
USENIX Association

Proceedings of the Third Virtual Machine
Research and Technology Symposium

San Jose, CA, USA
May 6–7, 2004

© 2004 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

A Virtual Machine Generator for Heterogeneous Smart Spaces

Doug Palmer
CSIRO ICT Centre

Doug.Palmer@csiro.au

Abstract
Heterogenous smart spaces are networks of communi-
cating, embedded resources and general-purpose com-
puters that have a wide spread of power and capabilities.
Devices can range from having less than a kilobyte of
RAM to many megabytes.

Virtual machine techniques can be used to control
some of the inherent complexity of a heterogeneous
smart space by providing a common runtime environ-
ment. However, a suitably rich, single virtual machine
implementation is unlikely to be able to operate in all
environments.

By using a virtual machine generator and allowing
virtual machines to be subsetted, it is possible to provide
numerous virtual machines, each tailored to the capabil-
ities of a class of resources.

1 Introduction
A heterogeneous smart space, such as the
SmartLands[18] smart space contains many differ-
ent sensors and controllers, each with their own set
of capabilities and, in particular, computing power.
Individual devices can range in power and size from a
Berkeley Mote (128Kb flash memory, 4Kb SRAM)[4]
to a PDA (64Mb RAM)[16]. The smart space, as
a whole, can also have access to general-purpose
computing resources[21].

A contrast to a heterogeneous smart space is the sort
of homogeneous smart space as the Ageless Aerospace
Vehicle skin[14], or a Motes network, where the com-
puting resources available tend towards uniformity.

Heterogeneous smart spaces can be expected to ap-
pear whenever longevity and cost are overriding issues;
in a farm or building, for example. There are a number
of factors driving heterogeneity in these environments:

• Pre-existing resources may be built into the smart
spaces environment — sensors in the fabric of a
building, for example — and difficult to replace or
upgrade. A sensor and its associated processing el-
ement may be expected to last for the lifetime of
the smart space, leading to a 20- or 30-year gap be-
tween the oldest elements and the latest introduc-
tions, with an associated disparity in performance.

• Resources are introduced into the smart space for a
variety of purposes — a temperature sensor and an

automatic feeding gate, for example — and may be
selected for reasons other than compatibility.

• Those resources that can be upgraded will, most
likely, be upgraded piecemeal, when funds and suit-
able products are available.

• The purpose of the smart space environment may
change. For example, a warehouse may be sold and
renovated as residence.

The environments which generate heterogeneous
smart spaces also tend to generate a plethora of distinct
applications, all competing for resources. On a farm,
for example, the stock protection, environment monitor-
ing and irrigation systems may all want to use a single
temperature sensor for a variety of purposes. New appli-
cations may be added, and old ones removed, in an ad
hoc manner. These applications will tend to be of ordi-
nary commercial quality, rather than safety-critical qual-
ity and will often fail or go awry; the smart space as a
whole will need to be protected from rogue applications.

A feature of heterogeneous smart spaces is that com-
mon applications — building heating, stock protection,
active maps, etc. — need to be deployed into individ-
ual, complex smart spaces. To allow smart spaces to
be useful at a common, commercial level, some mech-
anism for automated customisation and deployment is
needed. There are two strands to automated customi-
sation and deployment: at the top level, a declarative
service description language model is needed, to allow
applications to abstract the resources needed to perform
a task[17]; at the bottom level, some sort of mechanism
is needed to help control the complexity inherent in an
ad hoc collection of resources with competing applica-
tions.

Figure 1 shows an example top-level deployment onto
a field smart space. The smart space consists of some
low-level soil moisture sensors with minimal process-
ing power and range, some intermediate-level fence-
post processors and a general-purpose monitoring and
management facility. The moisture sensors have been
“sown” into the field over several years. Each sowing
uses whatever agricultural sensor packages are most eco-
nomical at the time, leading to a mixture of architectures
and processing platforms. The sensors form an ad-hoc
network with each sensor connecting to any near neigh-
bours.

Field
Sensor

Network

P
os

t

Management and
Monitoring

Fence-Post
Processor

Reporting

Monitor
Gradient

Sensor
Change

Compare
Sensor

Readings

Request

Change
G

ra
di

en
t

C
ha

ng
e

W
ar

ni
ng

Figure 1: Example Smart Space Deployment

At the top level is a declarative request made by an
application to monitor the moisture gradient of the field
and raise an alarm if the gradient fluctuates outside ac-
ceptable bounds. This request must be mapped onto the
smart space by the smart space itself, since the smart
space is aware of the resources available, their capabil-
ities and their properties. In the example smart space,
sensors report any significant changes in moisture con-
tent to neighbours, which then compare the changes with
their own readings. If a fluctuation is detected, the event
is reported to a nearby fence-post processor, which col-
lates reports in a local area and notifies the monitor of
any significant changes. The deployment shown in Fig-
ure 1 only shows one instance of each routine for clarity.
Each sensor is running both the sensor monitoring and
gradient change detection routines.

A consequence of the request is that essentially iden-
tical programs need to be run on a wide range of hard-
ware platforms, corresponding to the range of sensors
that have been distributed in the field. A bottom-level
system that allows a separation between program and
implementation would help control the complexity in-
herent in a deployment across multiple resources. The
main requirements for such a bottom-level system can
be summarised as follows:

heterogeneity Multiple source representations and
multiple machine architectures need to be accom-
modated. A wide range of computing power and
space needs to be supported.

parsimony The system needs to be able to fit into the
very limited resources available on some smart

spaces environments.
economy Power consumption and network traffic need

to be kept to a minimum.
security Hostile or buggy code should have minimal

impact.
concurrency Multiple applications may need to run in-

dependently on a single resource. A single applica-
tion may not hog all the resources available.

The advantages of a common language runtime have
long been recognised when working with many machine
architectures and many languages[15]. A virtual ma-
chine allows a safe common language runtime to be
implemented, with the virtual machine preventing over-
flows and illegal, unmediated access to resources such
as sensors, processor time and memory not allocated to
the program being run.

However, some of the computing resources in a smart
space are not large enough to handle dynamic strings,
let alone something as sophisticated as a full object-
oriented environment. There is also a considerable dif-
ference in the sophistication required across the range
of resources. In the soil moisture monitoring exam-
ple, there is a considerable difference between the sim-
ple monitoring functions performed by a sensor and the
more complex array processing required in the fence-
post processor, where “significance” is determined.

The approach taken here is to make use of the com-
munications inherent in a smart space. Small resources
can use a subset of the full virtual machine, perhaps
only capable of simple integer arithmetic. More com-
plex processing can occur on larger resources, capa-

Planner

Domain
Knowledge

Code
Generator

System
Knowledge

Templates

Request Plan Code System
Management

Devices

Figure 2: Example Smart Space Code Deployment

ble of more sophisticated processing and memory man-
agement. Large scale data and system management
can be handled by general-purpose computers[21] or
by exploiting the emergent properties of multi-agent
systems[14]. An application can be partitioned into
fragments of code that can be distributed throughout a
smart space, with the low-capability resources offload-
ing sophisticated processing onto their more powerful
brethren.

To allow specialised virtual machine subsets, a vir-
tual machine generator is used. An abstract virtual ma-
chine specification, along with a description of the sub-
set needed for a particular resource, is fed into the gen-
erator. The generator then constructs source code (in C
or Java) for a virtual machine that implements the spec-
ification. This virtual machine can then be compiled,
linked with a resource-specific kernel and loaded into
the resource. Application-specific code can be loaded
into the running virtual machine across a communica-
tions network as components[20].

A sample deployment architecture is shown in Fig-
ure 2. Each device has a customised virtual machine,
with knowledge about the capabilities of that virtual ma-
chine kept in a system knowledge database. A high-level
request is given to a planner. The planner uses knowl-
edge about the structure of the smart space and the do-
main of the request to build a plan: a set of small compo-
nents (a few subroutines in size) in an intermediate lan-
guage such as Forth or a subset of C. The plan reflects
the known capabilities of the devices and the connec-
tions between the devices. Each part of the plan is com-
piled into code by a templating code generator, which
selects code generation templates based on the capabili-
ties of the target virtual machine. The code can then be
distributed to the target devices.

1.1 Related Work

Berkeley Motes provide a consistent model for the de-
velopment of smart spaces. Since Motes have a very
small memory footprint, there have been several devel-
opments designed to operate in such a constrained envi-
ronment.

The TinyOS[12] operating system has been developed
to provide support for Motes. The nesC[10] language is
a language oriented towards TinyOS applications — and
TinyOS itself. TinyOS/nesC is designed to support com-
plete static analysis of applications, including atomic op-
erations and data race detection, to ensure reliability. A
single application is linked with TinyOS and deployed as
a single unit. This approach can be contrasted with the
approach taken in this paper, which assumes multiple,
dynamic applications and the ability to kill (and reload)
misbehaving components.

The obvious advantages of using virtual machines in
smart spaces has led to the development of Maté[13] for
networks of Motes. There is a considerable overlap be-
tween Maté and the virtual machines described in this
paper: stack-based, active messages, small footprint.
However, Maté follows the general Motes philosophy:
a single program and an essentially homogeneous envi-
ronment allowing a single virtual machine implementa-
tion and instruction-level access to hardware.

Virtual machine generation has been used success-
fully with the VMGen[7] system, used to generate vir-
tual machines for GForth. The virtual machine generator
presented here shares many of the characteristics of VM-
Gen, although VMGen performs sophisticated superin-
struction generation and does not permit subsetting.

The Denali lightweight virtual machine model[23]
offers a similar model to that discussed in this pa-
per: lightweight, multiplexed virtual machines acting as
monitors and sharing resources across a network. How-
ever, the focus of Denali is on providing isolated multi-

Context

Data
Stack

Call Stack

Data
Frame

Event
FrameInstruction

Stream

String
Heap

Context Context Context

Virtual Machine Interpreter

Codec

Kernel

CPU I/OComms

Darker blocks are more hardware-specific.

Figure 3: Generic Virtual Machine Architecture

plexing on large, general-purpose systems and the para-
virtualisation techniques used in Denali would compro-
mise the goal of a common runtime.

Also suitable for larger embedded devices is
Scylla[19]. Scylla uses a register-based virtual ma-
chine that can be easily compiled into the instruction
set present in larger embedded processors, such as the
ARM. Scylla is oriented towards (just-in-time) compiled
applications, something beyond the power of many of
the resources discussed in this paper.

1.2 Overview
The paper is structured as follows: Section 2 gives a de-
scription of the generic virtual machine architecture that
is supported, a stack-based virtual machine with a range
of specific data stores; Section 3 describes the way a spe-
cific virtual machine is declared in an XML document;
Section 4 discusses code generation from a specification
to compiled virtual machine, along with some discus-
sion of the size of the generated virtual machine and of
potential optimisations; Section 5 concludes the paper.

2 Architecture
The generic virtual machine architecture is shown in
Figure 3. The generated virtual machines are stack-
based, for the reasons outlined in [6]: ease of code gen-
eration and lack of instruction decoding overhead. The
generic architecture contains a number of elements: con-

texts that contain the state of a component; a virtual
machine interpreter; a coder-decoder (codec) for mar-
shalling and unmarshalling events; a platform-specific
kernel and hardware support (communications, process-
ing and I/O for sensors and actuators). Communications
with the outside world, either as direct I/O or across a
network link are handled in terms of events. These ele-
ments are discussed in more detail below.

2.1 Contexts
Contexts provide a complete state description of a virtual
machine component. Since a resource may be manag-
ing several components, multiple contexts are supported,
with the virtual machine interpreter multi-threading non-
preemptively between them.

In addition to some state variables governing error
handling and timing, a context consists of a number of
stores of various types:

stack A LIFO stack. Stacks that grow upwards or
downwards are supported. Two distinguished
stacks are the data stack, the default stack for stor-
ing operands, and the call stack, used to manage
subroutine and event management calls.

stream A stream of data or instructions. Unlike a stack,
a stream is assumed to have a single direction, with
each read returning the next element of the stream.
The distinguished instruction steam is used to pro-
vide a stream of instructions for the interpreter.

frame An indexed data frame. Frames contain data in a
fixed position that needs to be accessed by a com-
ponent. A special frame is the dispatch frame, used
to store pointers to subroutines that service events.

heap A garbage-collected heap for storing variable-
length string or binary data.

Heaps are garbage collected by a conservative
mark and sweep, non-compacting algorithm that
performs stack and frame walks, looking for possi-
ble heap references[3]. Some of the easier misiden-
tification avoidance techniques have been used[2].
Pointers are aligned and references to heap objects
are given an unlikely signature, to avoid too many
spurious references being identified. Ignoring com-
paction, while increasing the risk of fragmentation,
removes the need for a separate object table.

Stores have an associated data type (eg. 32-bit integer,
program instruction pointer) that can be used to translate
data moving between the various stores. Stores can be
designated as read-only, providing a hint that the store
could be placed in flash memory.

2.2 The Loader
Contexts have a loader format that allows a context to be
transmitted over the network as a stream of binary data.
The loader format lists the various stores that need to be
loaded, including the instruction stream.

The loader format is designed to minimise network
message size and initialisation code. No relocation is
needed, since all addresses are relative to the start of the
store. Each store can be installed with the bottom (or
top) part of the store pre-initialised; even a stack or heap
can be pre-initialised before the program starts. Parts of
the store that are not pre-initialised are initialised to a
default value, to ensure application isolation. Each store
is supplied with an expected size, the size of any pre-
initialised data and some information on the expected
type and data-type of the store, for basic consistency
checking.

Installing a context involves allocating space for the
various stores and initialising them from whatever data
is supplied to the context. The context can then be added
to the scheduling list for the virtual machine interpreter.

2.3 The Interpreter
The virtual machine interpreter is responsible for man-
aging the scheduling of contexts and kernel functions,
and the execution of a context’s instruction stream.

The interpreter executes in a non-preemptive fash-
ion, with certain instructions causing the interpreter to
yield. A specification option also allows yielding after
a fixed number of instructions, ensuring good behaviour
in an untrusted environment. External events, such as
timers, sensor triggers or network messages are handled

by buffering the incoming data until the interpreter is
prepared to process it as an event while switching con-
texts.

Atomic sections of code can be created by preventing
yielding. If yielding is not forced after a fixed number
of instructions, then atomic sections simply consist of
sequences of non-yielding instructions. In this case the
code generator for the virtual machine programs needs
to be trusted to perform a suitable yielding analysis. If
yielding is forced after a fixed number of instructions, it
is possible for a yield to occur within an atomic section.
A specification option allows a flag to be included in
the virtual machine that will cause the program to be
immediately rescheduled after yielding. If the flag is not
released after a specified time period, then the program
is assumed to be malfunctioning and is terminated.

This approach can be contrasted to that of nesC[10],
where explicit atomic actions and data race detection is
built into the language. The approach taken here pushes
the complications of managing hardware-specific func-
tions onto the kernel developer (see Section 2.5) and the
issues of ensuring yielding onto the code generator.

2.4 Events and the Codec
Communication with the outside world, either via net-
work messages or through the resource’s I/O facilities is
handled via events. The virtual machine supports a set
of named events, each with an explicit set of parameters.

An outgoing event is sent either across the network or
to a service routine in the kernel, where it is applied to
the resource. An incoming event is handled by a service
routine in a virtual program. The service routine is sup-
plied the event arguments and is expected to capture the
arguments and handle any specific responses.

The codec (coder-decoder) is responsible for trans-
lating events from/to the stores of a context. To code
an outgoing event, the event parameters are retrieved
from the data stack and then either marshalled into a
message or passed on to the kernel. To decode an in-
coming event, the incoming message or hardware event
is unmarshalled and the event parameters pushed onto
the data stack. A call to a service routine, chosen from
the dispatch frame, is then inserted into the context and
the context is scheduled. When the context is next pro-
cessed, it will interpret the service routine before return-
ing to the main program thread. To prevent reentrant
events, event handling routines need to be atomic (see
Section 2.3).

The approach taken is similar to that of active
messages[22]. Each message is identified by a type and
decoded according to the supplied type. Decoding is
done by the codec routines, rather than by the service
routines. By decoding the message early, the message
buffer can by recycled immediately, rather than needing

<type ID="int" prefix="i" stack="data-stack" cell="int32"/>

<stack ID="dataStack" name="sp" type="int" default="true" defaultSize="16"/>

<instruction ID="add">
<description>Add the two top entries on the stack.</description>
<argument>v1</argument>
<argument>v2</argument>
<result>v</result>
<operation target="java">
v = v1 + v2;

</operation>
<operation target="c">
v = v1 + v2;

</operation>
</instruction>

<event ID="reading">
<description>Notification of a reading from a sensor.</description>
<argument>sensor</argument>
<argument>data</argument>

</event>

Figure 4: Example Virtual Machine Declarations

to wait for each context to decode the message individu-
ally.

Message addressing is via UUIDs[11]. Each context
is given a UUID, allowing simple point-to-point messag-
ing, as well as broadcast.

From the point of view of a context, events that
cause messages are indistinguishable from direct hard-
ware events. Treating the two uniformly makes transla-
tion between a resource with direct access to sensors and
other elements and a resource that needs to make use of
other resources relatively straightforward.

2.5 The Kernel

The kernel is the interface between the hardware of a
resource and the virtual machine. The kernel is respon-
sible for:

• memory management;
• communications and connection management;
• interfaces to directly implemented events;
• direct output to hardware;
• managing input (synchronous and asynchronous)

from hardware; and
• low-level timing

The kernel and virtual machine interpreter run under
a single thread. Other threads — or interrupt routines —
may handle aspects of I/O and communications. These
threads are invisible to the interpreter. The kernel is
polled by the virtual machine interpreter for any events
while switching contexts. If there are no active contexts,

the kernel is responsible for waiting for an event or time-
out for the interpreter to process.

3 Virtual Machine Specification

A virtual machine is specified in an XML document.
The use of XML allows both ease of use and the wide
range of XML tools and technologies to be applied to
the specification. The specification allows a stack-based
virtual machine to be generated. The essential elements
of a specification, shown in Figure 4, are:

type declarations Type declarations allow the creation
of logical types, such as int. Logical types can
be associated with particular primitive types, such
as int32 for 32-bit integers and default store loca-
tions.

store declarations Store declarations describe the
stacks, heaps and other elements that the virtual
machine manipulates.

instructions Instruction definitions describe the input
and output arguments of the instruction, along with
the stores that the arguments come from and go to.
Repeated argument names are assumed to refer to
the same value. Code implementing the instruction
in the target language (Java or C) can also be given.

events Event definitions are similar to instruction def-
initions, except that no implementing code is sup-
plied. The implementation of the event is either as
a direct kernel function or as a message sent to an-
other resource.

<subset>
<description>Exclude strings</description>
<include type="store">.*</include>
<include type="instruction">.*</include>
<include type="event">.*</include>
<exclude type="store">strings</exclude>
<exclude type="instruction">dups</exclude>
<exclude type="instruction">appends</exclude>
<exclude type="instruction">str</exclude>
<exclude type="event">message</exclude>

</subset>

Figure 5: Example Subset Declaration

In addition to the basic virtual machine definition, a
separate XML document contains a subset declaration
for the virtual machine. An example subset declara-
tion is shown in Figure 5. The subset declaration lists
those instructions, events and stores that are to be im-
plemented. The subset declaration also, in the case of
events, defines them to be direct or message events. Sub-
set elements can be defined either by inclusion or exclu-
sion. For conciseness, the inclusions and exclusions use
regular expressions to match store, instruction and event
names.

4 Virtual Machine Generation

The virtual machine generation process is shown in Fig-
ure 6. A virtual machine specification and subset dec-
laration are fed into the generator. The generator then
analyses the virtual machine and generates a series of
source code files for Java and C that implement the sub-
set virtual machine. The source files are then compiled
and linked against a standard library of support functions
and classes. An assembler is also generated. Sample
declared instructions and generated C code is shown in
Figures 7 and 8.

The complete virtual machine is analysed and instruc-
tion codes, event codes and stores are allocated before
subsetting. By analysing the complete virtual machine,
a subset virtual machine is guaranteed to be compatible
with any superset implementation.

Code generation makes extensive use of the Visitor
pattern[9]. Each virtual machine construct (type, in-
struction, store, event, etc.) is represented by an object.
A language-specific generator is then used to generate
appropriate code.

Superinstruction analysis and generation[7] is not per-
formed. The trade-off in a memory-constrained environ-
ment between virtual machine size, on one hand, and
code size and speed, on the other hand, is difficult to
manage. The aim of the generator is to generate multi-
ple virtual machines, all providing a subset of a common
runtime.

4.1 Java Code Generation

Java code generation is relatively straightforward. A
separate class file for each element of the virtual ma-
chine shown in Figure 3 is generated, along with inter-
faces for common elements, such as instruction codes.
Abstract superclasses provide any common functional-
ity that is needed.

The interpreter uses a large switch statement to de-
code instructions. For each instruction, arguments are
gathered from the various stores and placed in tempo-
rary variables. Any implementation code that is part of
the declaration is then executed. Any results are then
returned to the appropriate stores.

The generated virtual machine interpreter moves com-
monly used context elements (stack pointers, store ar-
rays) to temporary variables while the context is being
executed. These variables are replaced whenever the in-
terpreter cycle for that context finishes or when an in-
struction with side-effects — such as an event send —
is executed. The more sophisticated stack caching tech-
niques, discussed in [6], are not implemented, although
implementing them would clearly improve performance
and caching behaviour.

The UUID method of addressing has proved cumber-
some. It is difficult to handle 128-bit objects efficiently
without generating large amounts of code, special in-
structions and special stores. A local context identifier
that fits the natural data size of the virtual machine would
seem to be more useful, at the expense of more manage-
ment complexity at higher levels.

4.2 C Code Generation

The C code generator generates code that is very similar
to the generated Java code. The main difference between
the two generators is that structs, rather than classes, are
used for data structures, with functions taking the structs
as arguments. Library code is in the form of individ-
ual functions, rather than abstract classes. C, rather than
C++, is generated, so that a minimalist approach can be
taken to object construction and destruction.

VM
Specification

Subset

Generator

Java
Visitor

C
Visitor

Virtual
Machine

Context

Codec

Source
Code

Assembler

Compiler
Virtual

Machine

Library Kernel

Figure 6: Virtual Machine Generation

<instruction ID="dup">
<argument>v</argument>
<result>v</result>
<result>v</result>

</instruction>

(a) instruction declaration

case I_DUP:
if (sp + 1 > dataStackSize || sp < 1)
goto stack_error;
_temp1 = dataStackData[sp++];
dataStackData[--sp] = _temp1;
dataStackData[--sp] = _temp1;
break;

(b) generated code

Figure 7: Code generation for the dup instruction

<instruction ID="str">
<argument>v</argument>
<result heap="strings">r</result>
<operation target="java">
r = Integer.toString(v);

</operation>
<operation target="c">
itoa(scratch_buffer, SCRATCH_BUFFER_SIZE, v);
r = scratch_buffer;

</operation>
</instruction>

(a) instruction declaration

case I_STR:
if (sp + 1 > dataStackSize)
goto stack_error;

_temp1 = dataStackData[sp++];
itoa(scratch_buffer, SCRATCH_BUFFER_SIZE, _temp1);
_temp6 = scratch_buffer;
_temp2 = _temp6 == NULL ? 0 :
heap_storeString(context->strings, _temp6);

if (_temp2 < 0)
goto heap_error;

dataStackData[--sp] = _temp2;
break;

(b) generated code

Figure 8: Code generation for the str instruction

Library Code
Class Java C Description

Full No Strings Full No Strings
Basic Heap 0 0 643 643 Core heap management
VM Base 1259 1250 690 690 Common virtual machine functionality
Kernel Base 29 29 80 80 Basic kernel functionality
Codec Base 268 268 916 740 Common coder-decoder functionality
Connection 1335 1158 531 531 Communications management, marshalling

and unmarshalling
Heap Manager 1705 0 878 0 Garbage-collected heap management
Loader 1365 1078 955 741 Context unmarshalling and loading
UUID 539 539 68 68 UUID implementation

6500 4331 4761 3493
Generated Code

Class Java C Description
Full No Strings Full No Strings

Codec 1252 1134 1215 839 Generated coder-decoder
Context 786 530 787 525 Generated context
Kernel 660 660 801 801 Kernel for 3 LEDs, a temperature sensor and a

heat pump
VirtualMachine 1777 1527 1913 1430 Generated virtual machine

4475 3851 4716 3595

Table 1: Code Sizes for a Generated Virtual Machine

The C virtual machine interpreter needs to do a great
deal more bounds checking than the Java interpreter.
Stacks, for example, may not overrun their boundaries
— something guaranteed by the Java virtual machine.

4.3 Code Size

The code generated is relatively compact. Table 1 shows
the relative code sizes for a simple virtual machine with
and without string handling. The Java code was gener-
ated by the Sun 1.4.2 01 javac compiler. The C code
was generated for a Pentium 4 processor by gcc 3.3.2
with the -Os option. Total size is 9–11k bytes of code
for the virtual machine with string handling and 7–8k
for the same machine without string handling.

The full virtual machine contains 29 instructions, 6
events, a data stack, a call stack, a data frame, a dis-
patch frame, a string heap and an instruction stream.
The stringless virtual machine contains 25 instructions,
6 events, a data stack, a call stack, a data frame, a dis-
patch frame and an instruction stream. The underlying
resource is a simple resource with 3 3-colour LEDs, a
temperature sensor and a heat pump.

String handling increases the size of the generated
virtual machine considerably. Clearly, a heap manager
is needed, which increases code size. However, string
management tends to be more complex in general, re-
quiring specialised marshalling and unmarshalling and
more complex instruction implementations. The method

size in both the Connection and Codec classes in-
creases by approximately 50% whenever string handling
is needed. More importantly, given the small amount of
RAM available, string handling requires the allocation
of blocks of memory to act as a heap.

The network management and message passing parts
of the virtual machine take up a significant part of the
total memory footprint. Message and program trans-
mission can be considered a relatively rare event — or,
at least, it should be, if energy consumption is to be
taken into account — in which case its influence on
caching and power consumption (see Section 5) can be
regarded as negligible. However, it would be a good
thing, on principle, to reduce the amount of code needed
for such an operation. At present, marshalling is han-
dled by dedicated routines, one to each type of message.
An alternative is to try an data-driven, interpreter-based
approach[5]. If there a large number of events, this ap-
proach looks attractive.

An assembled program takes up little space. Table 2
summarises the context sizes, in the network deliverable
loader format (see Section 2.2), for a number of simple
programs.

The sizes shown in Table 2 show the minimum
amount of information needed to initialise a context. In-
stalled contexts usually take up more space within the
resource: stacks need enough room to grow and heaps
usually need additional space for new blocks of data.

Program Size (bytes) Description
ChangeReport 134 Polling report of sensor change
EventReport 116 Event-driven report of sensor change
Chaser 166 LED chaser
AirCon 167 Simple airconditioning

Table 2: Assembled Application Code Sizes

5 Conclusions and Further Work

The diversity and complexity of heterogeneous smart
spaces, coupled to the stringent restrictions on resource
usage that networks of small embedded devices imply,
presents a considerable software engineering challenge.
The sort of component reuse strategies that have become
common in commercial programming environments will
also need to be applied to smart spaces, if smart spaces
are to become general-purpose, commercial environ-
ments. The use of virtual machines provides a method
for distributing generic functionality across a wide range
of resources.

There are a number of virtual machine optimisations
and improvements that could be undertaken. These op-
timisations are discussed in Sections 4.1 and 4.3. In par-
ticular, code-size optimisations can be expected to play
an important part in reducing the size of the generated
virtual machine. An advantage to using a generator is
that any optimisations that are made will propagate to
any newly generated virtual machine, rather than requir-
ing hand-optimisation.

Energy consumption and power management is a ma-
jor concern in the space of small embedded devices,
with memory access a significant source of energy con-
sumption. Testing of the energy consumption of Java
virtual machines in the Itsy pocket computer suggests
that there is the order of a 50% penalty in energy con-
sumption when interpretation is used, instead of a just-
in-time compiler[8]. There is an order of magnitude
difference between cache memory access and external
memory access, however[1]. If the virtual machine in-
terpreter — or a subset of frequently used instruction
implementations — and a context could be fitted into
cache memory, the energy costs could be significantly
reduced. The compression effect of virtual machine in-
structions would then serve a useful purpose in allowing
a component to be entirely cached.

Generating virtual machine subsets allows a common
runtime environment to be imposed on the diverse array
of resources that make up a heterogeneous smart space.
Using a generator allows virtual machines to be quickly
generated for new resources and to try new instruction
sets. The generated virtual machine is relatively com-
pact, although there is considerable room for improve-
ment.

References
[1] Luca Benini, Alberto Macii, and Massimo Pon-

cino. Energy-aware design of embedded memo-
ries: A survey of technologies, architectures, and
optimization techniques. ACM Transactions on
Embedded Computing Systems, 2(1):5–32, Febru-
ary 2003.

[2] Hans-Juergen Boehm. Space efficient conservative
garbage collection. In Proceedings of the ACM
SIGPLAN 1993 conference on Programming lan-
guage design and implementation, pages 197–206,
Albuquerque, New Mexico, June 1993.

[3] Hans-Juergen Boehm and Mark Weiser. Garbage
collection in an uncooperative environment. Soft-
ware — Practice and Experience, 18(9):807–820,
September 1988.

[4] Crossbow: Wireless sensor networks, 2003.
http://www.xbow.com/Products/Wireless_
Sensor_Networks.htm.

[5] K.V. Dyshlevoi, V.E. Kamensky, and L.B.
Solovskaya. Marshalling in distributed sys-
tems: Two approaches, June 1997. http://www.
ispras.ru/˜microrb/papers/index.html.

[6] M. Anton Ertl. Stack caching for interpreters. In
Proceedings of the SIGPLAN ’95 Conference on
Programming Language Design and Implementa-
tion, pages 315–327, La Jolla, California, June
1995.

[7] M. Anton Ertl, David Gregg, Andreas Krall, and
Bernd Paysan. Vmgen — a generator of efficient
virtual machine interpreters. Software — Practice
and Experience, 32(3):265–294, 2002.

[8] Keith I. Farkas, Jason Flinn, Godmar Back, Dirk
Grunwald, and Jennifer M. Anderson. Quantifying
the energy consumption of a pocket computer and
a java virtual machine. In Proceedings of the 2000
ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems,
pages 252–263, Santa Clara, California, June 2000.

[9] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-
Wesley, 1995.

[10] David Gay, Phil Levis, Rob von Behren, Matt
Welsh, Eric Brewer, and David Culler. The nesC
language: A holistic approach to networked em-
bedded systems. In Proceedings of Programming
Language Design and Implementation (PLDI),
pages 1–11, San Diego, California, June 2003.

[11] The Open Group. DCE 1.1: Remote Pro-
cedure Call, October 1997. Standard C706,
http://www.opengroup.org/onlinepubs/
009629399/toc.pdf.

[12] Jason Hill, Robert Szewczyk, Alec Woo, Seth
Hollar, David Culler, and Kristofer Pister. Sys-
tem architecture directions for network sensors.
In Proceedings of the 9th International Confer-
ence on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-
IX), pages 93–104, Cambridge, Massachusetts,
November 2000.

[13] Philip Levis and David Culler. Maté: A tiny virtual
machine for sensor networks. In Proceedings of
the 10th International Conference on Architectural
Support for Programming Languages and Operat-
ing Systems (ASPLOS X), pages 85–95, San Jose,
California, October 2002.

[14] Howard Lovatt, Geoff Poulton, Don Price, Mikhail
Prokopenko, Philip Valencia, and Peter Wang.
Self-organising impact boundaries in ageless
aerospace vehicles. In Proceedings of the 2nd
International Joint Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS 2003),
pages 249–256, June 2003.

[15] Stavros Macrakis. From UNCOL to ANDF:
Progress in standard intermediate languages. Tech-
nical report, Open Software Foundation, 1993.

[16] Palm, inc., 2003. http://www.palm.com.

[17] Doug Palmer. Declarative application program-
ming in smart spaces. Technical Report 03/88,
CSIRO Mathematical and Information Sciences,
January 2003.

[18] Smartlands, 2003. http://www.smartspaces.
csiro.au/applic/smart-lands.htm.

[19] Phillip Stanley-Marbell and Liviu Iftode. Scylla:
A smart virtual machine for mobile embedded sys-
tems. In Proceedings of the Third IEEE Workshop
on Mobile Computing Systems and Applications
(WMCSA’00), pages 41–50, Monterey, California,
December 2000.

[20] Clemens Szyperski. Component Software: Beyond
Object-Oriented Programming. Addison-Wesley,
1999.

[21] Ken Taylor and Doug Palmer. Applying enterprise
architectures and technology to the embedded de-
vices domain. In Proceedings of the Workshop on
Wearable, Invisible, Context-Aware, Ambient, Per-
vasive and Ubiquitous Computing (WICAPUC),
number 21 in Conferences in Research and Prac-
tice in Information Technology, Adelaide, Aus-
tralia, February 2003.

[22] Thorsten von Eicken, David E. Culler, Seth Copen
Goldstein, and Klaus Erik Schauser. Active mes-
sages: A mechanism for integrated communica-
tion and computation. Technical Report USB/CSD
92/#675, University of California, Berkeley, March
1992.

[23] Andrew Whitaker, Marianne Shaw, and John D.
Gribble. Denali: Lightweight virtual machines for
distributed and networked applications. Technical
Report 02-02-01, University of Washington, 2002.

