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Abstract 
Virtualization of an “uncooperative” architecture often has severe performance consequences.  Paravirtualization has 
recently been suggested as a solution to performance issues, but it introduces unacceptable supportability problems. 
The HP Labs vBlades project has identified a novel hybrid approach – which we call optimized paravirtualization.  
We examine methods for both virtualizing and paravirtualizing the Itanium processor, and then demonstrate 
optimized paravirtualization to maximize performance while simultaneously minimizing supportability concerns.

1 Introduction 
As computer performance increases, it becomes more 
desirable to utilize available performance flexibly and 
efficiently. On even the smallest personal computer, 
multiprocessing enables several applications to share 
the processor. Other techniques such as virtual memory 
and I/O device abstraction support the illusion that each 
application controls all physical resources, or even 
more resources than are physically available. In the 
pursuit of efficiency, one thing has remained constant: 
general-purpose operating systems assume that they 
have complete control of the system’s physical 
resources. The operating system thus assumes 
responsibility for allocation of physical resources, 
communication and management of external storage. 

Virtualization changes that. Similar to the way that a 
general-purpose operating system presents the 
appearance to multiple applications that each has 
unrestricted access to a set of computing resources, a 
virtual machine manages a machine’s physical 
resources and presents them to one or more operating 
systems, creating for each the illusion that it has full 
access to the physical resources that have been made 
visible. 

Virtual machines were the subject of extensive research 
in the 1960s and 1970s [1, 2, 3, 4, 5]. Originally 
developed to enable expensive mainframe resources to 
be shared by several operating systems or other 
privileged applications, they were quickly applied to 
other problem domains including system management, 
software development and security [6, 7, 8]. 
Increasingly, data centers are demanding rapid 
adaptability, requiring a single server to run one 
operating system for a period of time then be quickly 

redeployed to run another operating system serving a 
different purpose. Some high-end servers today provide 
hardware-based partitioning mechanisms [9] to allow 
multiple operating systems to share the same server. On 
an even broader scale, the grid promises the capability 
of sharing underutilized, geographically dispersed 
computing resources [10]. The resource management 
capability that results from virtual machines can help 
solve these problems by separating the operating 
system from the underlying hardware in ways that can 
yield new levels of flexibility. 

Researchers have devoted years to the study and 
deployment of virtual machines for the x86 (IA-32) 
platform. As a result, much work has appeared in the 
literature describing the issues that arise in virtualizing 
the x86 architecture [11, 12]. The Itanium (IA-64) 
processor was introduced in 1999, beginning a family 
of 64-bit processors intended for high-end servers and 
workstations. Co-developed by Intel and HP, Itanium is 
known for the high performance made possible by its 
explicitly parallel architecture, but Itanium has another 
attribute that has been less widely publicized: it was 
expressly designed with features that provide increased 
security for computer systems [13]. These features 
make Itanium eminently suitable for future Adaptive 
Enterprise and grid applications. It is useful to 
understand the virtualization issues for this architecture 
and determine how the benefits of virtualization will 
apply. We explore these issues and describe how we 
have made use of virtualization on Itanium for the HP 
Labs vBlades virtual server project. 

2 vBlades Approach and Overview 
A Virtual Machine Monitor (VMM) is a software layer 
that virtualizes the available resources of a computer 
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and multiplexes them among one or more guest 
operating systems. Implementing a VMM can be fairly 
straightforward if the target architecture was designed 
to support virtualization but quite complex if not. The 
Instruction Set Architecture (ISA) of a machine must 
conform to certain constraints for it to be fully 
virtualizable – that is, able to be represented as an exact 
duplicate by the VMM [4]. Unfortunately, these 
constraints are not met for the predominant x86 
architecture, nor are they met for Itanium. 

Ideally, an operating system should be able to run 
without modification on a VMM, while retaining the 
illusion that it is running directly on physical hardware 
and owns all resources.  Different methods have been 
suggested to support this illusion on an architecture that 
is not fully virtualizable; such methods almost always 
result in significant performance degradation. 

Some VMMs intentionally compromise the virtual 
machine interface in exchange for greater performance. 
For example, VMware provides an add-on driver 
which, when loaded by a Windows guest, greatly 
reduces the I/O overhead [14]. Other VMMs provide an 
explicit API and allow or require a guest operating 
system to port to the VMM, a technique the Denali 
project [15, 16, 17] has named paravirtualization. 

The Xen [18] team demonstrated how paravirtualization 
improves performance, scalability and simplicity at the 
cost of a small set of changes to the guest operating 
system. Xen has crystallized a set of design principles 
that we paraphrase here: 

1. Existing application binaries must run unmodified. 

2. Multiple commercially available operating systems 
must be supported. 

3. Paravirtualization is necessary for performance and 
security, especially on “uncooperative” machine 
architectures. 

4. Hiding the effects of resource virtualization is 
generally unnecessary and impacts not only 
performance and security but also correctness. 

These design principles explain the justification for 
paravirtualization but they say nothing about its major 
disadvantage: operating system modifications, 
especially significant ones, can be problematic in the 
real world. 

First, if substantial modification is required, the 
operating system provider may summarily reject the 
necessary changes. This is true not only for proprietary 
operating systems but also for open source operating 
systems. For example, the simple changes required for 

Xen’s XenoLinux impact architecture-independent code 
in the Linux distribution. Historically, there has been 
some reluctance to change this code for architecture-
specific features. 

Second, in a research or academic environment, 
operating system variations are common and it is 
probably reasonable to expect a separate operating 
system image for operation in a virtual environment. In 
a production environment, loading a different operating 
system image is unwieldy.  For a commercial operating 
system provider, doubling the number of distributed 
operating system images is a supportability issue and 
almost certainly unacceptable. 

To address these concerns, we suggest two additional 
design principles for the “Xen of Virtualization”: 

5. Operating system changes for paravirtualization 
must be minimized and limited to architecture-
dependent code. 

6. One paravirtualized operating system image must 
be capable of running either native or as a guest 
under the VMM. 

The HP Labs vBlades project is exploring virtualization 
on Itanium to support a virtual server environment. The 
vBlades goals include: 

• Concurrent execution of multiple operating system 
images, each with their own application set, in 
isolated protection domains with security and 
privacy enforced by hardware. 

• Optimal server utilization through allocation and 
dynamic management of virtual servers that map to 
fractional, integral or aggregated physical servers. 

• Comprehensive measurement, monitoring and 
control capabilities for detailed performance 
analysis, QoS monitoring, resource management 
and accounting. 

• Resource management and security protocols that 
enable integration of vBlades virtual servers into 
utility data centers and the grid. 

VBlades supports both virtualization and 
paravirtualization. The vBlades hypervisor handles 
emulation of privileged operations while the vBlades 
virtualization abstraction layer (VAL) provides the API 
used by ported guests. The components may be used 
separately or together. That is, operating systems may 
run fully virtualized, undertake a complete port to the 
VAL or use the facilities in combination. By starting 
with a fully virtualized system, making performance 
measurements for selected benchmarks then adding 
VAL calls to resolve performance issues, an optimal 



  

balance can be found between the magnitude of the 
required modifications and performance. We call this 
hybrid approach optimized paravirtualization. 

3 Virtualizing the Itanium Processor 
As was previously noted, the present Itanium 
architecture is not fully virtualizable [4].  This section 
describes some of the most important issues with 
Itanium virtualization and the approaches used by 
vBlades to resolve the issues. It is intended to be 
illustrative, not comprehensive. 

3.1 CPU Virtualization 
3.1.1 Ring Compression 
Four privilege levels or rings are supported on Itanium. 
Privilege level zero (PL0) is the most privileged and the 
only level at which privileged instructions may be 
executed. Itanium operating systems typically utilize 
only two privilege levels: the operating system runs at 
PL0 with all privileges and user processes run 
unprivileged, usually at PL3.  PL1 and PL2 are 
generally unutilized. 

VBlades takes advantage of the unused levels by 
employing the traditional VMM ring compression 
technique. VBlades demotes a guest to privilege level 
two (PL2), reserving both PL0 and PL1 for its own 
operation. All unprivileged instructions, whether 
executed by the guest or one of the guest’s processes, 
execute normally and at full performance. Privileged 
instructions executed by the guest result in the delivery 
of a privileged operation fault, which is fielded by the 
vBlades hypervisor. 

One difficulty Itanium has with ring compression is that 
a guest can easily determine the privilege level at which 
it is executing, a problem commonly known as 
privilege leakage. Several Itanium non-privileged 
instructions allow the Current Privilege Level (CPL) to 
be examined. A guest concerned about potential 
security vulnerabilities might refuse to boot or run if it 
determines that it is running virtualized. A similar 
difficulty arises if a guest makes use of all four 
privilege levels. Both of these issues can be avoided, 
but only with significant performance impact and/or by 
utilizing sophisticated instruction transformation 
techniques. Fortunately, these issues rarely arise in 
commercially available operating systems. 

3.1.2 Emulation of Privileged Operations 
When a privileged operation fault results from a guest 
attempt to execute a privileged operation, the vBlades 
hypervisor decodes and emulates the instruction. Rather 
than faithfully emulate the precise semantics of the 
instruction, vBlades usually will choose to apply its 

own interpretation to virtualize the effects of the 
instruction. For example, a guest may utilize Itanium’s 
rsm psr.i instruction to turn off delivery of 
interrupts. VBlades does not actually disable interrupts 
but instead just records the guest’s intent and honors the 
fact that any interrupts intended for that guest should 
not be delivered until further notice. 

A complication may arise in the process of emulating 
an Itanium privileged instruction. Some architectures 
provide a special register – often called the Instruction 
Register (IR) – to record the currently executing 
instruction. Itanium does not provide an IR so the 
vBlades hypervisor must utilize other state information 
to read the instruction from memory. However, all 
current Itanium implementations support independent 
translation buffers for instruction and data access. Since 
the original fetch occurred as an instruction access and 
the second read is a data access, the hypervisor must be 
prepared to sustain a data translation fault. If this 
occurs, the hypervisor must search the translation tables 
to find the correct translation for the instruction. 

3.1.3 Exceptions / Interrupts 
Itanium defines a set of conditions that result in 
exceptions and interrupts (collectively referred to as 
interruptions) and also defines a privileged Interruption 
Vector Address (IVA) register that defines the base of a 
code table. Different types of interruptions are delivered 
to different places in the IVA-based code table. Certain 
state bits are disabled automatically on delivery of an 
interruption. For example, interrupt delivery and 
interrupt state collection are both turned off. 

All of this virtualizes in a relatively straightforward 
way: The vBlades hypervisor records the guest’s IVA 
register and, for interruptions that need to be handled by 
the guest, it adjusts state appropriately and delivers 
control to the guest at the guest’s interruption handler. 

One complication arises in certain situations involving 
the Itanium register stack engine (RSE). The register 
stack enables automatic register renaming in order to 
accelerate handling of procedure call data, while the 
RSE handles memory traffic between the register stack 
and backing store memory. The RSE operates 
concurrently with the processor and may attempt to 
load or store data that results in a virtual addressing 
fault. The normal Itanium interruption delivery 
mechanism is used for these faults but a special bit is 
set in the processor state to indicate that the fault 
resulted from an RSE memory operation. 
Simultaneously, another processor status bit is cleared 
to disable RSE activity. 



  

The complication occurs because the latter bit – the 
RSE Current Frame Load Enable (RSE.CFLE) bit – is 
not architecturally visible and cannot easily be 
modified. According to the Itanium specification, this 
bit is enabled only – and unconditionally – on execution 
of any procedure return (br.ret) or return-from-
interruption (rfi). In a native operating system, the OS 
interruption handler simply resolves the fault prior to 
returning control to the faulting process. However, in 
many cases the vBlades hypervisor must cede control to 
the guest to resolve the fault. When this happens, RSE 
activity is automatically enabled, resulting in immediate 
recurrence of the fault. 

Several approaches were investigated to resolve this 
rare but tricky problem. On the first design attempt, the 
register stack was forced into a known stable state prior 
to delivery of control to the guest for any interruption 
using the Itanium cover instruction. However, certain 
guest interruption handlers were unable in some non-
RSE fault cases to deal with a “pre-covered” register 
stack. Next, we attempted to track the other RSE fault 
indication bit (ISR.ri) to deliver the stack “pre-covered” 
only when an RSE fault had occurred. Tracking this 
state proved to be problematic. Finally, we settled on a 
delayed approach that we call lazy cover. We allow the 
fault to recur upon delivery to the guest and, when it 
does, special code recognizes the recurrence. We then 
cover the register stack and redeliver the fault. This 
results in an extra vBlades-to-guest interruption 
delivery but the situation happens so rarely that 
performance is not an issue. 

3.1.4 Privilege-sensitive Instructions 
Privilege leakage is one example of a visible difference 
that occurs as a result of guest privilege demotion. 
Itanium has several other instructions that have 
privilege-related issues: 

• The previously mentioned cover instruction has a 
side effect that saves important register stack 
information in a privileged register. However, the 
side effect only occurs under certain circumstances 
that are restricted to PL0 execution. 

• thash and ttag are unprivileged instructions 
that surface information from privileged virtual 
memory data structures. 

• A bit in the processor status register – PSR.sp – 
controls whether the performance data registers can 
be read by non-privileged instructions. However, if 
unprivileged access is denied, attempted reads do 
not trap but instead simply return zero. 

These instructions, which behave differently depending 
on current privilege level, can be referred to as 
privilege-sensitive instructions. 

A common VMM technique for dealing with privilege-
sensitive instructions involves dynamic transformation 
of the instruction stream. Because of the bundling of 
Itanium’s explicitly parallel instructions, further 
constrained by functional unit asymmetry and bundle 
templates that limit the types of instructions the bundle 
may contain, dynamic transformation on Itanium can be 
difficult [19]. The vBlades design is capable of 
incorporating a dynamic transformation mechanism but 
static instruction replacement has proven sufficient for 
vBlades purposes. We avoid complicated replacement 
choices by directly replacing each privilege-sensitive 
instruction with a similar privileged instruction. 

The cover instruction has a single encoding with no 
variations and can be replaced with a break.b 
instruction. But thash and ttag, which each have 
two register arguments, are more complicated and 
require a brief discussion of register usage on Itanium. 

Nearly all Itanium instructions that access registers 
utilize a seven-bit register field, allowing usage of 
Itanium’s 32 64-bit general-purpose registers and the 96 
additional automatically renumbered registers on the 
register stack. These register stack registers, numbered 
32 to 127, are heavily used by the procedure calling 
mechanism and normally contain procedure parameters 
and local variables. At procedure entry, an Itanium 
alloc instruction specifies the portion of the register 
stack that is used by this procedure, starting at register 
number 32. For example, a procedure may indicate that 
only registers 32 through 40 will be used, in which case 
registers 41 through 128 will not be available in the 
current register stack. Interestingly, Itanium specifies 
that while writes to numbered registers currently 
unavailable in the register stack result in an illegal 
operation trap, reads from those registers simply return 
a zero – without resulting in an illegal operation trap. 

VBlades takes advantage of this last point. While user-
level code may use registers numbered in the sixties or 
higher, in system code such register usage is rare and in 
low-level system code it is exceedingly rare. VBlades 
steals the high 64 register numbers of the source 
register for two privileged instructions and uses these 
for the privileged instruction replacements for thash 
and ttag as shown in Figure 1. This static translation 
precludes the possibility of a guest using a register 
numbered higher than 63 for any of these four 
instructions, but that has yet not proven to be a 
problem. 



  

thash rx=ry → tpa rx=r(y+64), 0≤y<64 

ttag rx=ry → tak rx=r(y+64), 0≤y<64 

Figure 1 – Modified thash and ttag Instructions 

3.2 Memory Virtualization 
Studies have shown [20, 21] that memory loads and 
stores make up a large percentage of an instruction 
stream. Consequently, a machine’s virtual memory 
architecture is designed to ensure that virtual memory 
accesses proceed efficiently and securely. To maximize 
performance, vBlades must stay out of the way of the 
vast majority of the memory accesses of a guest and its 
user processes, while retaining the capability to 
intercede if a guest exceeds its bounds, maliciously or 
otherwise. 

3.2.1 Address Spaces 
As with most modern architectures, Itanium provides 
the capability to isolate the address space of different 
processes. To do so, it provides eight privileged region 
registers that participate in each virtual address 
translation. The range of values that can be contained in 
a region register is implementation-dependent and must 
be obtained through a call to the Itanium-architected 
Processor Abstraction Layer (PAL) firmware, which 
returns the number of bits in the region register.  Setting 
a region register to a value outside of this range results 
in a fault. 

VBlades intercepts the guest’s PAL call and always 
returns the architectural minimum, thus limiting each 
guest to 218 address spaces. Since setting a region 
register is a privileged operation, vBlades can intercede 
to reserve some values for its own purposes and 
partition the set of address spaces among the guests, 
securely restricting the virtual addressing capabilities of 
each guest. 

3.2.2 Metaphysical Memory 
In some situations, an operating system may choose to 
override the protections afforded by the machine’s 
virtual addressing mechanism in order to directly access 
real machine memory. Itanium controls whether 
accesses are virtual or physical with bits in the 
privileged Processor Status Register (PSR). Once in 
physical mode, an Itanium native operating system can 
access any memory address, read or write device 
control or data registers or, by accessing a non-existent 
physical address, cause a machine check and crash the 
system. 

In order to enforce security, vBlades cannot allow a 
guest to access physical memory directly. To prevent 

this, vBlades inserts an extra layer of indirection 
between a virtual address and its corresponding 
physical address. Although the concept of an 
intermediate layer is not unusual in VMM 
implementation, nomenclature is confusing and not 
standardized; to clearly differentiate it from real 
machine physical memory, we refer to this layer as 
metaphysical addressing1. VBlades intercepts attempts 
by the guest to transition from virtual mode to physical 
mode and instead places the guest in metaphysical 
mode by adjusting region registers so that virtual 
addresses translate to a reserved per-guest address 
space. 

Once in this mode, the guest believes that it is directly 
accessing physical memory but the physical addresses it 
is using are actually virtual addresses that vBlades 
controls and monitors.  When a guest access to a 
metaphysical address results in a virtual addressing 
fault, vBlades first validates the address to ensure 
isolation, and then resolves the fault invisibly to the 
domain by providing the appropriate mapping.  Note 
that since this mechanism utilizes all of the machine's 
translation hardware, performance is preserved for 
guests that frequently access physical memory. 

Rather than use an extra level of addressing indirection, 
some VMMs simply partition physical memory among 
the guests. This limits either the number of guests or the 
amount of physical memory assigned to each. A 
valuable side effect of the vBlades approach is that it 
can utilize the indirection to provide additional features. 
Just as a native operating system utilizes virtual 
memory and disk paging to create the illusion for each 
of its processes that more memory exists than is 
actually available, vBlades can oversubscribe physical 
memory for its guests. It can demand load or swap out 
lightly utilized memory, share read-only memory 
segments between similar guests and adjust access to 
physical memory as needed to maintain a specified 
quality-of-service level. 

3.3 Timer Virtualization 
A native Itanium operating system marks the passing of 
time through the use of a free-running Interval Time 
Counter (ITC) and an Interval Time Match (ITM) 
register. The period of the ITC is obtained through a 
call to the PAL firmware. The operating system triggers 
                                                           
1 Merriam-Webster defines metaphysical as: “of or relating 
to…a reality beyond what is perceptible to the senses.” Since 
metaphysical memory represents physical memory in a way 
that is not perceptible to a guest, we believe this usage is 
appropriate, though admittedly light-hearted. 



  

timer interruptions by setting a value in the privileged 
ITM register. When the value of the ITC matches the 
value in the ITM, an interrupt is generated. On Itanium, 
firmware may take control of the machine for an 
indefinite period of time, during which interrupt 
delivery is disabled and the operating system is 
effectively sleeping. An Itanium operating system must 
be resilient to such blank periods. When the operating 
system finally sees the interrupt, the value in the ITC 
may greatly exceed the value in the ITM – perhaps by 
as much as one or more quanta. The timer interrupt 
service routine must be capable of recognizing this 
situation and recovering appropriately. 

VBlades takes advantage of this to avoid virtualization 
of time. A guest may be out of context for an extended 
period while other guests or vBlades are running and 
must be capable of recovering from this situation. 
However, even if a guest recovers it is not clear what 
the impact will be on its processes, for example, when 
accounting for resource usage. We have considered a 
software interrupt to notify a guest that it has been 
sleeping, but have not yet implemented it or seen a 
requirement for it. It remains to be seen if this will be 
required to serve the needs of some guests or if a virtual 
time mechanism (such as the one proposed by Xen) will 
need to be architected and implemented. 

4 Paravirtualizing Itanium 
As others have observed, paravirtualization can serve a 
number of objectives. In Denali, an abstract interface 
different from the underlying x86 hardware is 
convenient for supporting thousands of underutilized 
virtual machines. For Xen, knowledge of the underlying 
API allows more efficient access of x86 page tables 
while isolating potentially malicious guests. Since other 
purely virtual mechanisms could suffice, we posit that 
every use of paravirtualization is a way to improve 
performance. 

Paravirtualization of Itanium is no different. The first 
vBlades design required a complete guest port based on 
the assumption that any virtualization would result in 
unacceptable performance degradation. All privileged 
operations required a VAL call and no privileged 
operation trapping was supported. As measurement and 
monitoring capabilities were added, we were able to 
quantify the frequency of privileged requests. We found 
that the vast majority of VAL calls were due to 
interrupt enable/disable requests, TLB miss processing 
and system calls. In a second tier were calls for timer 
handling, external interrupt handling and context 
switches. This led us to focus tuning efforts on 
improving the highest frequency operations. 

4.1 The Privileged State Communication 
Block (PSCB) 

On every Itanium interruption, certain privileged 
registers provide information to assist the operating 
system in resolving and recovering from the 
interruption. For example, on all interruptions the last 
value of the instruction pointer and the processor status 
register are preserved so that execution can be resumed 
(with an rfi instruction), if appropriate, when 
interruption processing is complete. Some other 
examples: On a TLB miss, the faulting address is 
provided; on a “break” fault (commonly used for 
system service calls) the instruction contains an 
immediate value that is provided to the interruption 
handler. 

When a native operating system processes an 
interruption, several of these privileged registers are 
read and/or written and each register access requires 
execution of a privileged instruction. To avoid this, 
vBlades defines the Privileged State Communication 
Block (PSCB), a shared-memory area used to record 
the information contained in these privileged registers 
and enable communication of the information to and 
from guest interruption handlers. 

In many cases, the PSCB contains an exact match of the 
privileged register that would be seen by a native 
operating system. For example, the Interruption Status 
Register (ISR) is delivered unchanged. In other cases, 
the register is “virtually” identical; that is, it has been 
adjusted by vBlades according to virtualization 
constraints. An example of this is the “current privilege 
level” bit in the virtual interrupt processor status 
register (IPSR) which is set at interrupt delivery to zero 
to reduce privilege leakage. 

4.2 Some Serialization Required 
Because Itanium is an explicitly parallel architecture, 
some processor state modification instructions require a 
non-privileged serialization (srlz.i or srlz.d) 
instruction to be executed to ensure the effects of the 
state modification take place before a subsequent 
instruction that depends on those effects. For example, 
writes to the previously mentioned Itanium ITM 
register may not result in a timer interrupt until a 
srlz.i instruction is executed. For certain PSCB 
fields, and under certain circumstances, the vBlades 
VAL requires a similar mechanism. 

For example, the “interrupt delivery enabled” field is 
the virtual equivalent of the hardware psr.i bit. If a 
guest wishes to disable interrupts, it clears this field and 
interrupts are pended – noted but not delivered to the 
guest – until further notice. If the guest wishes to enable 



  

interrupts, it sets the field to a non-zero value. 
However, vBlades only checks this for subsequent 
interrupts; if any interrupts are pending at the time the 
guest enables interrupts, delivery is delayed unless the 
guest invokes a VAL synchronization service call, as 
shown in Figure 2. In order to expedite this check, 
another PSCB field specifies whether any interrupts are 
pending. If interrupt arrival frequency is substantially 
lower than interrupt disable/enable frequency, this 
model can substantially reduce the need for VAL calls. 

 

Figure 2 – Enabling Interrupts with 
Paravirtualization 

4.3 Batching 
In many cases, replacing emulation of a single 
privileged operation with a single VAL service call 
provides negligible savings. However, if a group of 
privileged operations can be replaced by a single VAL 
service call, significant performance improvements can 
result. For example, when a guest is performing a task 
switch it will usually update several (or all) of the 
region registers with address space values appropriate 
for the new task. Rather than making a VAL call for 
each individual region register, one VAL service allows 
all eight to be updated with a single call. 

4.4 Transparent Paravirtualization 
The performance advantages of paravirtualization are 
evident. As previously noted, there are disadvantages to 
requiring a separate binary for running native vs. 
running as a guest on a virtual machine. If an operating 

system can determine whether or not it is running 
virtualized, it can make optimal execution choices at 
runtime and the same binary can be used. We call this 
transparent paravirtualization. 

 

Figure 3 – Enabling Interrupts using 
Transparent Paravirtualization 

VBlades utilizes a reserved bit in a privileged 
configuration register to let the operating system know 
whether or not it is running virtualized. According to 
the Itanium architecture definition, reserved bits in the 
configuration register are always set to zero. When the 
vBlades hypervisor executes the privileged instruction 
that returns this register, it sets one of the reserved bits 
to one. Thus, an operating system can execute this 
instruction early in the startup process and conditionally 
set a global variable to record whether or not it is 
running as a vBlades guest. Once this variable is set, 
subsequent transparent code can test the variable and 
react accordingly as illustrated in Figure 3. 

In a transparently paravirtualized operating system, this 
conditional test may occur with relatively high 
frequency; indeed, every piece of paravirtualized code 
requires the test. When running as a guest, the 
incremental cost of the additional test is small relative 
to virtualization overhead. We conjectured that the cost 
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when running native would also be small. First, in a 
fully paravirtualized guest, the number of tests is at 
most one per privileged instruction. Second, the 
frequency of privileged instructions in all but the most 
system-centric micro-benchmarks is at least two to 
three orders of magnitude lower than unprivileged 
instructions. Third, a well-defined paravirtualization 
interface eliminates many privileged instructions. 
Finally, high frequency access to the conditional test 
variable ensures its presence in cache memory, 
guaranteeing a low cycle count for the conditional test. 

To test our conjecture, we ran a simple but non-trivial 
benchmark: Linux compiling itself. The difference was 
indeed negligible, with the magnitude dwarfed by the 
natural variability in the benchmark results; we expect a 
more comprehensive set of benchmarks to show that 
degradation is less than 0.1%. If true, this would show 
that the performance impact of transparent 
virtualization on a native operating system is, as its 
name would imply, transparent. 

4.5 Optimized Paravirtualization 
One of our design principles requires limiting changes 
to the guest, yet we wish to minimize the performance 
degradation of the paravirtualized guest. This is clearly 
an iterative and subjective process: Some guests may 
have stringent requirements on code change, while 
others may be much more focused on performance. We 
refer to the process as optimized paravirtualization. 

To measure the degree of change to the guest, we 
define the set of changes necessary to implement 
paravirtualization as the porting footprint. Changes to 
the guest fall into two categories: invasive changes and 
supporting changes. Invasive changes are those that 
affect one or more existing source or build files. 
Supporting changes are newly added source or build 
files that provide VAL support code necessary for 
interfacing to the vBlades VAL but do not affect 
existing code; these are generally linked in as a library. 
We believe that invasive changes have, by far, the most 
significant impact on operating system maintenance. 
Consequently we restrict our definition of porting 
footprint to include only invasive changes.  

To support data-driven performance decisions, vBlades 
is highly instrumented. It records and tabulates all VAL 
calls, privileged operations, exception deliveries, etc. 
This level of detail is not only crucial for porting but 
can also provide an interesting perspective on the 
operation of the original pre-ported guest. 

The vast majority of application and guest instructions 
executed in any benchmark are unprivileged, execute at 
full speed and are thus irrelevant to a comparison. Since 

the guest is executing unprivileged, all privileged 
instructions must either be emulated by the vBlades 
hypervisor or replaced and paravirtualized through 
VAL calls. We will refer to these collectively as ring 
crossings.2 Obviously, each ring crossing is slower than 
the native privileged instruction it replaces – perhaps by 
two to three orders of magnitude. Consequently, 
reducing the total number of ring crossings improves 
performance. Further, a VAL call is somewhat less 
costly than hypervisor emulation since the hypervisor 
must fetch and decode the privileged instruction. Thus, 
replacing an emulated privileged instruction with an 
equivalent VAL call also improves performance. 

With this in mind, we present ring-crossing results from 
the previously introduced benchmark (Linux compiling 
itself) at different stages of optimized paravirtualization 
of Linux 2.4.20. Prior to the execution of the 
benchmark, all vBlades counters are zeroed; thus 
privileged instructions and VAL calls necessary to 
initialize the system are ignored. The ring crossing 
results of the different stages are graphically 
represented in Figure 4. On the second y-axis we show 
the cumulative porting footprint measured in lines of 
code. 

In stage 0, only a minimal set of changes is introduced 
into Linux to allow it to run as a vBlades guest. There 
are approximately 474 million ring crossings, all of 
them due to privileged instructions. These changes have 
a porting footprint of 46 lines. 

In stage 1, we replace Linux interrupt enable/disable 
code with the VAL call mechanism described in 
Section 4.2. Because of the highly organized nature of 
the Linux source code, the vast majority of code that 
enables or disables interrupts uses preprocessor macros 
defined in a single include file; these macros utilize the 
Itanium rsm and ssm instructions. We redefine these 
macros using a patch that has a porting footprint of only 
four lines. With this minor change, almost 111 million 
(23%) of the privileged operations are eliminated and 
replaced with less than one million VAL calls, reducing 
ring crossings to 363 million. 

In stage 2, we introduce a vBlades-specific Interruption 
Vector Table (IVT). In Itanium, the IVT is the entry 
point for all interruption handlers, including 
synchronous exceptions such as TLB faults as well as 
timer and external device interrupts. Since Itanium 
                                                           
2 Technically, there are at least two ring crossings for each 
hypervisor or PAL call but we omit this detail for the purpose 
of clarity. Only the units of measurement are affected, not the 
impact on performance. 



  

interruption handlers obtain and manipulate state by 
reading and writing privileged registers, the IVT 
contains many privileged instructions. As previously 
described, these can be replaced with normal loads and 
stores to the PSCB. 

Figure 4 – Ring Crossings vs. Porting Footprint 

Linux running on Itanium must indicate the location of 
the IVT by storing the address in privileged cr.iva 
register exactly once early in architecture dependent 
startup code, prior to the possibility of any interruption. 
Replacing the original Linux IVT with a VAL-aware 
IVT could be as simple as conditionally assigning a 
different location to cr.iva. However, the VAL 
sensing code also must execute prior to any 
interruption. So instead we allow the original code to 
set cr.iva to point to the original Linux IVT, then 
reset it in the VAL sensing code to point to the VAL-
aware IVT. As a result, there is no additional porting 
footprint for this change. The resultant reduction in ring 
crossings, however, is significant – now down to 274 
million. 

Every entry into the Linux kernel must have a 
corresponding exit, and just as the IVT reads numerous 
privileged registers, many of these same privileged 
registers must be written when returning to interrupted 
user code. In stage 3, we replace the central Linux 
kernel exit code with a VAL-aware version, a change 
that requires a porting footprint of 19 lines and see a 
dramatic improvement in the number of privileged 
operations, which has been reduced to 48 million. We 
also see the first significant increase in VAL calls – a 
total of 32 million, visible on the bar chart as the 

crosshatched portion of the bar. One VAL_RESUME 
call, the equivalent of the Itanium rfi instruction, is 
made for each kernel exit. The total number of ring 
crossings is now 80 million. 

In stage 4, we examine the benefit of the region register 
updates seen previously as an example of batching. 
When performing a task switch, Linux/ia64 changes 
five region registers using five consecutive privileged 
instructions. We replace all five privileged instructions 
with a single VAL call, using a patch that has a porting 
footprint of five lines. The benefits of this stage, though 
significant, are not as remarkable as the previous stages. 
We have replaced about 3.8 million privileged 
operations with about 0.7 million VAL calls, a net 
reduction of over 3 million ring crossings. 
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In some cases, a large reduction in ring crossings that 
yields significant performance improvements can be 
obtained with a very small porting footprint. In other 
cases, changes with a larger porting footprint may result 
in a negligible performance change. Through careful 
experimentation and measurement a suitable balance 
can be achieved. 

We redirected the vBlades project prior to completion 
of extensive application benchmarking and without 
ports of guests other than Linux. In an earlier prototype, 
a small suite of benchmarks was used to compare 
performance of Linux running fully paravirtualized 
against native Linux. While this prototype made 
simplifying assumptions regarding I/O, the observed 
performance degradation was approximately 1-2%, 
comparable to the paravirtualized x86 measurements 
published by the Xen team. 

5 Conclusions 
We have described virtualization and paravirtualization 
issues for the Itanium processor family. Combining 
these techniques using optimized paravirtualization 
allows a balance to be reached between maximizing 
performance and minimizing the porting footprint (and 
maintenance impact) for the guest operating system; we 
believe that, with a small porting footprint, performance 
can approach native operation. Finally, we have 
introduced transparent paravirtualization, which enables 
a single operating system image to run either on a 
native system or a VMM, improving maintainability at 
essentially no cost. 
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