
Solaris Zones: Operating System Support for Server Consolidation

Andrew Tucker
David Comay

Sun Microsystems, Inc.

A growing number of users are interested in im-
proving the utilization of their computing resources
through consolidation and aggregation. Consoli-
dation is already common in mainframe environ-
ments, where technology to support running multi-
ple applications and even operating systems on the
same hardware has been in development since the
late 1960’s. Such technology is now becoming an
important differentiator in other markets (such as
Unix/Linux servers), both at the low end (virtual
web hosting) and high end (traditional data center
server consolidation).

Zones are a new operating system abstraction for
partitioning systems, allowing multiple applications
to run in isolation from each other on the same
physical hardware. This isolation prevents processes
running within a zone from monitoring or affect-
ing processes running in other zones, seeing each
other’s data, or manipulating the underlying hard-
ware. Zones also provide an abstraction layer that
separates applications from physical attributes of
the machine on which they are deployed, such as
physical device paths and network interface names.

Much of the previous work in this area has in-
volved running multiple operating system instances
on a single system, either through the use of hard-
ware partitioning [1, 4] or virtual machine moni-
tors [2, 3, 8]. Hardware partitioning, while providing
a very high degree of application isolation, is costly
to implement and is generally limited to high-end
systems. In addition, the granularity of resource al-
location is often poor, particularly in the area of
CPU assignment. Virtual machine implementations
can be much more granular in how resources are al-
located (even time-sharing multiple VM’s on a single
CPU), but suffer significant performance overheads.
With either approach, the cost of administering mul-
tiple operating system instances can be substantial.

More recently, a number of projects have explored
the idea of virtualizing the operating system envi-

ronment, rather than the physical hardware [5, 6, 7].
These efforts differ from virtual machine implemen-
tations in that there is only one underlying operat-
ing system kernel, which is enhanced to provide in-
creased isolation between groups of processes. The
result is the ability to run multiple applications in
isolation from each other within a single operating
system instance.

Zones build on this concept by extending this vir-
tual operating system environment to include many
of the features of a separate machine, such as a per-
zone console, system log, packaging database, run
level, identity (including name services), and inter-
process communication facility. For example, each
zone has a virtualized view of the process table (as
reflected in the /proc file system) that reflects only
the processes running in that zone, as well as a virtu-
alized /etc/mnttab file that shows only file system
mounts within the zone.

A set of administrative tools have been developed
to manage zones, allowing them to be configured,
installed, patched, upgraded, booted, rebooted, and
halted. As a result, zones can be administered in a
manner very similar to separate machines. In fact,
some types of administration are significantly easier;
for example, an administrator can apply a patch to
every zone on a system with a single command.

A zone can either be bound to a dedicated pool of
resources (such as a number of CPUs or a quantity
of physical memory), or can share resources with
other zones according to defined proportions. This
allows the use of zones both on large systems (where
dedicated resources may be most appropriate) and
smaller ones (where a greater degree of sharing is
necessary). It also allows administrators to make
appropriate tradeoffs depending on the relative im-
portance of resource isolation versus utilization.

Zones provide for the delegation of many of the ex-
pected administrative controls for the virtual oper-



Figure 1: Normalized Performance within a Zone

ating system environment. Since each zone has its
own name service identity, it also has its own notion
of a password file and its own root user. The pro-
portion of CPU resources that a zone can consume
can be defined by an administator, and then that
share can be further divided among workloads run-
ning in the zone by the (potentially different) zone
administrator. In addition, the privileges available
within a zone (even to the root user) are restricted
to those that can only affect the zone itself. As a
result, even if a zone is compromised by an intruder,
the compromise will not affect other zones in the
system or the system as a whole.

Zones also allow sharing of file system data, par-
ticularly read-only data such as executables and li-
braries. Portions of the file system can be shared
between all zones in the system through use of the
read-only loopback file system (or lofs), which al-
lows a directory and its contents to be spliced into
another part of the file system. This not only sub-
stantially reduces the amount of disk space used by
each zone, but reduces the time to install zones and
apply patches, and allows for greater sharing of text
pages in the virtual memory system.

Figure 1 shows the performance of a variety of work-
loads (Java application server, time-sharing, net-
working, and database) running in a zone, as com-
pared to the same workloads running without zones.
As can be seen from the graph, the performance im-
pact from using zones is small to nonexistent.

Zones are being developed as part of the N1 Grid
Containers feature in Solaris 10, planned for gen-

eral release in late 2004. An early version of
Solaris 10 (which includes an initial implemen-
tation of zones) is available for download from
http://wwws.sun.com/software/solaris/10/.

References

[1] Alan Charlesworth et al. The Starfire SMP inter-
connect. In Proceedings of the 1997 ACM/IEEE
Conference on Supercomputing, 1997.

[2] Paul Barham et al. Xen and the art of virtual-
ization. In Proceedings of the 19th Symposium
on Operating Systems Principles, 2003.

[3] P. H. Gum. System/370 Extended Architecture:
Facilities for virtual machines. IBM Journal of
Research and Development, 27(6), 1983.

[4] IBM Corp. Partitioning for the IBM eServer p-
Series 690 system.

[5] Poul-Henning Kamp and Robert Watson. Jails:
Confining the omnipotent root. In 2nd Inter-
national System Administration and Networking
Conference (SANE 2000), May 2000.

[6] http://www.linux-vserver.org.

[7] http://www.virtuozzo.com.

[8] Carl Waldspurger. Memory resource manage-
ment in VMware ESX server. In Proceedings of
the 5th Symposium on Operating Systems Design
and Implementation, 2002.


