Pixaxe - A Declarative Web Application Framework

Rob King

DVLabs
TippingPoint Technologies

June 24, 2010

Rob King (TippingPoint DVLabs) PIXAXE June 24,2010  1/22



Introducing Pixaxe

Pixaxe is a web application framework with several design goals:

Rob King (TippingPoint DVLabs) PIXAXE June 24,2010  2/22



Introducing Pixaxe

Pixaxe is a web application framework with several design goals:

Declarative Pixaxe encourages a very declarative, functional style of
interface and logic specification that centers around the
evaluation of functions.

Rob King (TippingPoint DVLabs) PIXAXE June 24,2010  2/22



Introducing Pixaxe

Pixaxe is a web application framework with several design goals:

Declarative Pixaxe encourages a very declarative, functional style of
interface and logic specification that centers around the
evaluation of functions.

Client-Focused Pixaxe runs entirely on the client, including
functionality that often resides on the server.

Rob King (TippingPoint DVLabs) PIXAXE June 24,2010  2/22



Introducing Pixaxe

Pixaxe is a web application framework with several design goals:

Declarative Pixaxe encourages a very declarative, functional style of
interface and logic specification that centers around the
evaluation of functions.

Client-Focused Pixaxe runs entirely on the client, including
functionality that often resides on the server.

Lightweight Pixaxe transmits a page only once; afterwards, only
changes to the data model are sent. The server need
only support static file serving and, optionally, JSON
(de)serialization.

Rob King (TippingPoint DVLabs) PIXAXE June 24, 2010



Introducing Pixaxe

Pixaxe is a web application framework with several design goals:

Declarative Pixaxe encourages a very declarative, functional style of
interface and logic specification that centers around the
evaluation of functions.

Client-Focused Pixaxe runs entirely on the client, including
functionality that often resides on the server.

Lightweight Pixaxe transmits a page only once; afterwards, only
changes to the data model are sent. The server need
only support static file serving and, optionally, JSON
(de)serialization.

Simple Pixaxe is designed as a lightweight layer that augments
HTML and related technologies, rather than replace them.

Rob King (TippingPoint DVLabs) PIXAXE June 24,2010  2/22



Introducing Pixaxe

Pixaxe is a web application framework with several design goals:

Declarative Pixaxe encourages a very declarative, functional style of
interface and logic specification that centers around the
evaluation of functions.

Client-Focused Pixaxe runs entirely on the client, including
functionality that often resides on the server.

Lightweight Pixaxe transmits a page only once; afterwards, only
changes to the data model are sent. The server need
only support static file serving and, optionally, JSON
(de)serialization.

Simple Pixaxe is designed as a lightweight layer that augments
HTML and related technologies, rather than replace them.
Decoupled Pixaxe is built up of several distinct technologies, and
these technologies can be used individually as required.

Rob King (TippingPoint DVLabs) PIXAXE June 24,2010  2/22



The Anatomy of a Pixaxe Application

I Model: View Template: h‘

{"name" : "World"} <pl>Hello, ${name}!</pl>

N

Rendered Page:
Hello, World!

Client P>

Rob King (TippingPoint DVLabs) PIXAXE June 24,2010  3/22



Model-View-Controller

Pixaxe follows a traditional Model-View-Controller design:

@ The Model is viewed as a single JSON document that is
synchronized among the server, browser, interface, and user.
Pixaxe automatically synchronizes the model when necessary.

@ The View is a single XHTML document with embedded
expressions in Pixaxe’s template language. This view is
automatically re-rendered in response to changes in the model.

@ The Controller exists entirely within the client, and relationships

between the controller and the model are also specified
declaratively.

Rob King (TippingPoint DVLabs) PIXAXE June 24,2010  4/22



Specifying Views

Web Pages as Expressions

@ The technology used for the specification of views is known as
Jenner, and is usable independently of the rest of Pixaxe.

@ Jenner is an expression language; all XHTML pages are valid
Jenner expressions, but Jenner is a superset of XHTML.
Rendering a page is identical to evaluating the Jenner expression.

@ No explicit calls need to be made to render a Jenner expression;
the web page itself is considered the Jenner source code and it is
reevaluated whenever necessary.

Rob King (TippingPoint DVLabs) PIXAXE June 24,2010  5/22



A Simple Jenner Expression

@ The Model, a JSON document:

{"name" : "world"}

@ The View, a Jenner expression:
<head>
<title>Example</title>
<script lang="text/javascript"
src="pixaxe.js" />
<script lang="text/javascript"
src="model. js" />
</head>
<body>
<pl>Hello, S${name}!</pl>
</body>

@ The Result, a rendered web page:
Hello, world!

Rob King (TippingPoint DVLabs) PIXAXE June 24,2010  6/22



A More Complicated Jenner Expression

The Model

{ "log" : [
{"level" : "CRIT"
"text" : "Core temp critical"},
{"level” : "INFO",
"text" : "Fries are done"}
]
}

Rob King (TippingPoint DVLabs) PIXAXE June 24,2010  7/22



A More Complicated Jenner Expression

The View

<head>
<title>Log Messages</title>
<script lang="text/javascript" src="pixaxe.js" />

<script lang="text/javascript" src="model.js" />
</head>

<body>
<ul>
${for i from O to log.length - 1
var m := log[i]
return
<li class="${m.level == ’'CRIT’ 2
"log-red’ : ’"log-black’}">
S{m.text}
</1li>
}
</ul>
</body>
Rob King (TippingPoint DVLabs) PIXAXE

June 24, 2010 8/22



Jenner

Language Features

@ Standard operators, including modular arithmetic, Boolean
combination, etc.

@ List comprehensions.

@ Lexical scoping (the Model serves as the root environment).
@ Document elements as expressions and results.

@ Attribute values may be Jenner expressions.

@ Functions and a foreign function interface with JavaScript.

@ Can be used separately from Pixaxe as a powerful client-side
template engine.

@ Can use XSLT as a page-load-time macro language.

Rob King (TippingPoint DVLabs) PIXAXE June 24,2010  9/22



Jenner

Example Macro Usage

@ Jenner provides a richer “target language” for browser XSL
transformations than plain XHTML.

@ Pixaxe provides a variety of XSLT macros, for things like tab
boxes, lightboxes, and AJAX-style file uploads.

@ Below is a page fragment using the standard “tab-box” macro.

<dppx:tab-box>
<dppx:tab label="First Tab" selected="true">
<p>Tab bodies can consist of arbitrary HTML and
Jenner markup.</p>
<p>For example, here is the current value
of the "name" variable in the Store: ${name}</p>
</dppx:tab>
<dppx:tab label="Second Tab">
<p>Another tab.</p>
</dppx:tab>

Rob King (TippingPoint DVLabs) PIXAXE June 24,2010  10/22



Jenner

Partial Macro Expansion

Below is a partial expansion of the macro:

<fieldset><input type="hidden" value="1d4127134"
name="4#{controller.dppx_tabselid4127132}"/>
<legend><input type="submit"
name="4#{controller.dppx_tabselid4127132}"
class="dppx-tab dppx-tab-left
dppx-tab-${controller.dppx_tabselid4127132

= 71d4127134" »

"un’ : '’ }selected"

accept="1d4127134" value="First Tab" />

dppx-tab-body-${controller.dppx_tabselid4127132
'=731d41271347 ? "un’ : '’ }selected">
<p>Tab bodies can consist of arbitrary HTML and

Jenner markup.</p>
<p>For example, here is the current value of the "name"
variable in the Store: ${name}</p>
</div>

Rob King (TippingPoint DVLabs) PIXAXE June 24,2010  11/22



Jenner

Macro Evaluation Result

The above macro as rendered by the browser:

First Tab | Second Tab Third Tab Fourth Tab

Tab bodies can consist of arbitrary HTML and Jenner markup.

For example, here is the current value of the "name" variable in the Store: (null)

Rob King (TippingPoint DVLabs) PIXAXE June 24, 2010 12/22



Pixaxe

Adding Input Handling to Jenner

—

Client

™~

Submit Control Outside Form

Submit Control Inside Form

\

Model Verification

Rob King (TippingPoint DVLabs) PIXAXE June 24,2010  13/22



Pixaxe

Overloading Traditional Forms

@ Pixaxe uses traditional HTML form controls for input, but
augments some of their functionality.

@ By placing expressions inside the name and value attributes of
controls, controls can be linked to values in the model.

@ For example, below is an input element that is linked to the
person.name member of the model:

<input name="#{person.name}" value="${person.name}" />

Rob King (TippingPoint DVLabs) PIXAXE June 24,2010  14/22



Pixaxe

Validating Input

@ By placing an expression in the accept attribute of a control, that
control’s value can be validated or manipulated before being
applied to the model.

@ For example, the input control below can be set to automatically
uppercase the first letter of its input before it is synchronized with
the model:

<input name="#{person.name}" value="${person.name}"
accept="${str:titlecase ($value) }" />

Rob King (TippingPoint DVLabs) PIXAXE June 24,2010  15/22



Pixaxe

Synchronizing the Model With the Server

@ Pixaxe overloads the meaning of HTML form elements.

@ Submit controls inside form elements result in the synchronization
of the model with the server, if the form’s enctype attribute is set
to text/javascript.

@ Forms can also validate the model before it is synchronized with
the server by evaluating an expression placed in the form’s
accept attribute; this expression must evaluate to true for the
model to be synchronized.

@ It is important to note that this is not HTML form submission; only
the model is serialized and then synchronized; the page is
re-rendered entirely locally with the freshly synchronized model.

Rob King (TippingPoint DVLabs) PIXAXE June 24,2010  16/22



Pixaxe
Interacting With JavaScript

@ Pixaxe allows for a simple foreign function interface with
JavaScript code in the browser.

@ Jenner expressions can call JavaScript functions exported to the
Jenner runtime, and JavaScript code can easily interact with
Pixaxe - either indirectly by manipulating the model, or directly by
explicitly evaluating Jenner expressions.

@ Jenner comes with a large standard library of functions for a
variety of tasks, including text manipulation, cookie storage,
mathematical functions, alert boxes, and so on.

@ Functions can be namespaced similarly to XML Namespaces,
preventing collisions.

Rob King (TippingPoint DVLabs) PIXAXE June 24,2010  17/22



Underlying Technology
Kouprey

@ Pixaxe is built on top of a complete parser combinator library
written in pure JavaScript, called Kouprey.

@ Kouprey is usable separately from Pixaxe, and provides a useful
tool for the development of parsers running in web browsers and
other JavaScript environments.

@ Grammars are specified inline using normal JavaScript
statements, but in such a way as to resemble EBNF.

Rob King (TippingPoint DVLabs) PIXAXE June 24,2010  18/22



Underlying Technology
Esel

@ Esel is a powerful expression and query language, useful for
querying JSON and other hierarchical datasets.

@ Eselis a perfect subset of Jenner; Jenner is in fact Esel with the
addition of XML element types and syntax.

@ Esel’s parser, compiler, and virtual machine are written entirely in
JavaScript and run entirely within the browser.

@ Esel’s virtual machine is Turing complete and easily extensible,
with an efficient code representation.

@ Esel is useful as an embedded expression language in web
applications, for example, in a web-based spreadsheet.

Rob King (TippingPoint DVLabs) PIXAXE June 24,2010  19/22



Potential Uses

Pixaxe is useful as an application toolkit for small and
rapidly-developed web applications.

It also proves useful in situations where server resources are
extremely limited or not under the control of the application
developer.

Pixaxe is useful in situations where the developer is more familiar
with HTML and CSS than with JavaScript or programming.

Pixaxe, with it’s traditional form- and page-oriented design and
extremely flexible server interface, may be useful for developing
web based interfaces to legacy applications.

Kouprey greatly eases the creation of parsers in web browsers,
easing the development of application-specific languages in web
applications (think expressions in web-based spreadsheets, for
example).

Rob King (TippingPoint DVLabs) PIXAXE June 24, 2010 20/22



The Future

@ Kouprey 2 is already finished, and has proven to be considerably
faster, with a simpler grammar specification syntax. It is currently
just awaiting documentation.

@ Esel 2 is nearing completion, and adds useful features such as
nested comments, an n-way case statement, optional assignment,
and improved facilities for runtime analysis of expressions.

@ Pixaxe 2 is being planned on top of these features, and will have a
much more “reactive programming” feel.

Rob King (TippingPoint DVLabs) PIXAXE June 24,2010  21/22



Conclusion

@ Pixaxe is available for use today, under the GNU General Public
License.

@ Pixaxe is still under development and has some bugs, but it has
been used in production environments for relatively large and
complex projects.

@ For more information, please contact Rob King at either:

@ http://www.deadpixi.com
e jking@deadpixi.com
o rob.rking@hp.com

Rob King (TippingPoint DVLabs) PIXAXE June 24,2010  22/22


http://www.deadpixi.com

