework rearchitects such web services
around the notion of a preserver, an object that encapsulates
the user’s data with code and policies chosen by the user. Our
framework relies on a variety of deployment mechanisms, such
as administrative isolation, software-based isolation (e.g., virtual
machines), and hardware-based isolation (e.g., trusted platform
modules) to enforce that the service interacts with the preserver
only via the chosen interface. Our prototype implementation il-
lustrates three such web services, and we evaluate the cost of pri-
vacy in our framework by characterizing the performance over-
head compared to the status quo.

1 Introduction
Internet users today typically entrust web services with
diverse data, ranging in complexity from credit card
numbers, email addresses, and authentication credentials,
to datasets as complex as stock trading strategies, web
queries, and movie ratings. They do so with certain ex-
pectations of how their data will be used, what parts will
be shared, and with whom they will be shared. These
expectations are often violated in practice; the Dataloss
database [1] lists 400 data loss incidents in 2009, each of
which exposed on average half a million customer records
outside the web service hosting those records.

Data exposure incidents can be broadly categorized into
two classes: external and internal. External violations oc-
cur when an Internet attacker exploits service vulnerabil-
ities to steal user data. Internal violations occur when a
malicious insider at the service abuses the possession of
user data beyond what the user signed up for, e.g., by sell-
ing customer marketing data. 65% of the aforementioned
data-exposure incidents are external, while about 30% are
internal (the remainder have no stated cause).

The impact of such data exposure incidents is exacer-
bated by the fact that data owners are powerless to pro-
actively defend against the possibility of abuse. Once a
user hands off her data to a web service, the user has given
up control over her data irreversibly; “the horse has left
the barn” forever and the user has no further say on how

her data is used and who uses it.
This work introduces a novel proposal that restores con-

trol over the user’s data to the user; we insist that any code
that needs to be trusted by the user and all policies on how
her data is accessed are specified by her. She need not rely
on the web service or any of its proprietary code for per-
forming access control over her data; the fate of her data is
completely up to her. The user is free to choose code from
any third party (e.g., an open source repository, or a se-
curity company) to serve as her software trusted comput-
ing base; she need not rely on a proprietary module. This
trust can even be based on a proof of correctness (e.g.,
Proof Carrying Code [20]). Further, any policies pertain-
ing to how her data is stored and accessed (e.g., by whom,
how many times) are under her control. These properties
of personalizable code and policies distinguish us from
currently available solutions.

At first look, personalizable trust looks difficult to
achieve: the web service may have arbitrary code that re-
quires access to the user’s data, but such code cannot be
revealed publicly and the user cannot be allowed to choose
it. However, for certain classes of web services where the
application does not require access to the raw data and a
simple interface suffices, such personalizable trust is pos-
sible. We will show later that for several classes of web
services such restricted access is sufficient.

For such services, it is possible to enforce the use of a
well-defined, access-controlled interface to user data. For
example, a movie recommendation service that requires
only statistical aggregates of a user’s movie watching his-
tory need never access the user’s detailed watching his-
tory. To provide such enforcement, we leverage the idea
of preserving the user’s own data with code and policy
she trusts; we refer to such a preserved object as a secure
data preserver (see Figure 1).

One could imagine a straightforward implementation of
the secure data preserver (SDaP) approach that serves the
user’s data via the interface from a trusted server (say the
user’s home machine, or a trusted hosting service). Un-
fortunately, this solution has two main drawbacks. First,
placing user data at a maximally isolated hosting service
may increase provisioning cost and access latency, and
reduce bandwidth, as compared to the status quo which
offers no isolation guarantees. Second, even when data
placement is explicitly decided by a particular business

is
o

la
ti

o
n

b
o

u
n

d
a

ry

(a) Service +
User Data

(b) Service + Preserver

Service

Service
Code

OS
HW

User
Data

Service

Service Code

OS
HW

Data
Interface

Preserver

Preserver
Code

User
Data

access
control

Figure 1: The SDaP approach.

model—for instance, charging services such as Google
Checkout that store user data at Google’s data centers—
the user control available may be lacking: Google Check-
out only offers a simple, click-to-pay interface, leaving the
user with limited access-control options.

In this work, we explore a general software architec-
ture to enable the use of preservers by users and web ser-
vices. Our architecture has three salient features. First,
it supports flexible placement and hosting decisions for
preservers to provide various trade-offs between perfor-
mance, cost, and isolation. Apart from the options of host-
ing the preserver at a client’s machine or at a trusted
third party, our framework introduces the colocation op-
tion; the preserver can be hosted securely at the service
itself by leveraging a trusted hardware or software mod-
ule (e.g., in a separate virtual machine). This colocation
option presents a different trade-off choice; higher perfor-
mance, zero provisioning cost on part of the user, and the
involvement of no third parties. Second, we provide a pol-
icy layer around the available data placement mechanisms
with two purposes: to mediate interface access so as to
enable fine-grained control even for coarse-grained inter-
faces, and to mediate data placement so as to fit the user’s
desired cost, isolation, and performance goals. Third, we
offer preserver transformation mechanisms that reduce
the risk of data exposure (by filtering raw data) or increase
anonymity (by aggregating data with those of other users).

We evaluate SDaPs experimentally in a prototype that
implements three applications with diverse interface ac-
cess patterns: day-trading, targeted advertising, and pay-
ment. We evaluate these applications along a spectrum of
placement configurations: at the user’s own computer or
at a trusted third party (TTP), offering maximum isolation
from the service but worst-case performance, and at the
service operator’s site, isolated via virtualization, offering
higher performance. The isolation offered by client- or
TTP-hosted preservers comes at the cost of Internet-like
latencies and bandwidth for preserver access (as high as
1 Gbps per user for day-trading). Our current virtual ma-
chine monitor/trusted platform module based colocation
implementation protects against external threats; it can be
extended to resist internal threats as well by leveraging se-
cure co-processors using standard techniques [32]. Colo-

cation offers significantly better performance than off-site
placement, around 1 ms interface latency at a reason-
able storage overhead (about 120 KB per user). Given the
growing cost of data exposure (estimated to be over 200
dollars per customer record [22]), these overheads may be
an acceptable price for controls over data exposure, espe-
cially for financial and health information.

While we acknowledge that the concept of encapsula-
tion is itself well-known, our main contributions in this
work are: (a) introducing the principle of interface-based
access control in the context of web services, and demon-
strating the wide applicability of such a model, (b) in-
troducing a new colocation model to enforce such access
control, (c) design of a simple yet expressive policy lan-
guage for policy control, and (d) an implementation that
demonstrates three application scenarios.

Our applicability to a service is limited by three factors.
First, SDaPs make sense only for applications with sim-
ple, narrow interfaces that expose little of the user data.
For rich interfaces (when it may be too optimistic to hope
for a secure preserver implementation) or interfaces that
may expose the user’s data directly, information flow con-
trol mechanisms may be preferable [12, 24, 27, 33]. Sec-
ond, we do not aim to find appropriate interfaces for ap-
plications; we limit ourselves to the easier task of help-
ing a large class of applications that already have such
interfaces. Third, we recognize that a service will have
to be refactored to accommodate strong interfaces to user
data, possibly executing locally preserver code written
elsewhere. We believe this is realistic given the increas-
ing support of web services for third-party applications.

The rest of the paper is structured as follows. Section 2
refines our problem statement, while Sections 3 and 4
present an architectural and design overview respectively
of our preserver framework. We discuss our implementa-
tion in Section 5 and evaluate its performance and security
in Section 6. We then present related work in Section 7
and conclude in Section 8.

2 The User-Data Encapsulation Problem
In this section, we present a problem statement, including
assumptions, threat models we target, and the deployment
scenarios we support. We then present motivating appli-
cation scenarios followed by our design goals.

2.1 Problem Statement

Our goal is to rearchitect web services so as to isolate user
data from service code and data. Our top priority is to pro-
tect user data from abusive access; we define as abusive
any access that violates a well-defined, well-known inter-
face, including unauthorized disclosure or update. We aim
for the interface to be such that the data need never be
revealed directly and policies can be meaningfully spec-
ified on its invocation; we will show such interfaces can

be found for a variety of services. A secondary priority is
to provide reasonable performance and scalability. Given
a chosen interface, our security objective is to ensure that
any information revealed to a service is obtainable only
via a sequence of legal interface invocations. This sig-
nificantly limits an adversary’s impact since the interface
does not expose raw data; at best, she can exercise the in-
terface to the maximum allowed by the policies.

It is important to clarify the scope of our work. First,
we assume that an interface has been arrived at for a ser-
vice that provides the desired privacy to the user; we do
not verify that such an interface guarantees the desired pri-
vacy, or automate the process of refactoring existing code.
Second, we assume that a preserver implementation car-
ries out this interface correctly without any side channels
or bugs. We aim for simple narrow interfaces to make cor-
rect implementation feasible.

2.2 Threat Model

The threat model we consider is variable, and is chosen by
the user. We distinguish three choices, of increasing threat
strength. A benign threat is one caused by service miscon-
figuration or buggy implementation (e.g., missing access
policy on an externally visible database, insecure cookies,
etc.), in the absence of any malice. An external adversar-
ial threat corresponds to an Internet attacker who exploits
software vulnerabilities at an otherwise honest service. An
internal adversarial threat corresponds to a malicious in-
sider with physical access to service infrastructure.

We make standard security assumptions. First, trusted
hardware such as Trusted Platform Modules (TPM [5])
and Tamper Resistant Secure Coprocessors (e.g., IBM
4758 [11]) provide their stated guarantees (software attes-
tation, internal storage, data sealing) despite software at-
tacks; tamper-resistant secure coprocessors can also with-
stand physical attacks (e.g., probes). Second, trusted hy-
pervisors or virtual machine monitors (e.g., Terra [13],
SecVisor [25]) correctly provide software isolation among
virtual machines. Third, a trusted hosting service can be
guaranteed to adhere to its stated interface, and is resis-
tant to internal or external attacks. Finally, we assume
that standard cryptography works as specified (e.g., ad-
versaries cannot obtain keys from ciphertext).

2.3 Deployment Scenario

We aim to support three main deployment scenarios
corresponding to different choices on the performance-
isolation trade-off.

The closest choice in performance to the status quo with
an increase in isolation keeps user data on the same ser-
vice infrastructure, but enforces the use of an access in-
terface; we refer to this as colocation. Typical software
encapsulation is the simplest version of this, and protects
from benign threats such as software bugs. Virtualization

via a secure hypervisor can effectively enforce that isola-
tion even for external attacks that manage to execute at the
privilege level of the service. Adding attestation (as can be
provided by TPMs for instance) allows an honest service
to prove to clients that this level of isolation is maintained.
However, internal attacks can only be tolerated with the
help of tamper-resistant secure co-processors. Though our
design focuses primarily on the colocation scenario, we
support two other deployment options.

The second deployment option is the trusted third party
(TTP) option; placing user data in a completely sepa-
rate administrative domain provides the greatest isolation,
since even organizational malfeasance on the part of the
service cannot violate user-data interfaces. However, ad-
ministrative separation implies even further reduced inter-
face bandwidth and timeliness (Internet-wide connections
are required). This scenario is the most expensive for the
user, who may have to settle for existing types of data
hosting already provided (e.g., use existing charging ser-
vices via their existing interfaces), rather than springing
for a fully customized solution. The third deployment op-
tion offers a similar level of isolation and is the cheapest
(for the user); the user can host her data on her own ma-
chine (the client-side option). Performance and availabil-
ity are the lowest due to end-user connectivity.

2.4 Usage Idioms

The requirement of a suitable interface is fundamental to
our architecture; we now present three basic application
idioms for which such interface-based access is feasible
to delineate the scope of our work.
Sensitive Query Idiom: Applications in this idiom are
characterized by a large data stream offered by the service
(possibly for a fee), on which the user wishes to evaluate
a sensitive query. Query results are either sent back to the
user and expected to be limited in volume, or may result
in service operations. For example, in Google Health, the
user’s data is a detailed list of her prescriptions and dis-
eases, and the service notifies her of any information relat-
ing to these (e.g., a product recall, conflict of medicines).
In applications of this idiom, an interface of the form Re-
portNewDatum() is exported by the user to the service; the
service invokes this interface upon arrival of a new datum,
and the preserver is responsible for notifying the user of
any matches or initiating corresponding actions. Notifica-
tions are encrypted and the preserver can batch them up,
push them to the user or wait for pulls by the user, and
even put in fake matches. Other examples include stock-
trading, Google News Alerts etc.
Analytics on Sensitive Data Idiom: This idiom is char-
acterized by expensive computations on large, sensitive
user datasets. The provider executes a public algorithm
on large datasets of a single user or multiple users, return-
ing results back to the user, or using the results to offer a

particular targeted service. Examples include targeted ad-
vertising and recommendation services. In targeted adver-
tising, an activity log of a set of users (e.g., web visit logs,
search logs, location trajectories) are mined to construct
a prediction model. A slim interface for this scenario is a
call of the form SelectAds(ListOfAds) which the preserver
implements via statistical analysis.
Proxying Idiom: This idiom captures functionality whose
purpose is to obtain the help of an external service. The
user data in this case has the flavor of a capability for ac-
cessing that external service. For instance, consider the
case when a user hands her credit card number (CCN) to
a web service. If we restructure this application, an in-
terface of the form Charge(Amount, MerchantAccount)
would suffice; the preserver is responsible for the ac-
tual charging, and returning the confirmation code to the
merchant. Other examples include confiding email ad-
dresses to websites, granting Facebook access to Gmail
username/password to retrieve contacts, etc.
Data Hosting Non-idiom: For the idioms we discussed,
the interface to user data is simple and narrow. To bet-
ter characterize the scope of our work, we describe here a
class of applications that do not fit within our work. Such
applications rely on the service reading and updating the
user’s data at the finest granularity. Examples are collab-
orative document-editing services (e.g., Google Docs) or
social networking services (e.g., Facebook itself, as op-
posed to Facebook Apps, which we described above).
Applications in the hosting idiom are better handled by
data-centric—instead of interface-centric—control mech-
anisms such as information flow control (e.g., XBook
[27]) or end-to-end encryption (e.g., NOYB [14]).

2.5 Design Goals

Based on the applications we have discussed so far, we
present our basic design goals:
Simple Interface: A user’s data should be accessed only
via a simple, narrow interface. The use of such inter-
faces is the key for allowing the user the flexibility to
choose code from any provider that implements an inter-
face, while offering confidence that said code is correct.
Flexible Deployment: Flexible interposition of the
boundary between the user’s data and the web service is
necessary so that users and services can choose a suitable
deployment option to match isolation requirements, at a
given performance and cost budget.
Fine-grained Use Policy: Even given an interface, dif-
ferent uses may imply different permissions, with dif-
ferent restrictions. For example, a user may wish to use
the Google Checkout service but impose restrictions on
time-to-use and budget. As a result, we aim to allow fine-
grained and flexible user control over how the interface to
a user’s data is exercised.
Trust But Mitigate Risk: Enforced interfaces are fine,

Data Layer

User Data

P3

Policy Engine

Base Layer

Preserver1Service

OS

Service

Client

Install

P2

Interface

Install/xform/agg

Host Facilities H H

H
o
s
t

H
u
b

Invoke

Service
Data

Policy Data

Figure 2: The SDaP architecture.

but even assumptions on trusted mechanisms occasion-
ally fail—in fact, we would not be discussing this topic
without this painful truth. As a result, risk mitigation on
what may be exposed even if a trusted encapsulation of
a user’s data were to be breached is significant. This is
particularly important for multi-service workflows, where
typically only a small subset of the raw user data or an
anonymized form of raw user data need be provided to a
subordinate service. For example, consider an advertising
service that has access to all of a user’s purchase history; if
that service delegates the task of understanding the user’s
music tastes to a music recommendation service, there is
no reason to provide the recommendation service with all
history, but only music-related history.

3 Preserver Architecture

In this section, we present the software components of
the architecture, followed by an operational overview that
shows their interaction.

3.1 Components

Figure 2 shows a preserver (Preserver1) that serves a
user’s data to the service via a chosen interface; P2, P3

are preservers derived from Preserver1 through hosting
transfers or transformations. The three main components
of a preserver are shown within Preserver1. The data
layer is the data-specific code that implements the re-
quired interface. The policy engine vets interface invoca-
tions per the user’s policy stored alongside the user’s data
as policy data. Finally, the base layer coordinates these
two components, and is responsible for: (a) interfacing
with the service, (b) implementing the hosting protocol,
and (c) invoking any required data transformations along-
side hosting transfers. The base layer relies on host facil-
ities for its interactions with the external world (such as
network access). At the service side, the host hub module
runs alongside the service. It serves as a proxy between
the service code and the preserver, and allows us to de-
couple the particular application from the details of inter-
actions with the preserver.

3.2 Operational View

The lifecycle of a preserver consists of installation, fol-
lowed by any combination of invocations, hosting trans-
fers, and transformations. We give an overview of these;
our design section discusses them in detail.

A user who wishes to use preservers to protect her data
when stored at a service, picks a preserver implementa-
tion from third party security companies (e.g., Symantec)
that exports an interface suitable for that kind of data. Or,
she may pick one from an open-source repository of pre-
server implementations, or purchase one from an online
app-store. Another option is for the service itself to offer a
third-party audited preserver which the user may trust. For
such a rich ecosystem of preserver implementations, we
envision that APIs suitable for specific kinds of data will
eventually be well-defined for commonly used sensitive
information such as credit card numbers (CCNs), email
addresses, web histories, and trading strategies. Services
that require use of a specific kind of data can support such
an API, which can then be implemented by open-source
reference implementations and security companies. The
evolution of APIs like OpenSocial [3] are encouraging in
this regard. Once the user picks a preserver implemen-
tation, she customizes it with policies that limit where
her data may be stored and who may invoke it. We envi-
sion that users will use visual interfaces for this purpose,
which would then be translated to our declarative policy
language. Once customization is done, the user initiates
an installation process by which the preserver is hosted
(at TTP/client/service as desired) and the association be-
tween the service and the preserver established.

We discussed needed changes from the user’s perspec-
tive; we now turn to the service’s side. First, a service has
to modify its code to interact with the preserver via a pro-
grammatic interface, instead of accessing raw data. Since
web service code is rewritten much more frequently than
desktop applications and is usually modular, we believe
this is feasible. For instance, in the case of our charging
preserver, the required service-side modifications took us
only a day. Second, services need to run third-party pre-
server code for certain deployment options (colocation,
preserver hosted on isolated physical infrastructure within
the service). We believe this does not present serious secu-
rity concerns since preserver functionality is very limited;
preservers can be sandboxed with simple policies (e.g.,
allow network access to only the payment gateway, al-
low no disk access). A service can also insist that the pre-
server be signed from a set of well-known security com-
panies. The overhead of preserver storage and invocation
may also hinder adoption by services. Our evaluation sec-
tion (Section 6) measures and discusses the implications
of this overhead; this overhead amounts to the cost of data
isolation in our framework.

Once the association between a service and a preserver

is established, the service can make invocation requests
via its host hub; these requests are dispatched to the
base layer, which invokes the policy engine to determine
whether the invocation should be allowed or not. If al-
lowed, the invocation is dispatched to the data layer and
the result returned. A service makes a hosting transfer re-
quest in a similar fashion; if the policy engine permits the
transfer, the base layer initiates a hosting transfer protocol
and initiates any policy-specified transformations along-
side the transfer.
Interaction between Base Layer and Host Hub: The
mechanics of interaction between the host hub (running
alongside the service code) and the base layer (at the pre-
server) depends on the deployment scenario. If the pre-
server is hosted at a TTP or at the client, then this com-
munication is over the network, and trust is guaranteed
by the physical isolation between the preserver and the
service. If the preserver is co-located at the service, then
communication is achieved via the trusted module at the
service site (e.g., Xen hypercalls, TPM late launch, se-
cure co-processor invocation). The base layer requires the
following functionality from such a trusted module: (a)
isolation, (b) non-volatile storage, which can be used for
anti-replay protection, (c) random number generation, and
(d) remote attestation (we will argue in Section 6.3 that
these four properties suffice for the security of our frame-
work; for now, we note they are provided by all three trust
modules we consider).

Details about base layers, policy engines, and aggre-
gation modules follow in the next section; here we focus
on the two roles of the host hub. The first is to serve as
a proxy for communication to/from the preserver from/to
the service. The second role applies only to colocation;
it provides host facilities, such as network access, to the
preserver. This lets the preserver leverage such function-
ality without having to implement it, considerably sim-
plifying the implementation. The host hub runs within
the untrusted service, but this does not violate our trust,
since data can be encrypted if desired before any network
communication via the host hub. The host hub currently
provides three services: network access, persistent stor-
age, and access to current time from a trusted remote time
server (useful for time-bound policies).

4 Design
This section presents the design of two key components
of the preserver: the policy engine and the data transfor-
mation mechanisms. We discuss the policy engine in two
parts: the hosting policy engine (Section 4.1) and the in-
vocation policy engine (Section 4.2). We then discuss data
transformations (Section 4.3).

The main challenge in designing the policy layer is to
design a policy language that captures typical kinds of
constraints (based on our application scenarios), whilst

enabling a secure implementation. We make the design
decision of using a declarative policy language that pre-
cisely defines the set of allowed invocations. Our lan-
guage is based on a simplified version of SecPAL [7] (a
declarative authorization policy language for distributed
systems); we reduced SecPAL’s features to make simpler
its interpreter, since it is part of our TCB.

4.1 Preserver Hosting

We introduce some notation before discussing our host-
ing protocol. A preserver C storing user U ’s data and res-
ident on a machine M owned by principal S is denoted
as CU@[M,S]; the machine M is included in the nota-
tion since whether C can be hosted at M can depend on
whetherM has a trusted hardware/software module. Once
a preserver C (we omit U, S,M when the preserver re-
ferred to is clear from the context) has been associated
with S, it will respond to invocation requests per any con-
figured policies (denoted by P (C); policies are sent along
with the preserver during installation). S can also request
hosting transfers fromC’s current machine to one belong-
ing to another service (for inter-organizational transfers)
or to one belonging to S (say, for replication). If this trans-
fer is concordant with the preserver’s hosting policy, then
the hosting protocol is initiated; we discuss these next.
Hosting Policy: We wish to design a language flexible
enough to allow a user to grant a service S the right
to host her data based on: (a) white-lists of services,
(b) trusted hardware/software modules available on that
service, and (c) delegating the decision to a service. We
show an example below to illustrate the flavor of our
language.
(1) alice SAYS CanHost(M) IF OwnsMa-
chine(amazon,M)
(2) alice SAYS CanHost(M) IF TrustedService(S),
OwnsMachine(S,M), HasCoprocessor(M)
(3) alice SAYS amazon CANSAY TrustedService(S)

We use a lower-case typewriter font to indicate prin-
cipals like Alice (the user; a principal’s identity is estab-
lished by a list of public keys sent by the user or by a
certificate binding its name to a public key), capitals to
indicate language keywords, and mixed-case for indicat-
ing predicates. A predicate can either be built-in or user-
defined. The predicate OwnsMachine(S,M) is a built-in
predicate that is true if S acknowledges M as its own
(using a certificate). The predicates HasCoprocessor(M),
HasTPM(M), HasVMM(M) are built-in predicates that are
true if M can prove that it has a co-processor / TPM /
VMM respectively using certificates and suitable attesta-
tions. The user-defined predicate CanHost(M) evaluates to
true if machine M can host the user’s preserver. The user-
defined predicate TrustedService(S) is a helper predicate.

The first rule says that alice allows any machine M
to host her preserver, provided amazon certifies such a

machine. The second rule indicates alice allows ma-
chine M to host her preserver if (a) S is a trusted ser-
vice, (b) S asserts that M is its machine, and (c) M has
a secure co-processor. The third rule allows amazon to
recommend any service S as a trusted service.

A hosting request received at CU@[M,S] has three pa-
rameters: the machine M ′ to which the transfer is re-
quested, the service S′ owning machine M ′, and a set
of assertions PHR. The set of assertions PHR are pre-
sented by the principal in support of its request; it may
include delegation assertions (such as “S SAYS S’ Can-
Host(X)”) and capability assertions (such as “CA SAYS
HasTPM(M’)”). When such a request is received by
CU@[M,S], it is checked against its policy. This involves
checking whether the fact “U SAYS CanHost(M’)” is
derivable from P (C)∪PHR per SecPAL’s inference rules.
If so, then the hosting protocol is initiated.
Hosting Protocol: The hosting protocol forwards a pre-
server from one machine M to another M ′. The transfer
of a preserver to a TTP is done over SSL; for colocation,
the transfer is more complex since the protocol should first
verify the presence of the trusted module on the service
side. We rely on the attestation functionality of the trusted
module in order to do so.

The goal of the hosting protocol is to maintain the
confidentiality of the preserver during its transfer to the
service side, whilst verifying the presence of the trusted
module. We achieve this by extending the standard Diffie-
Hellman key-exchange protocol:

• Step 1: M →M ′: (g, p, A), N
• Step 2: M ′ →M : B, Attestation[M ′, BaseLayer,
N, (g, p,A), B]

• Step 3: M →M ′: {CU@[M,S]}DHK

Here, (g, p,A = ga mod p) and B = gb mod p are from
the standard Diffie-Hellman protocol, and DHK is the
Diffie-Hellman key (generated asAb mod p =Ba mod p).
This protocol only adds two fields to the standard proto-
col: the nonce N and the attestation (say, from a Trusted
Platform Module) that proves that the base layer gener-
ated the value B in response to ((g, p, A), N). Thus, the
security properties of the original protocol still apply. The
attestation is made with an attestation identity key M ′;
this key is vouched for by a certification authority as be-
longing to a trusted module (e.g., TPM). The attestation
guarantees freshness (since it is bound to N), and rules
out tampering on both the input and output.

At the completion of the exchange, the base layer at
M ′ de-serializes the transferred preserver C ′

U@[M ′, S′].
At this point, the preserver C ′ is operational; it shares the
same data asC and is owned by the same userU . After the
transfer, we do not enforce any data consistency between
C and C ′ (much like the case today; if Amazon hands out
a user’s purchase history to a third party, it need not update

it automatically). A user or service can notify any such de-
rived preservers and update them, but this is not automatic
since synchronous data updates are typically not required
across multiple web services.

4.2 Preserver Invocation Policy

An invocation policy allows the user to specify constraints
on the invocation parameters to the preserver interface.
Our policy language supports two kinds of constraints:
stateless and stateful.

Stateless constraints specify conditions that must
be satisfied by arguments to a single invocation of a
preserver, e.g., “never charge more than 100 dollars in
a single invocation”. We support predicates based on
comparison operations, along with any conjunction or
disjunction operations. Stateful constraints apply across
several invocations; for example, “no more than 100
dollars during the lifetime of the preserver”; such con-
straints are useful for specifying cumulative constraints.
For instance, users can specify a CCN budget over a time
window. We present an excerpt below.
(1) alice SAYS CanInvoke(amazon, A) IF LessThan(A,50)
(2) alice SAYS CanInvoke(doubleclick, A)
IF LessThan(A,Limit), Between(Time, “01/01/10”,”01/31/10”)
STATE (Limit = 50, Update(Limit, A))
(3) alice SAYS amazon CANSAY CanInvoke(S,A)
IF LessThan(A,Limit)
STATE (Limit = 50, Update(Limit, A))

The first rule gives the capability “can invoke up to
amount A” to Amazon as long as A < 50. The second
rule shows a stateful example; the semantics of this rule is
that DoubleClick is allowed to charge up to a cumulative
limit of 50 during Jan 2010. The syntax for a stateful pol-
icy is to annotate state variables with the STATE keyword.
This policy has a state variable called Limit set to 50 ini-
tially. The predicate Update(Limit,A) is a built-in update
predicate that indicates if this rule is matched, then the
Limit should be updated with the amount A. When a rule
is matched with a state keyword, it is removed from the
policy database, any state variables (e.g., Limit) suitably
updated, and the new rule inserted into the database. This
usage idiom is similar to SecPAL’s support for RBAC dy-
namic sessions. The alternative is to move this state out-
side the SecPAL policy, and house it within the preserver
functionality; we avoid this so that the policy implemen-
tation is not split across SecPAL and the preserver imple-
mentation. The third rule is very similar to the second rule;
however, this rule is matched for any principal to which
Amazon has bestowed invocation rights. This means that
the limit is enforced across all those invocations; this is
exactly the kind of behavior a user would expect.

Transfer of Invocation Policies: We now discuss how
the invocation protocol interacts with the hosting proto-
col. During a hosting transfer initiated from CU@[M,S]
to C ′

U@[M ′, S′], C should ensure that C ′ has suitable

policy assertions P (C ′) so that the user’s policy spec-
ified in P (C) is not violated. To ensure this, any poli-
cies PHR specified by S′ during the hosting request are
added to P (C ′) to record the fact that C ′ operates un-
der that context. Second, any stateful policies need to
be specially handled, e.g., consider our third invocation
policy: the total budget across all third parties that are
vouched for by Amazon is 100 dollars. If this constraint
is to hold across both C ′ and any future C ′′ that might
be derived from C, then one option is to use C as a com-
mon point during invocation to ensure that this constraint
is never violated. However, this requires any transferred
preserver C ′ to communicate with C upon invocations.
This is undesirable, and further, such synchronization is
not required in most web service applications. Instead, we
leverage the concept of exo-leasing [26]. Decomposable
constraints (such as budgets, number of queries answered)
from P (C) are split into two sub-constraints; the original
constraint in P (C) is updated with the first, and the sec-
ond is added to P (C ′). For instance, a budget is split be-
tween the current preserver and the transferred preserver.
We currently only support additive constraints which can
be split in any user-desired ratio; other kinds of constraints
can be added if required.

4.3 Preserver Data Transformation

This section discusses how to provide users control over
data transformations. This is different from providing in-
vocation control; the latter controls operations invoked
over the data, and the former controls the data itself. We
refer to a preserver whose data is derived from a set of
existing preservers as a derivative preserver. We support
two data transformations towards aiding risk mitigation:
filtering and aggregation.
Filtering: A derivative preserver obtained by filtering has
a subset of the original data; for instance, only the web
history in the last six months. A preserver that supports
such transformations on its data exports an interface call
for this purpose; this is invoked alongside a hosting pro-
tocol request so that the forwarded preserver contains a
subset of the originating preserver.
Aggregation: This allows the merging of raw data from
mutually trusting users of a service, so that the service can
use the aggregated raw data, while the users still obtain
some privacy guarantees due to aggregation. A trusted ag-
gregator preserver can also improve efficiency in the sen-
sitive query idiom, since it enables a (private) index across
preservers, sparing them from irrelevant events. We refer
to the set of aggregated users as “data crowds” (inspired
by the Crowds anonymity system [23]). We describe what
user actions are necessary for enabling aggregation, and
then discuss how the service carries it out.

To enable aggregation, a user U instructs her preserver
CU@[M,S] to aggregate her data with a set of preservers

CU ′ [M ′, S] where U ′ is a set of users that she trusts. The
set of users U ′ form a data crowd. We envision that a user
U can discover such a large enough set of such usersU ′ by
mining her social network (for instance). During preserver
installation, each member U of the crowd C confides a
key KC shared among all members in the crowd to their
preserver. During installation, a user U ∈ C also notifies
the service of her willingness to be aggregated in a data
crowd identified by H(KA) (H is a hash function). S can
then identify the set of preservers CA belonging to that
particular data crowd using H(KA) as an identifier.

To aggregate, the service expects the preserver to sup-
port an aggregation interface call. This call requests the
preserver CU to merge with CU ′ and is a simple pair-wise
operation. These mergers are appropriately staged by the
service that initiates the aggregation. During the aggre-
gation operation of CU with CU ′ , preserver CU simply
encrypts its sensitive data using the shared key KA and
hands it off to U ′ along with its owner’s key. During this
aggregation, the resultant derivative preserver also main-
tains a list of all preservers merged into the aggregate
so far; preservers are identified by the public key of the
owner sent during installation. This list is required so as
to prevent duplicate aggregation; such duplicate aggrega-
tion can reduce the privacy guarantees. Once the count
of source preservers in an aggregated preserver exceeds a
user-specified constraint, the aggregate preserver can then
reveal its data to the service S. This scheme places the
bulk of the aggregation functionality upon the service giv-
ing it freedom to optimize the aggregation.

5 Implementation
Our implementation supports three deployments: TTP,
client-side, and Xen-based colocation. We plan to support
TPMs and secure co-processors using standard implemen-
tation techniques such as late launch (e.g., Flicker [18]).
We implement three preservers, one per idiom: a stock
trading preserver, a targeted ads preserver, and a CCN-
based charging preserver (we only describe the first two
here due to space constraints). We first describe our frame-
work, and then these preservers (details are presented in
our technical report [16]).
Preserver Framework: For TTP deployment, the net-
work isolates the preserver from the service. The colo-
cation deployment relies on Xen. We ported and extended
XenSocket [34] to our setup (Linux 2.6.29-2 / Xen 3.4-
1) in order to provide fast two-way communication be-
tween the web service VM and the preserver VM using
shared memory and event channels. The base layer imple-
ments policy checking by converting policies to DataLog
clauses, and answers queries by a simple top-down reso-
lution algorithm (described in SecPAL [7]; we could not
use their implementation since it required .NET libraries).
We use the PolarSSL library for embedded systems for

light-weight cryptographic functionality, since it is a sig-
nificantly smaller code base (12K) compared to OpenSSL
(over 200K lines of code); this design decision can be re-
visited if required. We use a TPM, if available, to verify
that a remote machine is running Xen using the Trousers
library. Note that we only use a TPM to verify the execu-
tion of Xen; we still assume that Xen isolates correctly.
Stock Trading Preserver: We model our stock preserver
after a feature in a popular day trading software, Sierra
Chart [4] that makes trades automatically when an incom-
ing stream of ticker data matches certain conditions. This
preserver belongs to the query idiom and exports a sin-
gle function call TickerEvent (SYMBOL, PRICE) that re-
turns an ORDER(“NONE” /“BUY” / “SELL”, SYMBOL,
QUANTITY) indicating whether the preserver wishes to
make a trade and of what quantity. The preserver allows
the user to specify two conditions (which can be arbitrar-
ily nested boolean predicates with operations like AND,
OR, and NOT, and base predicates that consist of the cur-
rent price, its moving average, current position, and com-
parison operations): a “BUY” and a “SELL” condition.
Our implementation of predicate matching is straight-
forward; we apply no query optimizations, so our results
are only meaningful for comparison.
Targeted Advertising Preserver: We implemented two
preservers for targeted advertising (serving targeted ads
and building long-term models), both in the analytics id-
iom. They store the user’s browsing history and are up-
dated periodically (say, daily).

The first preserver is used for targeted advertising
for which we implemented two possible interfaces:
ChooseAd(List of Ads, Ad Categories) and GetInter-
estVector(). In the first, the preserver selects the ad to be
displayed using a procedure followed by web services to-
day (described in Adnostic [29]). In the second, the pre-
server extracts the user’s interest vector from her brows-
ing history, and then perturbs it using differential privacy
techniques (details are in our technical report [16]). This
preserver uses a stateful policy to record the number of
queries made (since information leak in interactive pri-
vacy mechanisms increases linearly with the number of
queries). The second preserver allows the service to use
any proprietary algorithm in serving ads since the fea-
ture vector, which summarizes a user’s detailed history,
is itself revealed after being appropriately perturbed with
noise. This preserver is used by the service to build long-
term models related to the affinity of users with specific
profiles to specific advertisements; our aggregation func-
tionality is of use here.

Based on these preservers, we estimate the typical
refactoring effort for a web service in adopting the pre-
server architecture. We do not have access to a stock bro-
ker’s code base, so our experience is based on the targeted
ads preserver and the CCN case. For the targeted ads case,

given the availability of client-side plugins like Adnostic
and PrivAd, we believe the refactoring effort will be min-
imal. In the CCN case, modifying the Zen shopping cart
[6] to interact with the preserver took us only a day.

6 Evaluation
In this section, we first present the performance evalua-
tion of our framework, followed by a security analysis.
Our performance evaluation has two goals. First, evaluate
the cost of isolation in our framework as the performance
overhead and provisioning cost of client-side / TTP / colo-
cation deployment, relative to the base case (no isolation).
Second compare various deployment options to determine
the ideal deployment for different workloads.
Experimental Scenarios: We consider three scenarios:
(a) the base case, (b) the TTP case, and (c) the Xen-based
colocation case. Since a TTP deployment is equivalent in
most respects to a client-side preserver, we discuss them
together. We compare these scenarios along three dimen-
sions of performance: setup cost, invocation cost, data
transformation cost. The term cost includes latency, net-
work bandwidth consumption, and storage cost. Of these,
the invocation cost is borne every time the user’s data is
accessed, and is thus the primary metric of comparison.
The setup cost is incurred only during the initial and sub-
sequent transfers of the user’s data (since this is an infre-
quent event, the details are omitted from this paper; they
are in our technical report [16]), while the transformation
cost, though not as frequent as invocation, may be signif-
icant if the aggregation involves data belonging to large
numbers of users. All results are reported over 100 runs.
For latency, we report the median and the 95% confidence
interval for the median; we report only the median for
bandwidth since it is much less variable.
Hardware Configuration: Our test server is a 2.67 GHz
quad core Intel Xeon with 5 GB memory. A desktop (Intel
Pentium4 1.8 GHz processor, 1 GB memory), on the same
LAN as the server, served as a TTP (or client). The band-
width between the server and this desktop was 10 Gbps
and the round-trip about 0.2 ms. To simulate a wide-area
network between the client/TTP and the service, we used
DummyNet [2] to artificially delay packets by a config-
urable parameter; the default round-trip is 10 ms.

6.1 The Cost of Isolation

We measured the performance metrics during invocation
and setup, and then examine provisioning requirements.
For these measurements, we used a dummy data layer
that accepts an invocation payload of a specific size and
returns a response of a specific size.
Invocation Costs: To examine the invocation cost across
different payload sizes, we plotted the latency as a func-
tion of payload size (varied in multiples of 2 from 256
bytes to 32 KB) in Figure 3(left). At 1 KB invocation

size, though the latency via Xen (1237µs) is about 800
µs worse compared to the base case (415µs), it is still sig-
nificantly lower compared to the TTP case (24.37ms). We
found considerable variation ranging from 900 to 4000µs
with a median of 1237µs; we believe this is related to the
Xen scheduling algorithm which may delay the execution
of the preserver VM. This plot shows that the overhead
added by Xen as a percentage of the base case declines,
while the network transfer time increases the latency for
the TTP case. In the TTP case, the latency is due to two
round-trips (one each for exchange of TCP SYN and SYN
ACKs, and the invocation), and network transfer time.
The traffic for the TTP case varies roughly linearly with
the size of the payload: 1.7 KB (for invocations of 256
bytes), 10 KB (4 KB), and 72 KB (32 KB); of course, in
the Xen case and the base case, no network communica-
tion is involved for invocation.
Provisioning Cost: We first estimate the colocation pro-
visioning cost and the monetary/provisioning costs for
TTP/client-side preservers.

Under colocation, preserver storage requires memory
and disk; our preserver code is about 400 KB (120 KB
compressed) from 100 SLOC. The overhead is due to
glibc which we plan to remove. We used the Difference
Engine [15] which finds similar pages across VMs to re-
duce memory costs; thus, the memory requirements for
the VMs of users who share the preserver code from the
same provider are significantly reduced. In our experi-
ments, we initially allocated 64 MB of memory to each
preserver VM, and then invoked a varying number of
client VMs with the same preserver. The Difference En-
gine saves us about 85% overall memory; the memory re-
quirement per preserver VM is about 10 MB (this estimate
was obtained by invoking 10 VMs, and then allowing time
for the detection of identical and similar memory pages).
At the current estimate of 10 MB per preserver, every 100
users require about 1 GB memory. We believe that this
can be reduced further since we do not use any kernel fa-
cilities; thus, the preserver can run directly on the VMM.

The trade-offs are different for TTP/client-side pre-
servers. The TTP shoulders the cost of availability and
performance. Web-service hosting (with unlimited band-
width) are about 10 − 15 dollars per month today; ex-
pectations are higher from a trusted service because of
the security risks, so one may expect a higher cost. In the
client-side preserver, availability and performance fall on
the user instead.

6.2 Performance of Various Preserver Deployments

We evaluated the stock trading preserver and targeted ads
preserver for comparing the deployments since they repre-
sent different workloads (frequent small invocation versus
low-frequency invocation with larger payload). The CCN
preserver’s results are in our technical report [16].

 100

 1000

 10000

 100000

 1e+06

 0.1 1 10 100

La
te

nc
y

(µ
s)

Invocation Size (KB)

TTPCase
XenCase

BaseCase

 0.1

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

La
te

nc
y

(m
s)

Number of Invocations

TTPCase
XenCase

BaseCase

 1

 10

 100

 1000

 10 100

La
te

nc
y

(m
s)

Number of Ads

TTPCase
XenCase

BaseCase

Figure 3: Invocation costs: (left) measurement preserver; latency vs. payload size, (middle) stock preserver; latency vs. number of
ticker events, (right) targeted ads preservers; latency vs number of ads.

Stock Preserver:To reflect a typical trading scenario with
hundreds of ticker events per second, we plotted latency
versus numbers of back-to-back invocations (stock ticker
events) in Figure 3(middle). As expected, the TTP case
requiring network access is substantially slower as com-
pared to the Xen case and the base case. Comparing the
Xen case and the base case for a sequence of 100 back-
to-back invocations, the latencies are 43.4ms and 9.05ms
respectively; though the overhead due to Xen is substan-
tial, it is still a significant improvement over the TTP
case, which requires 12 seconds. Regarding the traffic,
in the TTP case, the traffic generated for a sequence of
5, 10, 50, 100, 500 and 1000 invocations are respectively
2.8, 4.8, 20.2, 39.4, 194, 387 KB respectively. Thus, the
bandwidth required for say, 500 events per second, is
about 1.6 MB/s per user per stock symbol (and a single
user typically trades multiple symbols). These results re-
flect that server site colocation can offer significant benefit
in terms of network bandwidth.
Targeted Ads Preserver: We present two results for the
targeted ads scenario. Figure 3(right) shows the latency
per invocation for the preserver to serve targeted ads us-
ing the ChooseAd interface (we do not show results for
the GetInterestVector interface due to lack of space). This
graph shows that the Xen preserver has nearly the same
overhead as the Base case preserver once the number
of ads out of which the preserver selects one exceeds
5. This is mainly because the payload size dominates
the transfer time; the context switch overhead is mini-
mal. In the TTP case, the latency is clearly impacted by
the wide-area network delay. The traffic generated in the
TTP case was measured to be 2.6, 8.3, 15.8, 29.2 KB for
10, 50, 100, 200 ads respectively. These reflect the band-
width savings of colocation; since this bandwidth is in-
curred for every website the user visits, this could be sig-
nificant. Our technical report [16] has performance results
on two other operations: allowing a user to update her web
history and the data aggregation transformation.

6.3 Security Analysis

We now discuss the desirable security properties of our
preserver, determine the TCB for these to hold, and argue

that our TCB is a significant improvement over the status
quo. Our security goal is that any data access or preserver
transfer obeys the user-sanctioned interface and policies.
Depending on the deployment, the adversary either has
control of the service software stack (above the VMM
layer) or has physical access to the machine hosting the
preserver; the first applies to VMMs, TPMs, and the sec-
ond to TTPs, client-side preservers, secure co-processors.
In the TTP/client case, we rely on physical isolation and
the preserver implementation’s correctness; the rest of this
section is concerned with the security goal for colocation.

Colocation has one basic caveat: the service can launch
an availability attack by refusing to service requests us-
ing its host hub or by preventing a user from updating her
preserver. We assume that the trusted module provides the
four security properties detailed in Section 3: isolation,
anti-replay protection, random number generation, and re-
mote attestation. We also assume that any side-channels
(such as memory page caching, CPU usage) have limited
bandwidth (a subject of ongoing research [30]). We first
analyze the installation protocol and then examine the in-
vocation protocol.

Installation Protocol: The installation protocol is
somewhat complex since it involves a Diffie-Hellman key
exchange along with remote attestation. In order to argue
its correctness, we now present an informal argument (our
technical report [16] has a formal argument in LS2 [10],
a formal specification language). Our informal argument
is based on three salient features of the installation pro-
tocol (Section 4.1). First, the attestation guarantees that
the public key is generated by the base layer. Second, the
Diffie-Hellman-based installation protocol ensures confi-
dentiality; only the party that generated the public key it-
self can decrypt the preserver. From the first observation,
this party can only be the base layer. This relies on the
random number generation ability of the trusted module
to ensure that the generated public key is truly random.
Third, since attestation verifies the purported input and
output to the code which generated the public key, man-
in-the-middle attacks are ruled out; an adversary cannot
tamper with the attestation without rendering it invalid.
These three properties together ensure that the preserver

can only be decrypted by the base layer, thus ruling out
any leakage during installation. The correctness of the
base layer’s implementation helps argue that the preserver
is correctly decrypted and instantiated at the service.

Invocation Protocol: Upon invocation, the base layer
verifies: (a) the invoking principal’s identity, (b) any sup-
porting policies, and (c) that user-specified policies along
with supporting policies allow the principal the privilege
to make the particular invocation. The principal’s iden-
tity is verified either against a list of public keys sent dur-
ing installation (which binds service names to their public
keys or offloads trust to a certification authority). In either
case, the correctness of installation ensures that the iden-
tity cannot be spoofed. The base layer verifies the sup-
porting policies by verifying each statement of the form
X SAY S · · · against the signature of X . The policy re-
solver takes two sets of policies as input: user-specified
policies and the invoker’s supporting policies. The latter,
we have argued, is correct; for the former, we rely on the
anti-replay property provided by the trusted module to en-
sure that the preserver’s policies (which can be updated
over time) are up-to-date and reflects the outcome of all
past invocations. This ensures that any stateful constraints
are correctly ensured. Once invocation is permitted by the
base layer, it is passed on to the data layer which imple-
ments the interface. In cases such as a query preserver or
an analytics preserver, this functionality is carried out en-
tirely within the data layer, which we assume to be correct.
For the proxy preserver, which requires network access,
we note that though the network stack is itself offloaded
to the host hub, the SSL library resides in the preserver;
thus the host hub cannot compromise confidentiality or
integrity of network communication.

6.3.1 TCB Estimate

From the preceding discussion, it is clear that our TCB
includes: (A) the trust module, (B) the data layer inter-
face and implementation, and (C) the base layer proto-
cols and implementation. In our colocation implementa-
tion, (A) is the Xen VMM and Dom0 kernel; we share
these with other VMM-based security architectures (e.g.,
Terra [13]). Mechanisms to improve VMM-based secu-
rity (e.g., disaggregation [19] removes Dom0 from the
TCB) also apply to our framework. Regarding the base
layer and the data layer, their per-module LOC estimates
are: Base Layer (6K), PolarSSL (12K), XenSocket (1K),
Trousers (10K), Data Layers (Stock Preserver: 340, Ads:
341, CCN: 353). This list omits two implementation de-
pendencies we plan to remove. First, we boot up the pre-
server atop Linux 2.6.29-2; however, our preservers do
not utilize any OS functionality (since device-drivers, net-
work stack, etc., are provided by the host hub), and can
be ported to run directly atop Xen or MiniOS (a bare-
bones OS distributed with Xen). Second, the preservers

use glibc’s memory allocation and a few STL data struc-
tures; we plan to hand-implement a custom memory al-
locator to avoid these dependencies. We base our trust in
the data layer interface and implementation in the inter-
face’s simplicity. Currently, despite our efforts at a simple
design, the base layer is more complex than the data layer,
as reflected in the LOC metric. In the lack of a formal ar-
gument for correctness, for now, our argument is that even
our complex base layer offers a significant improvement
in security to users who have no choice today but to rely
on unaudited closed source service code.

7 Related Work
Before examining broader related work, we discuss
three closely related papers: Wilhelm’s thesis [31],
CLAMP [21], and BStore [9]. Work in the mobile agent
security literature, such as Wilhelm’s thesis [31], lever-
ages mobile agents (an agent is code passed around from
one system to another to accomplish some functional-
ity) to address data access control in a distributed sys-
tem. Our main differences are: (a) our interface is data
dependent and its invocation can be user-controlled, and
(b) preservers return some function of the secret data as
output; this output provides some useful secrecy guaran-
tees to the user. CLAMP [21] rearchitects a web service to
isolate various clients by refactoring two security-critical
pieces into stand-alone modules: a query restrictor (which
guards a database) and a dispatcher (which authenticates
the user). Our goal is different: it is to protect an individual
user’s data (as opposed to a shared database), both from
external and internal attacks. BStore [9] argues for the de-
coupling of the storage component from the rest of the
web service: users entrust their files to a third party stor-
age service which enforces policies on their behalf. Our
preserver architecture is in a similar spirit, except that it
pertains to all aspects of how data is handled by the web
service, not just storage; the enforcement of an interface
means that user data is never directly exposed to the web
service. Our work is also related to the following areas:
Information Flow Control (IFC): The principle of IFC
has been implemented in OSes (e.g., Asbestos [12])
and programming languages (e.g., JIF [24]), and enables
policy-based control of information flow between secu-
rity compartments. IFC has also been used to build secure
web service frameworks, e.g., W5 [17], xBook [27]. Pre-
servers provide data access control; this is complemen-
tary to IFC’s data propagation control. Preservers rely on
an interface that offers sufficient privacy to the user and
is usable to the service. The advantage of interface-based
access control is that we can rely on a variety of iso-
lation mechanisms without requiring a particular OS or
programming language. Further, the interface’s simplicity
makes it feasible to envision proving a preserver’s correct-
ness; doing so in the IFC case requires one to prove the

correctness of the enforcement mechanism (OS or com-
piler) which can be significantly more complex.
Decentralized Frameworks For Web Services: Privacy
frameworks that require only support from users have
been proposed as an alternative to web services. VIS [8]
maintains a social network in a completely decentralized
fashion by users hosting their data on trusted parties of
their own choice; there is no centralized web service.
Preservers are more compatible with the current ecosys-
tem of a web service storing users’ data. NOYB [14] and
LockR [28] are two recent proposals that use end-to-end
encryption in social network services; both approaches are
specific to social networks, and their mechanisms can be
incorporated in the preserver framework, if so desired.

8 Conclusion
Our preserver framework rearchitects web services
around the principle of giving users control over the code
and policies affecting their data. This principle allows a
user to decouple her data privacy from the services she
uses. Our framework achieves this via interface-based
access control, which applies to a variety of web ser-
vices (though not all). Our colocation deployment model
demonstrates that this property can be achieved with mod-
erate overhead, while more stringent security can be ob-
tained with other deployment models. In the future, we
hope to formalize two aspects of our framework. First, we
wish to prove the correctness of our interface implemen-
tation. Second, we hope to define and prove precise guar-
antees on information leak via interfaces.

Acknowledgments: We thank Gautam Altekar, Kevin
Fall, Jon Howell, Eddie Kohler, Jay Lorch, Radia Perl-
man, and the anonymous reviewers for their careful feed-
back on our work, as well as the authors of Adnostic, in
particular Arvind Narayanan, for sharing their data.

References
[1] DataLoss DB: Open Security Foundation. http:

//datalossdb.org.
[2] DummyNet Homepage. http://info.iet.unipi.it/

˜luigi/dummynet/.
[3] OpenSocial. http://code.google.com/apis/

opensocial/.
[4] Sierra Chart: Financial Market Charting and Trading Software.

http://sierrachart.com.
[5] TPM Main Specification Level 2 Version 1.2, Revi-

sion 103 (Trusted Computing Group). http://www.
trustedcomputinggroup.org/resources/tpm_
main_specification/.

[6] Zen E-Commerce Solution. http://www.zen-cart.com/.
[7] M. Y. Becker, C. Fournet, and A. D. Gordon. SecPAL: Design and

Semantics of a Decentralized Authorization Language. In Proc.
IEEE Computer Security Foundations Symposium, 2006.

[8] R. Cáceres, L. Cox, H. Lim, A. Shakimov, and A. Varshavsky. Vir-
tual Individual Servers as Privacy-Preserving Proxies for Mobile
Devices. In Proc. MobiHeld, 2009.

[9] R. Chandra, P. Gupta, and N. Zeldovich. Separating Web Applica-
tions from User Data Storage with BStore. In WebApps, 2010.

[10] A. Datta, J. Franklin, D. Garg, and D. Kaynar. A Logic of Se-
cure Systems and its Application to Trusted Computing. In IEEE
Security and Privacy, 2009.

[11] J. Dyer, M. Lindemann, R. Perez, R. Sailer, L. van Doorn, and
S. Smith. Building the IBM 4758 Secure Coprocessor. Computer,
34(10), 2001.

[12] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey, D. Ziegler,
E. Kohler, D. Mazières, F. Kaashoek, and R. Morris. Labels and
Event Processes in the Asbestos Operating System. In SOSP, 2005.

[13] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh.
Terra: A Virtual Machine-Based Platform for Trusted Computing.
In SOSP, 2003.

[14] S. Guha, K. Tang, and P. Francis. NOYB: Privacy in Online Social
Networks. In Proc. WOSP, 2008.

[15] D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren, G. Vargh-
ese, G. M. Voelker, and A. Vahdat. Difference Engine: Harnessing
Memory Redundancy in Virtual Machines. In OSDI, 2008.

[16] J. Kannan, P. Maniatis, and B.-G. Chun. A Data Capsule Frame-
work For Web Services: Providing Flexible Data Access Control
To Users. arXiv:1002.0298v1 [cs.CR].

[17] M. Krohn, A. Yip, M. Brodsky, R. Morris, and M. Walfish. A
World Wide Web Without Walls. In Proc. HotNets, 2007.

[18] J. M. Mccune, B. J. Parno, A. Perrig, M. K. Reiter, and H. Isozaki.
Flicker: An Execution Infrastructure for TCB Minimization. In
EuroSys, 2008.

[19] D. G. Murray, G. Milos, and S. Hand. Improving Xen Security
through Disaggregation. In VEE, 2008.

[20] G. C. Necula. Proof-carrying code: Design, Implementation, and
Applications. In Proc. PPDP, 2000.

[21] B. Parno, J. M. McCune, D. Wendlandt, D. G. Andersen, and
A. Perrig. CLAMP: Practical Prevention of Large-Scale Data
Leaks. In IEEE Security and Privacy, 2009.

[22] L. Ponemon. Fourth Annual US Cost of Data Breach
Study. http://www.ponemon.org/local/
upload/fckjail/generalcontent/18/file/
2008-2009 US Cost of Data Breach Report Final.
pdf, 2009. Retrieved Feb 2010.

[23] M. K. Reiter and A. D. Rubin. Crowds: Anonymity for Web Trans-
actions. ACM Transactions on Information and System Security,
1(1), 1998.

[24] A. Sabelfeld and A. C. Myers. Language-Based Information-Flow
Security. IEEE JSAC, 21, 2003.

[25] A. Seshadri, M. Luk, N. Qu, and A. Perrig. SecVisor: A Tiny Hy-
pervisor to Provide Lifetime Kernel Code Integrity for Commodity
OSes. In SOSP, 2007.

[26] L. Shrira, H. Tian, and D. Terry. Exo-leasing: Escrow Synchro-
nization for Mobile Clients of Commodity Storage Servers. In
Middleware, 2008.

[27] K. Singh, S. Bhola, and W. Lee. xBook: Redesigning Privacy Con-
trol in Social Networking Platforms. In USENIX Security, 2009.

[28] A. Tootoonchian, S. Saroiu, Y. Ganjali, and A. Wolman. Lockr:
Better Privacy for Social Networks. In CoNEXT, 2009.

[29] V. Toubiana, A. Narayanan, D. Boneh, H. Nissenbaum, and
S. Barocas. Adnostic: Privacy preserving targeted advertising. In
NDSS, 2010.

[30] E. Tromer, A. Chu, T. Ristenpart, S. Amarasinghe, R. L. Rivest,
S. Savage, H. Shacham, and Q. Zhao. Architectural Attacks and
their Mitigation by Binary Transformation. In SOSP, 2009.

[31] U. G. Wilhelm. A Technical Approach to Privacy based on Mo-
bile Agents Protected by Tamper-Resistant Hardware. PhD thesis,
Lausanne, 1999.

[32] B. S. Yee. Using Secure Coprocessors. PhD thesis, Carnegie Mel-
lon University, 1994.

[33] A. Yip, X. Wang, N. Zeldovich, and M. F. Kaashoek. Improving
Application Security with Data Flow Assertions. In SOSP, 2009.

[34] X. Zhang, S. McIntosh, P. Rohatgi, and J. L. Griffin. XenSocket:
A High-Throughput Interdomain Transport for Virtual Machines.
In Middleware, 2007.

