
An Opcode Level Energy Consumption Model for a Java Virtual Machine

Sébastien Lafond and Johan Lilius
Turku Centre for Computer Science

FIN-20520 Turku, Finland
{slafond; jolilius}@abo.fi - http://www.tucs.fi

Abstract

In this paper we establish a general framework for estimating
the energy consumption of an embedded Java virtual machine
(JVM). We have designed a number of experiments to find
the constant overhead of the Virtual Machine and establish an
energy consumption cost for individual Java Opcodes. The
results show that there is a basic constant overhead for every
Java program, and that a subset of Java opcodes have an al-
most constant energy cost. We also show that memory access
is a crucial energy consumption component.

1 Introduction

We mostly know problems related to power dissipation from
the noisy fans and the more and more sophisticated cooling
systems that need to be installed on modern PC processors.
As the number of transistors integrated on one chip increases,
the power dissipation follows the same trend. For an Intel
Pentium IV manufactured in 90 � m process technology the
power dissipation can reach 115 Watts and drain up to 91
Amperes through its 86 supply voltage pins. Nevertheless,
as soon as a system requires being mobile and autonomous
those extreme values make a Pentium IV unusable over stan-
dard battery characteristics. In order to extend the battery life
of a handheld device two solutions can be applied: increase
the amount of energy embedded in the device, or decrease its
energy consumption. Much effort has been put into increas-
ing the battery capacity, but solutions are costly in terms of
price, volume and weight. Therefore, the attention has been
turned to develop so called Low Power Systems.

In this paper we will focus on energy consumption of em-
bedded Java applications and characterize the JVM’s energy
consumption.

2 An energy model of Java applications

The main advantage of Java language is to allow application
development with an abstraction of the target platform, mak-

 Start JVM Initialization of
the VM

Interpreter loop Exit
Load the class
containing the
main method

Figure 1: Simple view of the JVM life cycle
Java

Application
(source code)

Java
Virtual Machine

(Source code)

Java Class
generator

Java Code
Compact

(JCC)

Executable
(Application + VM)

Processor
Emulator

(ARM7TDMI)

Processor trace file :
Memory - Instruction

Event - Register - Bus
Energy profiler

Platform data
(memory mapping)

Energy consumption
per instruction

Battery specification Energy

Max. running time
of the application

Compiler &
Linker

Figure 2: General measurements methodology scheme

ing the concept "write once, run it anywhere" possible. Fig-
ure 1 shows a simple view of the JVM life cycle. An efficient
energy model should characterize each stage of the life cycle
model, and thus show in which stage(s) efforts need to be con-
centrated to achieve energy optimization. It seems obvious
that such model needs to consider the system’s hardware and
software configurations and therefore is not directly portable.
However, the methodology used to build it can easily be ap-
plied on different configurations.

2.1 Measurements methodology

We chose to use the Sun Microsystems K Virtual Ma-
chine (KVM), CLDC v1.0.3, as it has been developed for a
resource-constrained platform and has its source code freely
available. KVM is a small virtual machine containing about
50-80 Kb of object code in its standard configuration and has
a total memory footprint in the range of 128-256 Kb.

29.93%

70.07%

Memory/Instructions Distribution

Instructions

Memory

25.73%

60.94%

3.71%

8.12%
Energy Distribution

StartJVM Inst

StartJVM Mem

KVM Start Inst

KVM Start Mem

Interpret Inst

Interpret Mem

KVM Clean Instr

KVM Clean Mem

Garbage Inst

Garbage Mem

Figure 3: Typical energy distribution

Figure 2 shows the measurements methodology scheme
used to characterize each stage of the KVM life cycle. The
Java class generator generates, from template classes, Java
applications with the possibility to modify parameters inside
the class source code. With the Java to C translator JCC we
compile and link together the JVM source code and the gen-
erated Java application. The executable code is run on the
ARM7TDMI emulator ARMulator [1], which traces instruc-
tions, memory accesses and events that occur during the ap-
plication execution. From this trace, we extract all informa-
tion concerning the memory access addresses, size and type
(read, write, sequential, non-sequential), the instructions ad-
dresses and their corresponding processor opcodes. The en-
ergy profiler reads the emulator trace and access databases
providing processor instruction costs and the cost of a mem-
ory access depending of its address, size and type. The energy
profiler estimates the energy consumed by the application and
provides information on how the energy is distributed be-
tween the processor and memories for each KVM stage.

3 Experiments and results

We have run the measurement process over a test bench of
small and basic applications to characterize each stage of the
KVM life cycle and see if some stages are dominant. All re-
sults presented in this paper have been obtained for the hard-
ware configuration of the Atmel AT91EB01 evaluation board
that implements an ARM7TDMI processor core with 512K
bytes SRAM and 128K bytes flash memories.

All observations on the results indicate that some KVM
stages consume a constant amount of energy independently
of the Java application running on it. Table 1 shows the three
constant stages and their energy consumptions as well as the
interpreter overhead energy cost due to respectively processor
instructions execution and memory accesses. StartJVM rep-
resents the StartJVM(argc, argv) function which only checks
if the user gave a class name as argument. KVM_Start repre-
sents the KVM_Start() function which initializes the VM, and
KVM_Cleanup represents the KVM_Cleanup() function that
runs several finalize functions when the VM is shut down.

Figure 3 shows a typical energy distribution for an em-
bedded Java application with 70% of the energy consumed

StartJVM Inst. StartJVM Mem. KVMStart Inst. KVMStart Mem

89,2 210,94 748,81 1639,18

KVM Clean Inst. KVMClean Mem Interpreter Inst. Interpreter Mem.

144,92 326,38 3552 8273

Table 1: KVM Energy Consumption Overhead in ���

by memory accesses and 30% by processor instruction ex-
ecution. Our experiments also showed that even for appli-
cations with numerous ’already dead’ object instantiations
in the heap constrained environment the garbage collection
energy consumption will still remain under 15% of the to-
tal JVM’s energy consumption. From all experiments done
it is clear that the interpreter stage is far ahead the main
source of energy consumption and a better comprehension of
it is needed if someone wants to achieve energy optimization
of the KVM. As the interpreter reads and executes the Java
bytecode into machine instructions, having a closer view on
the interpreter implies increasing the granularity of its energy
consumption model by looking at the cost of each interpreted
Java opcode.

In [2] we present a list of Java opcodes and their en-
ergy consumption values and show that the KVM interpreter
mechanism overhead represents at least 63% of the energy
consumption for each opcode. In addition, we show that for a
subset of opcodes the standard deviation is about 10% of the
subset average energy consumption.

4 Conclusion and future work

As the Java virtual machine interpreter is by far the main
source of energy consumption and the interpreter mechanism
overhead is the predominant factor in opcode execution cost,
it will be interesting to look at the differences of energy con-
sumption between the two possible Java execution modes: in-
terpreted or just in time (JIT) compilation. JIT compilation
increases significantly the execution speed, but at the same
time increases memory footprint. A trade-off between exe-
cution time and memory footprint size will certainly have to
be found to reach the optimum optimization point for energy
consumption.

References

[1] ARMulator. http://www.arm.com.

[2] S. Lafond and J. Lilius. An energy consumption model
for java vitual machine. Technical Report 597, Turku
Centre for Computer Science, Mars 2004.

