
USENIX Association

Proceedings of the Third Virtual Machine
Research and Technology Symposium

San Jose, CA, USA
May 6–7, 2004

© 2004 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



Semantic Remote Attestation —
A Virtual Machine directed approach to Trusted Computing

Vivek Haldar, Deepak Chandra and Michael Franz
Department of Computer Science

University of California
Irvine, CA 92697-3425

{vhaldar,dchandra,franz}@uci.edu

Abstract

Remote attestation is one of the core functionali-
ties provided by trusted computing platforms. It
holds the promise of enabling a variety of novel ap-
plications. However, current techniques for remote
attestation are static, inexpressive and fundamen-
tally incompatible with today’s heterogeneous dis-
tributed computing environments and commodity
open systems. Using language-based virtual ma-
chines enables the remote attestation of complex,
dynamic, and high-level program properties — in
a platform-independent way. We call this seman-
tic remote attestation. This enables a number of
novel applications that distribute trust dynamically.
We have implemented a prototype framework for se-
mantic remote attestation, and present two example
applications built on it — a peer-to-peer network
protocol, and a distributed computing application.

1 Introduction

Two major trends have been immensely influen-
tial in today’s computing environment. The first is
heterogeneity. We compute using everything from
small cellphones, to handhelds, to desktop worksta-
tions, to rack-mounted servers — and these must
all inter-operate. This has led to the widespread ac-
ceptance of open protocols for communication and
portable language runtimes (such as the Java and
.NET virtual machines) for execution of programs.

The second major trend is mobility. Not only must
all these varied computing devices inter-operate
seamlessly, we must also be able to use most of
our familiar programs and data across all of them.

Both of these have significantly increased the im-
portance of having a so-called “common platform”.
This common platform is increasingly the language
runtime, that executes some form of platform-
independent mobile code.

As we become dependent on this computing infras-
tructure, its weaknesses also become painfully ap-
parent. On the one hand, we have periodic waves
of network outages caused by worms such as Nimda
and SQL Slammer. On the other, content produc-
ers want control over the proliferation of their cre-
ations. The network is a hostile place — the default
assumption is to assume an adversarial remote ma-
chine.

One way to get security assurances is to use closed
systems. They enforce compliance with a certain
security policy by being tightly controlled. They
are usually manufactured by a single vendor to rigid
specifications. Designers have complete control over
the whole system and build it specifically to con-
form to a given security policy. When one closed
system communicates with another, it knows within
very tight bounds the expected behavior of the re-
mote party. Common examples of closed systems
are automated teller machines (ATMs) and propri-
etary game consoles

Open systems, on the other hand, have no central
arbiter. Commodity personal computers and hand-
helds are examples of open systems. An open sys-
tem can be easily changed to behave maliciously
towards other systems that communicate with it.
Two communicating open systems cannot assume
anything about each others’ behavior, and must be
conservative in their assumptions.

Trusted computing is an effort to bring some of the
properties of closed, proprietary systems to open,



commodity systems. Trusted computing introduces
mechanisms and components in both hardware and
software that check and enforce the integrity of a
system, and allow it to authenticate itself to remote
systems. For example, a trusted booting procedure
makes sure that the operating system has not been
tampered with. Using a chain of reasoning that
starts from a trusted hardware module, we can ar-
rive at a conclusion about the state of a system af-
ter boot-up. Similarly, we can deduce for sure what
particular program is running on a system. Remote
attestation is the process by which software authen-
ticates itself to remote parties. This allows the re-
mote party to make certain assumptions about the
behavior of the software.

Before trusted computing can reach its full poten-
tial, questions such as the following need to be ad-
dressed:

• how do programs running on trusted platforms
authenticate each other in a manner that en-
sures that each party satisfies some security cri-
teria, while leaving room for various differing
implementations?

• the current client-server network computing
model assumes a trusted server, and untrusted
(even malicious) clients. Thus, even though
a significant fraction of work is done at the
clients, all the trust resides at the server. How
can we design new network protocols (or adapt
existing ones) to work in an environment that
allows a more flexible partitioning of trust?

• Moving away from the model of having a fully
trusted server, and a fully untrusted client, how
do we design models and applications that use
them, that can broker trust in more flexible and
dynamic ways than is possible today?

As we explain in this paper, current methods of
remote attestation suffer from many critical draw-
backs. It is a technique well-suited to rigidly con-
trolled closed systems, but completely inadequate
for the open systems of today, which embody a great
variety of hardware and software platforms.

We propose a way out of the problems of standard
remote attestation by using a trusted virtual ma-
chine as a basis for doing remote attestation. We
call this semantic remote attestation, since it can
certify high-level, fine-grained, and dynamic proper-
ties of platform-independent mobile code. The core

idea behind semantic remote attestation is to use a
trusted virtual machine (TrustedVM) to explicitly
derive or enforce, on behalf of a remote party, vari-
ous properties of applications running within it.

Intuitively, “authentication” of an entity should
have a broader meaning than it does currently. It
should encompass not just verifying the source from
which it originated, but also include verifying or
proving that its behavior conforms to a required se-
curity policy.

To gain experience with semantic remote attesta-
tion, we have implemented a prototype TrustedVM,
and two example applications on it. The first
application is a simplified peer-to-peer networking
protocol, and the second is a distributed comput-
ing client-server application. Implementing these
within our framework achieved two benefits:

• trust relationships between peers, or between
clients and servers, were made explicit, and
then checked or enforced by the TrustedVM.
Typically, they are implicit and taken on trust.

• making the trust relationships explicit results
in having some knowledge of degree of trust-
worthiness of clients and peers. (for example,
knowing which properties were satisfied, and
which were not). This allows the applications
to make informed decisions about the “good-
ness” of a result, and dynamically adjust its
trust relationships.

The rest of the paper is organized as follows: Section
2 briefly covers basic concepts in trusted computing
and remote attestation, and explains the shortcom-
ings of remote attestation as it is today; Section 3
explains how virtual machines can be used for flexi-
ble, expressive remote attestation — this forms the
core of the paper; Section 4 discusses the implemen-
tation issues involved in this and presents two ex-
ample applications; Section 5 surveys related work;
Section 6 discusses avenues for future work; and Sec-
tion 7 concludes.

2 Background: Trusted Computing
and Remote Attestation

The broad goal of trusted computing is to add com-
ponents and mechanisms to open, commodity sys-



tems to bestow on them some of the properties of
high-assurance closed systems. This is done using a
combination of hardware and software support. It
requires three core mechanisms:

• Secure boot: to make sure that the system
is booted into a trusted operating system that
adheres to some given security policy. If such a
mechanism is not provided, an adversary could
boot the system into a modified operating sys-
tem that bypasses the security policy.

• Strong isolation: to prevent the system from
being compromised after it has been booted,
and to prevent applications from tampering
with each other.

• Remote attestation: to certify the authen-
ticity of software being run by a remote party.

The first two guarantee integrity — that the system
was not tampered with since it was last turned off
(secure boot), and that execution of programs will
not be tampered with (strong isolation). The third
has to do with authenticity — to be sure of the
identity of a remote party or program. The focus of
this paper is remote attestation.

At the root of the attestation process is a hardware
device called a trusted module (TM). This has em-
bedded in it the private key of a public-private key-
pair. This key-pair is certified by a certification au-
thority (CA). The TM also has a small amount of
non-volatile storage. A hash of the BIOS is signed
using the TM’s private key and stored here. At
boot-up, control is first passed to the TM. It re-
computes the hash of the BIOS, and compares it
with its stored hash. If they are the same, then we
know that the BIOS has not been tampered with,
and control is passed to the BIOS. The BIOS does
a similar check before passing control to the boot-
loader. And the boot-loader does a similar check
before passing control to the operating system. All
layers along this chain have their own public-private
key-pair, which is certified (signed using the private
key) by the layer immediately preceding it in the
chain. This in turn is used to certify the layer im-
mediately above it. Precisely, each layer signs two
things of the layer above it: a hash of its executable
image, and its public key. This binds the public key
to the software.

Note that the private key of every layer along this
chain must be kept secret from the layer immedi-

ately succeeding it. Thus, the BIOS must be un-
able to read the TM’s private key, the boot-loader
must be unable to read the BIOS’s private key and
so on. At the successful completion of this chain
of checks, the system is guaranteed to have booted
into a trusted, untampered operating system.

Thus, a combination of hardware (the trusted mod-
ule) and software (used for secure booting and iso-
lation) is needed to guarantee both integrity and
authenticity of a trusted system. The trusted com-
puting base of this setup consists of the hardware
trusted module, and a trusted operating system that
handles booting, and enforces strict isolation be-
tween applications.

2.1 Remote Attestation — and its prob-
lems

Remote attestation is the process by which an appli-
cation authenticates itself to a remote party. When
asked to authenticate itself, an application asks the
operating system for an endorsement. The oper-
ating system signs a hash of the executable of the
application. The entire certificate chain, starting
from the trusted module all the way up to the ap-
plication, is sent to the remote party. The remote
party verifies each certificate of this chain, and also
checks that the corresponding hashes are of software
it approves.

The attestation process must result in the client and
server sharing a secret, or else the session can be
easily hijacked (e.g. by doing the attestation us-
ing one program, and further communication using
another).

This method of remote attestation suffers from sev-
eral critical drawbacks. Briefly, they are:

• It says nothing about program behavior

• It is static, inflexible and inexpressive

• Upgrades and patches to programs are hard to
deal with

• It is fundamentally incompatible with a widely
varying, heterogeneous computing environment

• Revocation is a problem

We discuss each of these in more detail below.



The most critical shortcoming of remote attestation
is that it is not based on program behavior. Even
though what is fundamentally sought is some as-
surance of program behavior (with respect to some
security policy), remote attestation certifies some-
thing completely different. It simply certifies what
exact executable is running. Any assurances about
the behavior of the program are taken on trust. It
is possible for an attested program to have bugs, or
otherwise behave maliciously.

Remote attestation defined in this way is completely
static and inflexible. It can convey no dynamic in-
formation about the program, such as its runtime
state, or the properties of the input it is acting upon.
It is a one-time operation done at the beginning of
a network protocol.

Another problem is that upgrades and patches are
hard to deal with. Linear upgrades from one version
to the next can be dealt with by simply updating
the list of “approved” software that a remote party
uses. In closed and tightly controlled systems such
as ATMs, this is tractable.

The situation with widely available commodity soft-
ware is completely different. As is increasingly com-
mon today, upgrades and patches are released very
frequently. Also, software is patched more often
than it is upgraded. There are usually multiple
patches for multiple bugs and insecurities for a given
program. Any subset of these patches may be ap-
plied in any order. This results in an exponential
blowup in the space of possible binaries for a pro-
gram.

In such a scenario, remote attestation faces prob-
lems at both ends of the network. Servers have to
manage the growing intractability of maintaining a
very large list of “approved software”, which is likely
to always be behind the current state. Clients, on
the other hand, may have to hold off on applying
patches or on upgrading, simply to be able to work
within a remote attestation framework.

Today’s computing ecosystem is extremely varied
and accommodates a spectrum of heterogeneous
systems with widely varying capabilities. These
systems range from high-end supercomputers, to
consumer devices such personal computers, hand-
helds, cellphones and watches, and even ubiqui-
tously embedded microprocessors. Thus, a high pre-
mium is placed on portability and interoperability.
This is one reason why cross-platform portable so-

lutions such as Java are so popular. Remote attes-
tation, however, with its stress on certifying par-
ticular platform-specific binaries, is fundamentally
incompatible with this reality. Just as with man-
aging upgraded and patched versions of software,
certifying programs that run on a variety of plat-
forms and that must inter-operate with each other,
quickly becomes intractable.

Remote attestation inherits a problem from public-
key cryptography — revocation. Once a certifica-
tion authority issues a certificate, it is very hard to
revoke. One method is to have publicly available
certificate revocation lists (CRLs) which are looked
up at regular intervals. Thus, there may be some
time lapse between a certificate being revoked, and
access being denied to it. Checking with some re-
vocation infrastructure (such as a CRL) at every
attestation would be very inefficient.

3 Semantic Remote Attestation

The shortcomings of traditional ways of remote at-
testation can be traced back to one root cause —
what is desired is attestation of the behavior of soft-
ware running on a remote machine, but what actu-
ally gets attested is the fact that a particular binary
is being run.

Whether a remote party is running, say, Outlook
5.1, is not per se the information that is sought.
What is sought is whether that particular program
abides by some security policy. However, all that
traditional remote attestation is able to certify is
simply what exact binary code is running on a re-
mote platform. From this, an indirect implication
is drawn about the program’s behavior. It is very
important to realize that such an assurance gained
about a program’s behavior is based purely on trust,
not on verification. Given the knowledge of what
exact program is running on a remote platform, we
trust it to behave according to a given policy be-
cause, essentially, the vendor of the software claims
so. The chain of cryptographic certificates binds
this claim to the vendor, and the program.

This is a direct consequence of using purely crypto-
graphic methods for remote attestation. Cryptogra-
phy is good at certifying entities — it is not suitable
for certifying behavior.



The solution we propose leverages the techniques
of language-based security and virtual machines.
Language-based security [21, 25] has been vari-
ously defined as “a set of techniques based on pro-
gramming language theory and implementation, in-
cluding semantics, types, optimization and verifica-
tion, brought to bear on the security question” and
“leveraging program analysis and program rewriting
to enforce security policies”. It derives assurances
about the behavior of the code by looking at the
code itself.

Recent and very promising examples of this
approach include proof-carrying code[24], typed
assembly language (TAL), inlined execution
monitors[14], and information flow type systems[23].
These techniques can be thought of as falling into
two major categories — program rewriting and
program analysis. Program analysis covers a
variety of techniques that statically try to check a
program’s conformance to a security policy. The
primary example of this is type-safe programming
and types-based approaches to security such as
TAL. Program rewriting is a complementary set
of techniques which aim to enforce security by
rewriting programs to conform to a security policy.
Inlining security monitors is an example of this
class of techniques. The primary advantage of the
language-based approach to security is that it is
flexible and can easily express fine-grained security
policies.

3.1 Using a Trusted Virtual Machine
for Attestation

We propose making remote attestation more flexible
and expressive by leveraging language-based tech-
niques and virtual machines. The goal is to at-
test program behavior, not a particular binary. Our
domain is platform-independent mobile code that
runs on a virtual machine. Instead of a trusted op-
erating system, we use a trusted virtual machine,
or TrustedVM, to attest to remote parties various
properties of code running within it. Software up
to, and including, the virtual machine, still has to
be trusted, and attested using the standard “signed-
hash” method.

In this paper, we use the term virtual machine (VM)
to mean a language-based virtual machine that exe-
cutes some form of platform-independent code. The
most widespread example of such a virtual ma-

chine is the Java Virtual Machine. It is important
to differentiate this from virtual machine monitors
(VMM) that virtualize a hardware architecture, and
present an interface exactly like, or very similar to,
raw hardware. Examples of VMMs are VMWare,
and Disco [9].

Requests for remote attestation are now made to
the TrustedVM. These requests ask for the enforce-
ment or checking of specific security policies on code
that is being run by the TrustedVM. Thus, what is
enforced is not the execution of a particular binary,
but security policies and other constraints specified
by a remote party.

There are two key observations that enable our
TrustedVM approach:

• Firstly, code expressed in a portable representa-
tion (e.g. Java bytecode) contains high-level in-
formation about the code — such as its class hi-
erarchy, method signatures, typing information
etc. The presence of this high-level informa-
tion, as well as the fact that code is expressed
in a platform independent format, makes such
code very amenable to program analysis. A
trusted virtual machine can attest to high-level
meta-information about a program, as well as
the results of some code analysis done on a pro-
gram.

• Secondly, code runs completely under the con-
trol of a virtual machine, and so its execution
can be explicitly monitored. Thus, a trusted
virtual machine can attest to dynamic proper-
ties regarding the execution of a program, or
its inputs.

Some examples of properties that a trusted virtual
machine can attest are:

• TrustedVM attests properties of classes:
the remote party may require class A to sub-
class a well-known class B, or some interface
C. This may be because extending B or C con-
straints the behavior of A in some way. For
example, C may be a restricted interface for
input-output operations, that disallows arbi-
trary network connections.

• Attesting dynamic properties: the pro-
gram being attested runs under complete con-
trol of a TrustedVM. Thus, a TrustedVM can



attest to dynamic properties. This includes the
runtime state of the program and properties of
the input of the program.

• Attesting arbitrary properties: A Trust-
edVM has the ability to run arbitrary analysis
code(within the limits set by the security policy
of the local host) on the program being attested
on behalf of the remote party. Thus the remote
party can test for a wide variety of properties
by sending across code that does the appropri-
ate analysis.

• Attesting system properties: a remote
party can send across code that tests certain
relevant system and virtual machine properties,
and the TrustedVM can attest its results. For
example, before running a distributed comput-
ing program (such as SETI@Home, or Fold-
ing@Home), the server may want to test the
floating point behavior of the system and vir-
tual machine by having the TrustedVM run a
test suite of floating point programs.

Note that this sort of attestation is a much more
fine-grained and semantically richer operation than
signing the hash of an executable image — we call
this semantic remote attestation. What is now at-
tested is not the presence of a particular binary exe-
cutable, but relevant properties of a program. This
has the effect of explicitly separating two concerns
that were earlier merged into one — identity and be-
havior. Claims about code behavior are now made
by the trusted virtual machine explicitly checking
or deriving them.

A direct consequence of this is that now a variety of
different implementations of some functionality will
be able to function within our remote attestation
framework — as long as they satisfy the proper-
ties required of them. Cryptography now plays the
part of binding this claim about code behavior to
an entity which is qualified to make such claims —
a trusted virtual machine.

3.2 Advantages of Semantic Remote
Attestation

Semantic remote attestation has a number of ad-
vantages over traditional remote attestation:

• It overcomes the most critical shortcoming of

traditional remote attestation — semantic at-
testation reasons about the behavior of the
code, without tying that reasoning to a par-
ticular executable binary.

• It is dynamic in nature — it can attest to var-
ious dynamic properties of a program, such as
its runtime state at interesting program points,
or input to the program. As opposed to tradi-
tional remote attestation, it is not one-time.

• It is flexible — a TrustedVM can carry out ar-
bitrary code analyses and attest its results.

Semantic remote attestation done in virtual ma-
chines with platform-independent code enables
truly new functionality that was not possible be-
fore, because this sort of high-level attestation of
program properties cannot be done using native
code. Firstly, native code is too low-level, and does
not have enough high-level structure and informa-
tion to drive the sort of analysis our TrustedVM
does. Secondly, some of the functionality of a Trust-
edVM (such as a server sending code to analyze or
monitor the program being run) requires platform-
independent code.

Semantic attestation can allow for the possibility
that some of the properties required of a program
may not be satisfied. In that case, the remote party
can lower its expectations of how trustworthy the
behavior of the program is likely to be, and proceed
accordingly, rather than terminate the whole proto-
col altogether. Thus, properties that make an appli-
cation trustworthy can now be thought of as falling
within a range, rather than one all-or-nothing attes-
tation. This has an important consequence for back-
ward compatibility. Most common network proto-
cols today (TCP, HTTP) assume a completely un-
trusted client. Using a flexible approach to attesta-
tion allows these untrusted protocols to be gradually
endowed with trusted capabilities, and the ability to
deal with clients of varying trustworthiness.

Semantic remote attestation also allows attestation
without locking the client into a particular plat-
form, or binary. By far the most scathing critiques
of trusted computing have focused on the idea of
remote attestation being used to lock consumers
into a particular platform, thus extending monopoly
control[6]. Semantic remote attestation, however,
explicitly separates identity from behavior, and al-
lows flexible attestation of code properties, while



Figure 1: Top-level architecture for dynamic check-
ing in a TrustedVM

allowing inter-operation of a variety of implementa-
tions that satisfy these properties.

4 Implementation and Results

Semantic remote attestation is a dynamic process,
and attestation of properties can be done at various
points during the lifetime of a distributed applica-
tion. We refer to the machine running the Trust-
edVM as the client, and the machine which is in-
terested in attesting programs on it as the server.
The TrustedVM on a client machine runs an attes-
tation service, whose job is to check or analyze the
behavior of applications running under the Trust-
edVM, and answer attestation requests from other
machines. The server has two channels of communi-
cation with the client: one with the client applica-
tion, and another with the attestation service, with
which the server communicates to find out about the
behavior of the client application. This is shown in
Figure 1. The communication between the server
and attestation service must be secure and must
guarantee integrity and authenticity. This can be
done using various cryptographic protocols, such as
SSL.

Semantic attestation certifies properties of programs
running in a virtual machine. The virtual machine
itself, however, runs on top of an operating system.
To certify the layers of software up to, and including
the virtual machine, still requires traditional remote
attestation. This is done in the standard way using

signed hashes.

The trusted base of a virtual machine also includes
its standard libraries. Even if the virtual machine
itself is trustworthy, an adversary could modify the
standard system libraries for malicious ends — for
example, by substituting the standard security man-
ager class with a weaker one. Thus, the operat-
ing system certifies both the virtual machine binary,
and the libraries it uses.

At the time of this writing, we did not have access
to trusted hardware. Thus, the certificate chains we
emit are not rooted in a trusted hardware module,
but in the operating system. We do not foresee any
conceptual difficulties in interfacing to real trusted
hardware, since it is a matter of extending the cer-
tificate chain.

We now explain the implementation of two applica-
tions that we implemented on our prototype Trust-
edVM.

4.1 A peer-to-peer protocol

To gain experience with building and using a Trust-
edVM for semantic attestation, we chose peer-to-
peer networks as one example domain. In partic-
ular, we considered the Gnutella P2P protocol[2].
Peer-to-peer communication is particularly interest-
ing as a trial application for remote attestation. It
is inherently distributed in nature, and current pro-
tocols vest a tremendous amount of trust in clients
for correct operation of the network. This has led
to various security and policy violations, and has
even been used to stage denial-of-service attacks
[26, 13, 8]. In the case of the Gnutella protocol, the
reason for these security weaknesses is that peers
believe each other without verification. For exam-
ple, when given the result of a query(a query hit in
Gnutella terminology), there is no guarantee that
the given machine will actually have the content
asked for — the query result can be easily faked
and is not checked. This can be exploited to mount
a denial-of-service attack against a particular ma-
chine by simply flooding the network with query
results all pointing to that one machine. The same
holds for routing messages that announce which ma-
chines are part of the P2P network. These routing
messages (called pong messages in Gnutella, because
they are sent out as replies to ping messages to find
out network topology) can also easily be faked.



Our implementation is based on the Java Virtual
Machine. We used the Java Development Kit ver-
sion 1.4.1 from Sun, running on an Intel Pentium-M
1.3 Ghz machine with 384 MB of RAM.

We modified the standard Java network socket class
so that network communication over sockets could
be captured and monitored. An API is exposed to
do this. This captured traffic is sent to a proto-
col watcher which checks the protocol messages for
conformance with a security policy, and informs the
server accordingly. The Java bytecode for protocol
watcher itself is sent by the server to the attestation
service on the client, since it embodies the policy the
server is interested in enforcing on the client.

Here we see the utility of using a machine-
independent code representation — the protocol
watcher can be sent to and executed on various
platforms, as long as they have a Java TrustedVM.
Note that the protocol watcher is independent of the
application. Various implementations of a protocol
can be checked by same protocol manager.

We implemented a protocol very similar to Gnutella,
though somewhat simpler in its wire format (to sim-
plify debugging and parsing of network messages).
The protocol watcher examined all outgoing mes-
sages from the client, and checked two properties:

• for pong messages, make sure that the IP ad-
dress in the message is the same as that of the
client.

• for query hit messages, make sure that the file
that is mentioned in the query actually exists
on the client.

These two properties were checked in particular be-
cause they can exploited to mount denial-of-service
attacks, and can be easily spoofed — they are com-
pletely unchecked.

We have not yet implemented a protocol checker
for multi-hop messages, but this can be done using
transitive certificate chains.

At the time of this writing, we are not aware of
any applications that use functionality provided by
trusted hardware, so we do not have a meaningful
comparison benchmark. However, we can measure
the overhead that protocol checkers impose on net-
work latency. To measure this, we measured the

time it took for 5000 subsequent ping/pong, and
query/queryhit messages to travel between two ma-
chines. Both were on a 100 Mbps Ethernet network.
This was compared with the same benchmark run
without a protocol checker. Within experimental er-
ror, the timings were the same — between 9.5 and
10.2 seconds for both cases. Increasing the number
of iterations to 10,000 yielded similar results — both
cases took between 18.5 and 20.8 seconds.

This result is not a surprise since the checks are sim-
ple, and network round-trip-time dominates compu-
tation time. Even if the checks are more complex,
in realistic situations they are only done periodi-
cally, and not in a tight loop. Thus, end-to-end per-
formance of applications is still likely to show very
little overhead.

We can distinguish between two kinds of applica-
tions that run on a TrustedVM. Legacy applications
are those that do not explicitly make use of trusted
functionality such as remote attestation. We just
presented an example of a legacy untrusted appli-
cation being attested by a TrustedVM, completely
transparently. New applications that are written
with trusted functionality in mind can use a much
broader range of a TrustedVM’s facilities.

We also unsuccessfully tried writing protocol watch-
ers by using bytecode rewriting[12]. This turned
out to be unsuitable for the task because load-
time rewriting of system classes is not allowed
in the JVM. Rewriting bytecode at load-time re-
quires a specialized class loader, that transforms the
bytecode before handing it off to the virtual ma-
chine. However, all system classes (java.lang.*,
java.net.* etc) must be loaded by the “primi-
tive” system classloader. Systems such as SASI[14]
and Naccio[15] inline reference monitors by rewrit-
ing Java bytecode. However, they transform the
classfiles off-line, and not at load-time.

4.2 A distributed computing applica-
tion

The previous application was an example of dy-
namic enforcement of security properties within a
TrustedVM. A TrustedVM can also attest static
properties, of both the system it is running on, as
well as the code that it runs. The attestation re-
quester sends across code for testing various prop-
erties, which the TrustedVM then executes. The



results are signed, and sent back to the attestation
requester (see Figure 2). The results of these tests
can then affect further computation and communi-
cation between the two parties.

This is useful for distributed computing. There are a
number of popular distributed computing projects,
such as SETI@Home [20] and Folding@Home[27],
that distribute work units out to a large number
of clients. They face a common problem — getting
some assurances about the behavior and capabilities
of their numerous clients. There is a complex trust
relationship between the server and client, since the
server expects the client to use a particular algo-
rithm, compute answers within certain bounds, and
not return maliciously crafted or incorrect answers.
Currently, this problem is solved to some extent by
measures such as redundancy and keeping track of
client behavior over a period of time[22].

Using a semantic remote attestation framework can
benefit a distributed computing application in the
following ways:

• The server can test various properties of both
the system, as well as the client, by having the
TrustedVM execute tests for it. This would
give the server a better idea of the capabili-
ties of the platform as well as the client. This
knowledge can be used both for giving the client
suitable work units, and estimating how “good”
its answers are likely to be.

• Testing for properties in this way makes the
trust relationships between the client and
server explicit. Now, instead of being implicit
and being taken on trust, they are explicitly
enforced or checked by the TrustedVM.

To experiment with these concepts, we took
an existing distributed computing project, exam-
ined its client-server trust relationships, and re-
implemented it to run on our TrustedVM. We
chose a distributed computing project that tries to
find large Mersenne Primes — the Great Internet
Mersenne Prime Project, or GIMPS[4]. Mersenne
primes are prime numbers of the form 2n − 1. Just
like SETI@Home[20], GIMPS distributes its compu-
tation over a large number of clients on the Internet.
We chose GIMPS because it divides the problem
into three subproblems, each with different compu-
tational needs. They are:

Figure 2: Top-level architecture for using test suites
in a TrustedVM

1. First time primality check: This is the most
computationally intensive of the three problems
and is assigned to the fastest clients. It also
requires double precision floating point support
for doing a fast Fourier transform (FFT).

2. Double check assignment: It verifies the results
of the first time primality check. The workload
is smaller in this case and hence is assigned to
slower clients. It also requires double precision
floating point support.

3. Factoring work: This tries to eliminate a few
test candidates by finding small factors using
some common factoring algorithms. This re-
duces candidates for more expensive primality
checks. Since this least expensive of the three
this gets assigned to the slowest clients.

For a full treatment of the mathematical back-
ground of this problem see [4].

Many different implementations of the client exist
[1]. The various clients differ from each other in the
following ways

• The clients have subtle differences in the algo-
rithms used.

• Some of the clients are highly specialized for
a particular architecture and hence lose porta-
bility. Others have to be compiled for various
architecture/OS combinations.



• The performance of different clients differ, even
on the same platform due to implementation
differences.

• The accuracy of the clients also differ hence re-
sults slightly vary. This is mainly because of
the different algorithms used.

• More surprisingly the results differ for the same
client on different platforms because of the dif-
ferences in the underlying hardware.

Thus, GIMPS suffers from the same problems of dis-
tributed computing as pointed out above: its client-
server trust relationships are implicit, and the server
has very little information about the capabilities of
the clients. A client is expected to behave reason-
ably because it is specific to a particular platform,
and its behavior has been tested on that platform.

These problems can be solved by running this appli-
cation on a TrustedVM. The server now explicitly
tests the relevant capabilities of the client-side by
asking the TrustedVM to execute a test suite, and
return the attested results. This solution also has
the added advantage of being portable across any
range of architectures that implement a TrustedVM.

The two capabilities that are relevant for the
GIMPS project are: floating point precision and the
computational power. Our test suite has a compoe-
nent for each.

The most computationally intensive routine in the
prime factorization problem is computing a fast
Fourier transform and its inverse. Hence to test
for computation speed we execute a one-dimensional
fast Fourier transform over small but typical data
and time it. The result of this test helps the server
to give the client an appropriate work unit.

For floating point precision we are interested in test-
ing if the platform implements a double precision
floating point operations and also if it complies with
the IEEE 754 standard for floating point. In par-
ticular we used the Java port of the Elefunt test
suite[3]. Elefunt[11] is a test suite to check for the
compliance of floating point implementation of the
various functions with the IEEE floating point stan-
dards. Since the FFT and the inverse FFT use the
sine and the cosine functions the two tests that we
are interested in are the ones that determine the ac-
curacy of these functions. Depending on results we
determine whether the client is accurate enough to
run the computations.

Thus, the server now has reliable information about
the clients it is communicating with. Using this in-
formation, it can both vary the work units given
out to clients, as well as make estimates about the
accuracy of their answers. Moreover, the whole ap-
plication is now portable, and does not depend on
specific clients.

5 Related Work

To the best of our knowledge, there is no prior work
that aims to make the mechanism of remote at-
testation more fine-grained, dynamic and platform-
independent. However, the field of trusted comput-
ing has attracted a great deal of attention recently.

Garfinkel et. al.[17] have proposed the TerraVM[16]
virtual machine monitor architecture to interface
with underlying trusted hardware. Their architec-
ture provides two VMM abstractions to software —
an open box VMM, and a closed box VMM. The
open box VMM simply provides a legacy, untrusted
interface. This allows old operating systems and
software to run unmodified on it. The closed box
VMM, however, provides an interface to underly-
ing trusted hardware that new software can use. A
number of such VMMs can execute on bare hard-
ware. They are strongly isolated from each other,
and have their own encrypted storage.

There are many important differences between Ter-
raVM and our TrustedVM architecture. While Ter-
raVM provides an interface just like real hardware,
the TrustedVM exposes a much higher-level inter-
face. It executes platform-independent code. Their
goal is providing strong isolation between applica-
tions running in different VMMs, ours is to provide
a better technique for remote attestation. Most
importantly, TerraVM uses the standard “signed-
hash” method of remote attestation. The authors
acknowledge some of the shortcomings of standard
remote attestation, and call for “appropriate tech-
nical and legal protections ... to minimize abuse”.

The goal of TerraVM is similar to Microsoft’s Palla-
dium architecture. Palladium is said to have a high-
assurance trusted microkernel running on hardware
(called the nexus) that provides strong isolation be-
tween legacy untrusted and newer trusted applica-
tions, as well as among trusted applications. Un-
fortunately, to our knowledge there is no published



technical documentation about Palladium, which
makes it hard to make an in-depth comparison.

The Cerium system[10] aims to provide tamper-
evident execution. The goal is to know if the re-
mote execution of a program was carried out in an
untampered manner. They use a physically tamper-
resistant CPU block. This executes all code — it is
not a co-processor. Tamper-resistance is provided
both at the hardware level, by physical means, and
at the software-level, by encrypting all data (includ-
ing cache data that is written back to main mem-
ory). Semantic remote attestation is orthogonal to
this — a TrustedVM could use Cerium as an under-
lying hardware architecture.

The Digital Distributed System Security
Architecture[18] had many of the features of
today’s TCPA specification[5], including secure
bootstrapping, and remote attestation of system
software using signed hashes. The Aegis system[7]
provided secure bootstrapping. Every layer of
software from the hardware up was checked (using
stored hashes) and control was passed to it only
if it was untampered. Both these systems did not
focus on improving remote attestation.

The Trusted Computing Group (TCG), has begun
producing specifications of a hardware trusted mod-
ule to be used in personal computers[5]. They call
it a trusted platform module (TPM). Some models
of IBM ThinkPad laptops contain a similar mod-
ule. A commodity trusted computer will couple this
trusted module with software that provides secure
booting and strong isolation.

6 Discussion and Future Work

There are many avenues for further investigation.
Protocol watchers and test suites, as presented here,
are only two of many kinds of expressive attestation
a TrustedVM is capable of.

A TrustedVM is capable of attesting the results of
some static analysis done on code. However, there
are not many static analyses of code for properties
of interest to a remote server. Most static anal-
yses and runtime enforcement policies so far have
been geared towards protecting a host from mali-
cious mobile code. Thus, the emphasis has been
on type-safety, information-flow, and resource con-

trol and other safety issues. The emphasis is differ-
ent for remote attestation. Servers want to know if
the application is obeying some high-level semantic
rules. One candidate for an analysis that may be of
interest to servers is information flow[23]. Such an
analysis would convince the server that a client is
not leaking the results of some confidential compu-
tation, or data.

In our current implementation, the policy a server
wants enforced is embodied in the protocol watcher
or test suite. We would like to develop a systematic
language for expressing remote attestation requests.
With “signed-hash” attestation, this was not an is-
sue. But a TrustedVM provides a broad range of
fine-grained attestation capabilities, and a language
is probably the right tool to make full use of them.

We would also like to gain experience with devel-
oping more applications that use the functionality
provided by a TrustedVM. Distributed firewalls[19]
implement a network traffic policy at the end-points
of a network, rather than at one single point. This
way of distributing trust seems like a good match
for implementation on a TrustedVM.

The ability to communicate to a server what par-
ticular property of a program could not be certified
can be very useful. Using TrustedVMs, this infor-
mation can be communicated, and the server can get
detailed information about what desired properties
are not present in a client program. It can then
make an informed decision about either decreasing
its trust in this particular instantiation of a protocol,
or stopping altogether. Thus, the server gains some
dynamic feedback about the trustworthiness of its
clients. We believe this property can be fruitfully
exploited to ”port” a variety of untrusted network
protocols (TCP, HTTP etc) to a trusted computing
framework in a gradual manner, and yet have vari-
ous implementation of them inter-operate. This is in
stark contrast to the all-or-nothing model that stan-
dard “signed-hash” remote attestation provides —
attestation either passes or fails — there is no gra-
dation. This would also provide a gentler upgrade
path for applications as trusted hardware becomes
increasingly available in the market.



7 Conclusion

Standard ways of doing remote attestation are based
purely on cryptography, and suffer from many crit-
ical shortcomings — they are static, inexpressive,
inflexible and do not scale. Most importantly, they
do not speak about program behavior — they can
only attest to the presence of a particular binary.
It is possible for an attested binary to have bugs
and not obey the security policy a server was ex-
pecting it to. Remote attestation is hard to scale
up to a flood of software patches and upgrades. It
also does not accommodate a varied, homogeneous
computing environment very well.

We have introduced a novel technique for remote at-
testation based on language-based virtual machines.
The core idea behind our technique, called seman-
tic remote attestation, is to use a language-based
virtual machine that executes a form of platform-
independent code. Software up to and including
this virtual machine is trusted. However, the vir-
tual machine can certify various properties of code
running under it by explicitly deriving or enforc-
ing them. This can be done in many ways, such as
observing the execution of programs running in a
VM, or analyzing the code before execution. This
is particularly easy to do with high-level platform-
independent code that has a lot of information
about the structure and properties of code.

The fact that “trusted computing”, and its core
technique, standard remote attestation, can lock
consumers into a particular program or platform
has been a very widely expressed fear. A key ad-
vantage of our approach is that reasoning about the
behavior of a program is now not tied to a partic-
ular binary. Semantic remote attestation checks for
program properties, and works with different im-
plementation of the same program as long as they
satisfy the properties required of them.

To validate our ideas we have implemented a pro-
totype TrustedVM by modifying a Java virtual ma-
chine to observe the behavior of network protocols.
We have used this prototype to check the untrusted
behavior of a Gnutella-like peer-to-peer protocol.
Specifically, we check that messages about network
topology and query results are not spoofed. Our
measurements show that the overheads of checking
are negligible, at least for the simple checking this
particular application needs. However, even the few
simple checks we do are sufficient to overcome some

of the most well-known weaknesses in peer-to-peer
protocols.

Trusted computing introduced the concept of re-
motely supervised execution - the idea that a remote
server will be able to monitor as well as change the
execution of a program on a client machine. Re-
mote attestation is the key to doing this. However,
current architectures for attestation are able to im-
plement this idea in only a very limited way. Seman-
tic remote attestation takes this idea to its logical
conclusion — to have fine-grained, dynamic control
over the monitoring and execution of an application.

References

[1] GIMPS source code timings page. http://
hogranch.com/mayer/gimps_timings.html.

[2] The gnutella protocol specification.
http://www9.limewire.com/developer/
gnutella_protocol_0.4.pdf.

[3] Java port of elefunt.
http://www.math.utah.edu/ beebe/software/java/.

[4] The Great Internet Prime Mersenne Search:
GIMPS. http://www.mersenne.org/.

[5] T. C. P. Alliance. TCPA PC-
specific implementation specification
(http://www.trustedcomputing.org), May
2001.

[6] R. Anderson. Cryptography and competition
policy — issues with trusted computing. In
Workshop on Economics and Information Se-
curity, May 2003.

[7] W. Arbaugh, D. Farber, and J. Smith. A secure
and reliable bootstrap architecture. In IEEE
Symposium on Security and Privacy, 1997.

[8] S. Bellovin. Security aspects of napster and
gnutella. In USENIX Security Symposium,
Aug. 2000.

[9] E. Bugnion, S. Devine, K. Govil, and M. Rosen-
blum. Disco: Running commodity operat-
ing systems on scalable multiprocessors. ACM
Transactions on Computer Systems, 15(4):412–
447, 1997.

[10] B. Chen and R. Morris. Certifying program
execution with secure processors. In USENIX
HotOS Workshop, May 2003.



[11] W. Cody and W. Waite. Software manual for
the elementary functions. Prentice Hall, 1980.

[12] G. Cohen, J. Chase, and D. Kaminsky. Auto-
matic program transformation with JOIE. In
1998 USENIX Annual Technical Symposium,
pages 167–178, 1998.

[13] Z.-Y. Demetris. Exploiting the security weak-
neses of the gnutella protocol, Mar. 2002.

[14] Erlingsson and Schneider. SASI enforcement
of security policies: A retrospective. In
NSPW: New Security Paradigms Workshop.
ACM Press, 2000.

[15] D. Evans and A. Twyman. Flexible policy-
directed code safety. In IEEE Symposium on
Security and Privacy, pages 32–45, 1999.

[16] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum,
and D. Boneh. Terra: A virtual machine-based
platform for trusted computing. In Proceed-
ings of the 19th Symposium on Operating Sys-
tem Principles(SOSP 2003), October 2003.

[17] T. Garfinkel, M. Rosenblum, and D. Boneh.
Flexible os support and applications for trusted
computing. In Proceedings of the 9th Workshop
on Hot Topics in Operating Systems (HotOS-
VIII), May 2003.

[18] M. Gasser, A. Goldstein, C. Kaufman, and
B. Lampson. The digital distributed system se-
curity architecture. In Proc. 12th NIST-NCSC
National Computer Security Conference, pages
305–319, 1989.

[19] S. Ioannidis, A. D. Keromytis, S. M. Bellovin,
and J. M. Smith. Implementing a distributed
firewall. In ACM Conference on Computer
and Communications Security, pages 190–199,
2000.

[20] E. Korpela, D. Werthimer, D. Anderson,
J. Cobb, and M. Lebofsky. Seti@home — mas-
sively distributed computing for SETI. Com-
puting Science and Engineering, 3(1), 2001.

[21] D. Kozen. Language-based security. In Math-
ematical Foundations of Computer Science,
pages 284–298, 1999.

[22] D. Molnar. The SETI@home problem.
http://www.acm.org/crossroads/columns/
onpatrol/september2000.html, Sept. 2000.

[23] A. C. Myers. JFlow: Practical mostly-static in-
formation flow control. In Symposium on Prin-
ciples of Programming Languages, pages 228–
241, 1999.

[24] G. C. Necula. A scalable architecture for proof-
carrying code. Lecture Notes in Computer Sci-
ence, 2024:21+, 2001.

[25] F. B. Schneider, G. Morrisett, and R. Harper.
A language-based approach to security. Lecture
Notes in Computer Science, 2000:86–??, 2001.

[26] D. Wallach. A survey of peer-to-peer security
issues. In International Symposium on Software
Security, Nov. 2002.

[27] B. Zagrovic, E. Sorin, and V. Pande. Beta hair-
pin folding simulations in atomistic detail using
an implicit solvent model. Journal of Molecular
Biology, 317(4), 2002.


