
USENIX Association

Proceedings of the Third Virtual Machine
Research and Technology Symposium

San Jose, CA, USA
May 6–7, 2004

© 2004 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



Detecting Data Races using Dynamic Escape Analysis

based on Read Barrier

Hiroyasu Nishiyama

Systems Development Laboratory, HITACHI, Ltd.

1099, Ohzenji, Asao-ku, Kawasaki-shi, 215-0013 Japan

nisiyama@sdl.hitachi.co.jp

Abstract

In multi-threaded programs, a data race results in
extremely hard to locate bugs because of its non-
deterministic behavior. This paper describes a novel
dynamic data race detection method for object-
oriented programming languages. The proposed
method is based on the lockset algorithm. It uses
read-barrier-based dynamic escape analysis for re-
ducing number of memory locations that must be
checked at runtime for detecting data races.

We implemented the proposed data race detection
method in HotSpot Java1 VM. The results of an
experimental evaluation show a significant perfor-
mance improvement over the previous write-barrier-
based method and also that the proposed method
can perform data race detection with a relatively
small runtime overhead.

1 Introduction

Compared with traditional sequential applications,
multi-threaded applications are prone to errors aris-
ing from the concurrent nature of program execu-
tion. A data race[22] is one of the primary causes
of unpredictable behavior in multi-threaded pro-
grams. Data races occur if two parallel threads ac-
cess a same memory location without using implicit
or explicit synchronization that prevents simultane-
ous access of the data; and if at least one thread
is write access. A program involving data races is
sensitive to the dynamic state of its runtime envi-
ronments such as in thread scheduling or user inter-
actions. This leads to unpredictable behavior of the

1Java and other names are trademarks or registered trade-
marks of SUN Microsystems Inc. in the United States and
other countries.

program. Unfortunately, the cause of this problem
is difficult to pinpoint.

Java[16, 28] is a widely used object-oriented pro-
gramming language that includes support for multi-
threading. Java provides thread functionality as a
means for describing concurrently executing enti-
ties. Threads in Java are actively utilized by ap-
plications such as GUI applications and Internet
servers.

Java provides language-level synchronization con-
structs based on the monitor as a means for serial-
izing accesses from concurrently executing threads.
Language-level integration of the monitor in Java
simplifies the specification of critical sections. Al-
though this may decrease the occurrence of synchro-
nization programming errors, the complete preven-
tion of synchronization errors is still hard to achieve
for large-scale multi-threaded applications.

Extensive studies on optimizations to eliminate use-
less synchronizations[15] and on reduction in over-
head for uncontended cases[4, 5] have been made;
however, synchronization specifications are usually
considered to be a source of severe performance
overhead. Consequently, programmers sometimes
are conservative about using synchronization. This
may introduce additional unintended synchroniza-
tion errors.

Many works have treated automatic detection of
data races; and there exists several commercial or
open-source products that detects data races[13, 17].
From a theoretical perspective, Netzer and Miller
proposed a classification of data races[22]: actual

race, feasible race, and apparent race. They have
also shown that a general data race detection is NP-
hard. Past research on automatic data race detec-
tion can be classified as ones involving static, dy-
namic, or combined methods. The static approaches



include an approach for adding annotations to a pro-
gram and proving the correctness with a theorem
prover[18], a post-mortem approach that analyzes
events log of a program execution[3], and an ap-
proach using a language extension incorporating a
type system for static race detection[10]. Dynamic
approaches examine the access pattern to shared lo-
cations on-the-fly verifying its correctness according
to some criteria such as the locking discipline[6] or
happens-before relation[19].

In this paper, we propose a novel on-the-fly data
race detection method for object-oriented languages
based on the lockset algorithm. The lockset algo-
rithm dynamically verifies the locking discipline to
detect synchronization errors in a given program.

Although the lockset algorithm has been applied to
real-life applications, it incurs a severe performance
overhead. Our method reduces this overhead by ex-
ploiting the intuitive characteristic of program be-
havior that most objects in a typical object-oriented
application do not incur shared access from multiple
threads.

We use this property for reducing the number of ob-
jects to be examined while a program is being exe-
cuted. The number of examined objects is limited
by using dynamic escape analysis based on the read

barrier. Dynamic object reachability tracking using
the read barrier enables a reduction in the number
of shared objects compared with the previously pro-
posed write barrier based method.

The rest of the paper is organized as follows. Section
2 summarizes related works on data race detection
based on the lockset algorithm. Section 3 describes
the new data race detection approach using the read
barrier. Section 4 describes its implementation in
HotSpot Java VM. Section 5 describes our experi-
mental results on a set of benchmark programs.

2 Detection of Data Races

Modern concurrent or multi-threaded program-
ming frameworks provide structured synchroniza-
tion primitives such as monitor or communication
channel instead of much simpler ones such as spin
lock or semaphore.

A monitor employed by Java is a programming lan-
guage construct that encapsulates shared resources

and its access functions. The monitor of Java can
represent an exclusive program region using an ac-
quisition and release of an object specified by the
synchronized attribute of a method or a synchro-
nized statement.

The lockset algorithm detects synchronization er-
rors in a monitor-based concurrent program. This
algorithm assumes that a correct program keeps the
following locking discipline:

When some thread accesses shared data,

the thread must hold at least one monitor.

Furthermore, the intersection of the sets of

all monitors held when accessing the data

must not be empty.

Let L(v) represent a lockset for a shared memory
location v, E(v) represent a set of times when read
or write reference events for the memory location
v occurred, T (v, i) represent a set of threads that
accessed the memory location v at time i, and Mti

represent a set of locks that is held by thread t at
time i. Then, L(v) can be defined as follows:

L(v) = ∀i∈E(v)∀t∈T (v,i)∩Mti

If the set L(v) becomes empty, we can recognize
that at least two accesses from different threads have
been performed with nonuniform synchronization.
Thus, we can suspect the occurrence of data races
at the memory location v.

As an example of a program involving a data race,
we will consider the program shown in Figure 1. The
Account class in this figure defines the method inc

which increments the field balance defined at (a),
and also defines the method dec which decrements
the field balance. Consider a case where thread
#1 calls inc and thread #2 calls dec. The call for
the inc method obtains a monitor with the synchro-
nized statement at (b). Accordingly, the monitorset
at the update point (c) of the balance is written
as {this}. In regard to the call for dec by thread
#2, since the method dec does not perform syn-
chronization, the monitor set at update point (d) of
the balance becomes empty. Calculating the lock-
set from the monitor set of each thread yields an
empty set. Thus, we can suspect the possible oc-
currence of a data race for the field balance in this
program.



Monitor Set
Thread#1 Thread#2 #1∩#2

class Account {
private double balance; // (a) {this} φ φ
. . .
void inc(double diff) {

synchronized(this) { // (b)
balance += diff; // (c) {this}

}
}
void dec(double diff) {

balance -= diff; // (d) φ
}

}

Thread#1: account.inc(. . . )
Thread#2: account.dec(. . . )

Figure 1: Example of a program containing a data race.

Eraser[26] is an example of a data race detection
tool for pthreads based multi-threaded programs us-
ing the lockset algorithm. Eraser detects data races
by using a binary rewriting technique to modify all
memory reference instructions in a target program,
and by monitoring memory references dynamically
at runtime by calculating their associated monitor
sets.

Since Eraser’s target language, C or C++, can ac-
cess any memory location through pointers, distin-
guishing data structures that need exclusive access
from ones that only need thread private accesses is
difficult. Thus, Eraser associates a data structure
called shadow memory that exists in parallel with
the program’s accessible memory regions. In addi-
tion, it tracks all memory accesses dynamically in
the shadow memory. This leads to a huge space
and time overhead2.

An object oriented programming language such as
Java abstracts a main memory as a collection of ob-
jects instead of a simple sequence of bytes. Several
studies have been done on using this characteristic
to reduce the overhead of data race detection.

One example is the Object Race Detection[23] of
Praun and Gross. It restricts units of data race
detection at the level of objects instead of field el-
ements. However, this restriction on race detection
leaves open the possibility of false negative or false
positive reports because of the ambiguity of field
accesses or array element accesses. They also use
static escape analysis[1] to decrease dynamic moni-

2Savage et al. reported a 10X to 30X execution over-
head[26].

toring costs by excluding objects that can be proved
as inaccessible from more than one thread.

The escape analysis is a technique for determining
that an object is only accessible by a single thread.
The escape analysis is also useful for optimiza-
tions such as synchronization removal[25], thread-
local memory management[8], stack allocation of
objects[11] and object inlining[7].

The data race detection system of Choi et al.[2] com-
bines static escape analysis with compiler optimiza-
tions. For reducing detection costs, they restrict the
detectable combination of data races. This means
that their system does not report all access pairs
that participate in data races, but guarantees that
at least one access is reported.

The TRaDe system of Christiaens et al.[20] is a
purely dynamic system based on happens-before re-
lation. It calculates the set of objects that may be
referenced from multiple threads by using dynamic
escape analysis based on the write barrier.

In the related field of program analysis, Dwyer et
al. described an combined approach of dynamic and
static escape analysis of state-space reduction for
model-checking object-oriented programs[9]. The
model-checking is a software verification technique
by exploring all possible execution sequences. Al-
though the model-checking can provide more pre-
cise information of a program than the lockset al-
gorithm, enumerating execution sequences is much
heavy-weight operation.



3 Reduction in Data Race

Detection Cost using Read Barrier

A data race detection method using the lockset al-
gorithm monitors accesses to shared memory loca-
tions updating their monitor sets; it checks whether
multiple threads accessed the location without ob-
taining common locks. However, monitoring all field
references results in a severe performance penalty, as
in Eraser. We reduce the penalty of reference mon-
itoring using escape analysis by checking the reach-
ability of an object from multiple threads. This re-
duction is accomplished by only tracking locksets for
objects that are reachable from multiple threads.

We employed the dynamic method similar to
TRaDe for our race detection system. The reason
for using dynamic method is as follows: First, the
dynamic method does not require complex whole
program analysis and optimization framework. Sec-
ond, the dynamic method can provide more accu-
rate results than the pure static method because the
static analysis can not follow exact data flow infor-
mation. Finally, the dynamic class loading mecha-
nism of Java makes an application of the static anal-
ysis difficult because it may invalidates assumption
of the analysis. For program optimization, the de-
optimization[12] can be used to cancel the incorrect
compile time assumptions. In contrast, since a data
race detection requires monitoring the history of a
program execution, the invalidation of the assump-
tion may result in false positive or false negative
errors.

3.1 Dynamic Escape Analysis

An object in the Java virtual machine is only acces-
sible from its allocating thread immediately after its
allocation except for special objects such as class ob-
jects. Stack and method local variables are thread
private resources and are not accessible from other
threads[28].

Thus, an object O owned by a single thread be-
comes accessible from more than one thread when
an O’s reference or a reference to some object that
can reach O by following reference chains is assigned
to an object that can be referenced from multiple
threads.

The data race detection method of TRaDe assigns
each object one of the following two attributes: (a)

a global attribute meaning that the object can be
reached from multiple threads, and (b) a local at-
tribute meaning that the object can be reached from
only one thread. A globally reachable object at the
point of its allocation such as class object is marked
with a global attribute when it is allocated. When
a reference R is assigned to an object of a global at-
tribute, the global attribute is also assigned to the
object that is pointed to by R and all objects that
can be reached by following references from R.

The method of TRaDe can be regarded as a write

barrier[24] based dynamic escape analysis method,
which tracks object reachability at the point of its
reference assignment.

We employed a read-barrier-based dynamic escape
analysis method, which updates the reference at-
tribute of each object when its reference is obtained
from the object field.

This method reduces the data race detection over-
head by calculating reference attributes of an object
as follows:

1. A local reference attribute is assigned to an ob-
ject after its allocation. A creating thread ID
is also assigned to each object.

2. For each reference field in an object, if a refer-
ence attribute of its pointing object is local and
its thread ID is not identical to the referencing
thread, the reference attribute of the pointed
object is changed to global.

The read barrier and write barrier are tech-
niques that are usually used for maintaining inter-
generation references in generational garbage collec-
tors[24]. The write barrier is generally preferred for
implementing a garbage collector because write ref-
erences are less frequent than read references.

When using read or write barrier as a means for dy-
namic escape analysis, the costs of monitoring data
races for global objects must be considered in ad-
dition to barrier overhead. Taking the following
points into consideration, we can expect that the
read barrier based methods will be superior to the
write barrier based method:

• Reduction in global attribute mainte-

nance costs



When a local object Ol is assigned to a refer-
ence field of a global object Og , the write bar-
rier based method needs to recursively traverse
objects that can be reachable from Ol chang-
ing reference attributes of the traversed objects
to global ones. This requires a high execution
overhead on reference assignment and also re-
quires extra memory overhead on the traversal.

The read barrier based method only needs to
change the attribute of Ol to global when a
thread which is not the owner thread of Ol

has obtained a reference to Ol, in other words,
when the object Ol has escaped to another
thread. In contrast to the write barrier based
method, the read barrier based method can per-
form data race detection with a much lower and
definite cost. It also requires no recursive ob-
ject traversals. Thus, we can expect lower run-
time memory requirements.

• Reduction in monitoring cost

The write barrier based method regards ob-
jects that can be reachable from global objects
as potential candidates of data races. In con-
trast, the read barrier based method recognizes
objects from which references are obtained by
multiple threads, that is, objects reached by
multiple threads through reference traversals,
as potential candidates.

Therefore, the target objects of the read barrier
based method comprise a subset of the write
barrier based method. As a result, we can ex-
pect a reduction in monitoring overhead of data
race detection by using the read barrier.

3.2 Array Objects

A program such as a scientific application frequently
uses a parallel processing idiom that divides arrays
into multiple regions and assigns each region to sep-
arate worker threads. Since each worker thread of
such an idiom usually accesses disjoint array regions,
no data races can occur. However, since Java treats
an array as a special kind of object, previous object
based escape analysis consider the whole array as a
target of the data race detection even for such an
array-dividing idiom.

We extend the data race detection for an array to
an array sub-block level to deal with such an idiom.
An array is divided into fixed length sub-blocks and
locality detection is applied to each array sub-block.

3.3 State Model

The basic idea of the read barrier based method is
to classify objects and array sub-blocks into escaped
and non-escaped groups at their reference field read-
ing points. Our method follows Eraser[26] and Ob-
ject Race Detection[23] and introduces an extended
state model which mixes objects, array sub-blocks,
and object fields as detection units.

Figure 2 shows the state model for an object, an
array sub-block, and an object field. This model
consists of the following seven states:

Object-specific states:

owned An object can be accessed from its allocat-
ing thread only. In the common case, when an
object is created, it can be referenced from its
creating thread only. Thus, the initial state of
a normal object is owned.

escaped A reference to an object is obtained by
threads other than its owner thread, that is,
ones that have escaped to another thread.
Fields of an escaped object should be monitored
for race detection by the lockset algorithm.

The sub-block level states for an array are in-
troduced after an array object changes its state
from owned to escaped.

Field-specific states:

shared read A field in an escaped object is read
by more than one thread. Since concurrent read
requests for a field in a shared read state do not
cause any data races, no conflict is reported.

shared modified A field in an escaped state is
modified by some thread. No conflict is re-
ported for a field with a non-empty lockset in
the shared modified state because thread syn-
chronization is expected to have been properly
performed.

conflict A field of an escaped object is written by
more than two threads or read and written by
different threads with an empty lockset. A con-
flict is reported for the field, since a synchro-
nization error for the field is suspected.



conflict

shared
modified

owned

escaped

new

shared
read

read/write access 
by first thread

read fieldwrite field
/elem.

read field/elem.

read/write field/elem.
with empty  lockset

read/write 
field/elem.

Private:
(per object state)

Shared:
(per object state)

conflict

Shared:
(per field state)

obtain reference 
by other thread

block
free

Private:
(per array block state)

read/write
elements

write elem.
by other thread

read elem.
by other thread

write field

read/write field/elem.
with nonempty  

lockset

block
owned

read/write
by owner

Figure 2: State Model for Objects, Array Blocks, and Fields

Array sub-block specific states:

block free This is the initial state of an array sub-
block representing that an array object belong-
ing to it has escaped to a non allocating thread.
Since each sub-block element is free from ac-
cesses at the point of escape, the sub-block does
not yet become subject to race detection by the
lockset algorithm.

block owned An array sub-block in a block free
state is referenced by some thread. The refer-
encing thread becomes the owner of the sub-
block. Following references for the array sub-
block in the block-owned state by its owner
thread does not initiate element-level data race
detection. If a non owner thread accesses a
sub-block in the block-owned state, the state of
the block changes to the shared read or shared
modified state and an element-level race detec-
tion by the lockset algorithm is initiated.

The read barrier based race detection method starts
lockset computations for fields of an object when
more than one thread can reach the object by
traversing object references. Hence races may fail to
be detected depending on dynamic thread schedul-
ing conditions. However, as Savage et al. pointed
out[26], many programs initialize objects without
obtaining locks then pass their references to other
threads. Therefore, starting a lockset computation
after multiple threads reach an object can eliminate

many false data race reports originating in object
initialization.

4 Implementation

In this section, we describe an implementation of
the proposed race detection method on the HotSpot
Java virtual machine[21].

4.1 Object Format

Our implementation extends the object format of
the base virtual machine, adding an extra field that
is used for data race detection. Figure 3 shows the
modified object format. The object format of the
HotSpot Java VM consists of a two-word header:
(a) a mark field that represents object age, hash
code, and other information, and (b) a klass field
that points to a class object. The modified object
format is extended to a three-word header, adding
a state field that represents reference attributes and
external information about the object. The state
field denotes two per object states (owned and es-
caped), two per array sub-block states (block free
and block owned), and a special state for thread syn-
chronization (locked). The owned and block-owned
states are represented by making the LSB of the
state field zero and recording thread ID to the re-
maining bit field. The difference between an owned



and a block owned state is distinguished by object’s
class or the object kind implicitly recognized by the
bytecode execution state. The escaped object state
is represented by setting the LSB of the state field
to one and the remaining state field to a pointer to
the external per field information. The state field
representation for an escaped array object is simi-
lar to the escaped object but it points to an array
of sub-block information. Each element of the ar-
ray keeps similar information on the state field for
a normal object.

Three per field reference states (shared read, shared
modified, and conflict) are recorded in an external
data structure pointed to from the state field of an
escaped object or the information array of an array
sub-block.

mark

klass

state

extended
field

object 
specific
fields

Owned

Escaped

0

1

Thread-ID

pointer

No Owner0

Locked00 0 0

1 1 1

array 
sub-block

normal
object

field info

Figure 3: The extended object format including the
state field which represents object reference state or
points to external data structure.

4.2 Code Sequences

Bytecode execution of HotSpot VM is performed us-
ing indirect threading interpreter and dynamic JIT
compiler. The threaded interpreter uses machine
code sequences that is generated from code tem-
plates at interpreter startup.

To detect data races, we modified the machine code
templates and compiler generated code sequences
for the following bytecodes:

• monitorenter/monitorexit

Machine code sequences for monitorenter and
monitorexit bytecode are modified to record

owned monitors in the per thread monitor
stack. For the sake of efficiency, the conversion
of a monitor stack into a monitor set is delayed
until some object enters the escaped state.

• getfield/getstatic/[ilfdabc]aload,
putfield/putstatic/[ilfdabc]astore

The reading of the reference field by using
getfield or getstatic bytecode is modified
to check whether its target object has escaped
or not.

For each field reference or modification, if the
target object has escaped attribute, the lockset
algorithm is applied for detecting data races on
the object. Result of the set calculation be-
tween locksets are cached for efficiency as is
done by Eraser[26].

We also modified the field references by runtime sys-
tem in the Java VM and the field references from
native methods3 through the JNI (Java Native In-
terface).

4.3 Dealing with Special Threads

A finalizer method may be defined in Java to al-
low work to be performed before an object is re-
claimed by the garbage collector. In the HotSpot
VM implementation, a finalizer is executed by a
special thread called a finalizer thread4. The final-
izer method is usually defined without explicit syn-
chronization assuming implicit execution ordering
through GC. This may increase possibility of false
positive reports. Hence, in our implementation, we
have excluded references from these special threads
from the target of data race detection by default.
This exclusion can be turned-off using an runtime
option.

5 Experimental Results

In this section, we describe an experimental com-
parison of our read barrier based method and the
write barrier based dynamic method. We used 64
bytes as sub-block size of an array for calculating
the shared state.

3This modification of field reference includes accesses by
undocumented sun.misc.unsafe class.

4There are other special threads, such as a reference han-
dler thread that deals with weak references.



Application Description # threads

compress Data compression program from SPEC JVM98 1

jess Java expert shell system from SPEC JVM98 1

db Memory resident database program from SPEC JVM98 1

javac Java compiler program from SPEC JVM98 1

mpegaudio MPEG audio decompression program from SPEC JVM98 1

mtrt Multi-threaded ray-trace program from SPEC JVM98 3

jack Java parser generator program from SPEC JVM98 1

SPECjbb Java business benchmark program 42

Crypt IDEA encryption program from Java Grande Benchmark 2

LUFact LU factorization program from Java Grande Benchmark 2

SOR Successive over-relaxation program from Java Grande Benchmark 2

Series Fourier coefficient analysis program from Java Grande Benchmark 2

Sparse Sparse matrix multiplication program from Java Grande Benchmark 2

Table 1: Benchmark Programs

Table 1 lists the benchmarks[14, 27] we used for
the evaluation. The ‘# threads’ column indicates
the number of dynamically generated threads ex-
cept system threads such as the finalizer thread.
The Java Grande benchmarks are numerical bench-
marks, and they perform many array operations on
large shared array objects. Since they use the bar-
rier based synchronization method, their manner of
synchronization is not standard. However, they can
reveal the overhead of race detection for array in-
tensive applications.

Among these benchmarks, our system successfully
found a data race on RayTrace.threadCount in
mtrt benchmark. As reported in [2], this data race
does not affect the correctness of the program exe-
cution.

All evaluations are performed using the HotSpot
Java virtual machine ported to an HP-UX operat-
ing system. The environment of the experimental
evaluation was HP9000/C3000(PA-8500 400MHz,
250MB main memory) with HP-UX11.0.

Figure 4 shows normalized execution time of the
write barrier based method and the read barrier
based method5 compared to normal execution6.

5The implementation of the write barrier based method
is similar to the one for read barrier based method except
that it recursively check object escape attributes at reference
assignment instead of object reference.

6HotSpot Java VM optimizes execution of synchronization
primitives for uncontended cases. However, since we need
to maintain monitor stack at each monitor related bytecode
execution, our read barrier and write barrier implementation
does not use this optimization.

The write barrier based method requires a large
execution overhead (69.7% to 3389.7% for the
SPECjvm/jbb benchmarks, and 0.6% to 6777.0%
for the Java Grande benchmarks) for detecting data
races. In contrast, the read barrier based method
can perform data race detection with a much lower
overhead (57.8% to 735.7% for the SPECjvm/jbb
benchmarks, and 0.6% to 6012.5% for the Java
Grande benchmarks). We can see significant per-
formance improvements of the read barrier based
method over the write barrier based method on the
mpegaudio and jack benchmarks. The performance
improvements for these benchmarks indicate an in-
crease in the number of dynamically examined ob-
jects because the write barrier based method deals
with all globally reachable objects as targets of data
race detection. The overheads for detecting data
races for several of the Java Grande benchmarks are
high compared with the SPEC benchmarks since
these benchmarks frequently access shared arrays
among threads with disjoint indexes.

To investigate the details of the field references, we
obtained a breakdown of read/write references of
the object fields. The result is shown in Figure 5.
The WB and RB after each benchmark name in-
dicate the write barrier based method and the read
barrier based method, respectively. We can see from
Figure 5 that the ratio of shared fields references
of the write barrier based method are high for six
SPEC benchmarks (compress, jess, javac, mpegau-
dio, jack, and SPECjbb) that have improved per-
formance with the read barrier based method. In
particular, nearly 40% of references are treated as
targets of data race detection for the mpegaudio
benchmark, for which the read barrier based method



co
m

pr
es

s
jes

s db
jav

ac

m
pe

ga
ud

io
m

trt
jac

k

SPECjbb
Cry

pt

LU
Fac

t
SOR

Ser
ies

Spa
rs

e

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e

0.0

2.0

4.0

6.0

8.0

10.0

14.0

35.0

62.0

No Check Read Barrier Write Barrier

69.0

Figure 4: Execution time of the write barrier based method and the read barrier based method normalized
to normal execution.

significantly improved performance.

Some SPEC benchmarks such as mtrt decreased the
performance slightly by using the read barrier based
method. We can see from Figure 5 that shared ac-
cess ratio of these benchmarks does not decrease by
the proposed method. This means that the perfor-
mance differences arise from the read barrier over-
head.

Compared with the SPEC benchmarks, the perfor-
mance improvements for the Java Grande bench-
marks are not as large. This is because the Java
Grande benchmarks adopt a programming style
that performs many accesses to small numbers of
large shared arrays.

To confirm the effectiveness of array sub-block divi-
sion, we compared the performance of benchmarks
with and without array sub-block division. The re-
sult is shown in Figure 6. We can see that array sub-
block division significantly improved performance
of the SOR and Sparse benchmarks. It also made
moderate improvements on the benchmarks such as
SPECjbb, Crypt, or LUFact.

Division of arrays alone is effective for reducing over-
heads. For example, the shared field reference ra-
tio of the write barrier based method without array

division was almost 100% for mpegaudio, LUFact,
and SOR benchmarks. Dividing arrays reduced this
ratio to less than half, 1/117 for SOR, of the ratio
without division.

Figure 7 shows the per object memory overhead of
each race detection method including state field,
monitor sets, monitor stacks, and data structures
pointed to from the state field. The results of the
write barrier based method do not include implicit
memory overhead for object traversal on reference
assignments. Note that the vertical axis of this
graph is a logarithmic scale. The proposed method
requires only a small number of bytes per object
for the SPEC benchmarks. In contrast, the write
barrier based method requires a large memory over-
head for SPEC benchmarks such as compress and
mpegaudio. Since the Java Grande benchmarks use
large array objects, per object extra memory over-
head is larger than with the SPEC benchmarks.

6 Conclusions and Future Work

In this paper, we proposed a novel data race de-
tection method for object-oriented multi-threaded
languages using dynamic escape analysis based on
the read barrier. Data races are sources of errors



W
B

0%

Read Shared Read Shared Write

RB

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Write

co
m

pr
es

s
W

B RB

jes
s

W
B RB

db
W

B RB

jav
ac

W
B RB

m
pe

ga
ud

io
W

B RB

m
trt

W
B RB

jac
k

W
B RB

SPECjbb
W

B RB

Cry
pt

W
B RB

LU
Fac

t
W

B RB

SOR
W

B RB

Ser
ies

W
B RB

Spa
rs

e

Figure 5: Breakdown of Object References

co
m

pr
es

s
jes

s db
jav

ac

m
pe

ga
ud

io
m

trt
jac

k

SPECjbb
Cry

pt

LU
Fac

t
SOR

Ser
ies

Spa
rs

e

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e

0.0

2.0

4.0

6.0

8.0

10.0

65.0

117.0

No Check No Array Sub-Block Array Sub-Block

62.0

Figure 6: Relative Execution Time of Array Sub-Block Division



1.0

Read Barrier

10.0

100.0

1000.0

10000.0

Write Barrier

co
m

pr
es

s
jes

s db
jav

ac

m
pe

ga
ud

io
m

trt
jac

k

SPECjbb
Cry

pt

LU
Fac

t
SOR

Ser
ies

Spa
rs

e

ex
tr

a 
b

yt
es

/o
b

je
ct

Figure 7: Extra Memory Overhead of Each Detection Method per Object

that are difficult to dissolve. Our method verifies
whether a reference to an object is obtained by more
than one thread at the point where reference fields
are read out. By restricting the targets of data race
detection to only escaped objects using the read bar-
rier, we have successfully reduced data race detec-
tion overhead.

Our experimental results for a modified HotSpot
Java virtual machine show that our method per-
forms data race detection more effectively than the
previous write barrier based method, and its detec-
tion overhead is small compared with normal exe-
cution. In addition to read barrier based filtering of
objects, we developed a method that divides an ar-
ray into sub-blocks as units of race detection. This
division of arrays are also improves performance.
Using these techniques, we can look for the occur-
rence of data races while incurring a relatively low
overhead, 57.8% to 735.7% for SPEC benchmarks
and 0.6% to 6012.5% for Java Grande benchmarks.

In the future, we intend to using static com-
piler optimizations for improving the execution per-
formance. Static optimization such as common
subexpression elimination can remove redundant
checking of object/field status. Combination of
static/dynamic escape analysis can also improve the
performance by decreasing the number of objects
that need dynamic checking.

Acknowledgments

We would like to thank the anonymous referees.
Their comments were very useful for revising this
paper.

References

[1] J.D. Choi. Escape Analysis for Java. In Pro-

ceedings of the Conference on Object-Oriented

Programming Systems, Languages, and Appli-

cations, 1999.

[2] J.D. Choi, K. Lee, A. Loginov, R. O’Callahan,
V. Sarkar, and M. Sridharan. Efficient and
Precise Datarace Detection for Multithreaded
Object-Oriented Programs. In Proceedings of

the Conference on Programming Language De-

sign and Implementation, 2001.

[3] J.D. Choi, B. Miller, and R. Netzer. Tech-
niques for Debugging Parallel Programs with
Flowback Analysis. ACM Transactions on Pro-

gramming Languages and Systems, 13(4):491–
530, 1991.

[4] D.Bacon, R. Konuru, C. Murthy, and M. Ser-
rano. Thin Locks: Featherweight Synchroniza-
tion for Java. In Proceedings of the SIGPLAN



Conference on Programming Language Design

and Implementation, pages 258–268, 1998.

[5] D. Dice. Implementing Fast Java Monitors with
Relaxed-Locks. In Proceedings of the Java Vir-

tual Machine Research and Technology Sympo-

sium, 2001.

[6] A. Dinning and E. Schonberg. Detecting Access
Anomalies in Programs with Critical Sections.
In Proceedings of the Workshop on Parallel and

Distributed Debugging, 1991.

[7] J. Dolby and A. Chien. An Automatic Object
Inlining Optimization and its Evaluation. In
SIGPLAN 2000 Conference on Programming

Language Design and Implementation, 2000.

[8] T. Domani, G. Goldshtein, E.K. Kolodner, and
E. Lewis. Thread-Local Heaps for Java. In Pro-

ceedings of the 2002 Internationl Symposium

on Memory Management, 2002.

[9] M.B. Dwyer, J. Hatcliff, V.R. Prasad, and
Robby. Exploiting Object Escape and Lock-
ing Information in Partial Order Reduction for
Concurrent Object-Oriented Programs. Tech-
nical Report SAnToS-TR2003-1, SAnToS Lab-
oratory, Kansas State University, 2003.

[10] C. Flanagan and S. N. Freund. Type-Based
Race Detection for Java. In Proceedings of the

Conference on Programming Language Design

and Implementation, pages 219–232, 2000.

[11] D. Gay and B. Steensgaard. Fast Escape Anal-
ysis and Stack Allocation for Object-Based
Programs. In 2000 International Conference

on Compiler Construction, 2000.

[12] U. Hölzle, C. Chambers, and D. Ungar. De-
bugging Optimized Code with Dynamic Deop-
timization. In Proceedings of the ACM SIG-

PLAN’92 Conference on Programming Lan-

guage Design and Implementation, 1992.

[13] J. Seward and N. Nethercote and J.
Fitzhardinge. Valgrind. http://valgrind

.kde.org/, 2003.

[14] Java Grande Forum. Java Grande Forum
Benchmark. http://www.epcc.ed.ac.uk/

javagrande/javag.html, 2003.

[15] J.Bogda and U. Hölzle. Removing Unneces-
sary Synchronization in Java. In Proceedings of

the 14th Annual Conference on Object-Oriented

Programming Systems, Languages and Applica-

tions, pages 35–46, 1999.

[16] J.Gosling, B.Joy, and G.Steele. The Java Lan-

guage Specification. Addison Wesley, 1999.

[17] KAI Software. Tutorial: Using Assure for
Threads. http://www.intel.com/software/

products/assure/assuret_tutorial.pdf,
2001.

[18] K.Rustan, M.Leino, and G. Nelson. An Ex-
tended Static Checker for Modula-3. In Pro-

ceedings of 7th International Conference on

Compiler Construction, LNCS1383, 1998.

[19] L. Lamport. Time, clock, and the orderling of
events in a distributed system. Communica-

tions of the ACM, 21(7), 1978.

[20] M.Christiaens and K.D.Bosschere. TRaDe, A
Topological Approach to On-the-fly Race De-
tection in Java Programs. In Proceedings of the

Java Virtual Machine Research and Technology

Symposium, 2001.

[21] Sun Microsystems. Java HotSpot Tech-
nology. http://java.sun.com/products/

hotspot/, 2003.

[22] R. Netzer and B. Miller. What Are Race Condi-
tion? - Some Issues and Formalizations. ACM

Letters on Programming Languages and Sys-

tems, 1(1), 1992.

[23] C.v. Praun and T.Gross. Object Race De-
tection. In Proceedings of the Conference on

Object-Oriented Programming Systems, Lan-

guages, and Applications, 2001.

[24] R.Jones and R.Lins. Garbage Collection - Algo-

righms for Automatic Dynamic Memory Man-

agement. John Wiley & Sons, 1996.

[25] E. Ruf. Effective Synchronization Removal for
Java. In SIGPLAN 2000 Conference on Pro-

gramming Language Design and Implementa-

tion, 2000.

[26] S. Savage, M. Burrows, G. Nelson,
P. Sobalarro, and T.E. Anderson. Eraser:
A Dynamic Data Race Detector for Multi-
Threaded Programs. ACM Transactions on

Computer Systems, 15(4):391, 411 1997.

[27] Standard Performance Evaluation Corp. SPEC
benchmarks. http://www.spec.org, 2003.

[28] T.Lindholm and F.Yellin. The Java Virtual

Machine Specification. Addison Wesley, 2000.


