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Abstract 
This paper describes optimization techniques recently applied to the Just-In-Time compilers that are part of the 
IBM® Developer Kit for Java™ and the J9 Java virtual machine specification. It focusses primarily on those 
optimizations that improved server and middleware performance. Large server and middleware applications written 
in the Java programming language present a variety of performance challenges to virtual machines (VMs) and just-
in-time (JIT) compilers; we must address not only steady-state performance but also start-up time. In this paper, we 
describe 12 optimizations that have been implemented in IBM products because they improve the performance and 
scalability of these types of applications. These optimizations reduce, for example, the overhead of synchronization, 
object allocation, and some commonly used Java class library calls. We also describe techniques to address server 
start-up time, such as recompilation strategies. The experimental results show that the optimizations we discuss in 
this paper improve the performance of applications such as SPECjbb2000 and SPECjAppServer2002 by as much as 
10-15%.   

1. Introduction 
The steady growth in the size and complexity of large 
server and middleware applications written in the 
Java™ programming language[8] offers continuing 
performance challenges to virtual machines (VMs) and 
just-in-time (JIT) compilers. One source for these 
challenges is that program maintenance has become at 
least as important as performance for this class of 
applications.  This stronger emphasis on program 
maintenance has encouraged programmers to make 
more widespread use of the many features available in 
the Java programming language that support software 
engineering efforts, such as: multiple inheritance via 
interface classes, polymorphic virtual method 
invocations, and complex exception handling 
mechanisms such as finally blocks. While these 
features are convenient to use from a Java 
programmer's perspective, they can impose a significant 
runtime performance overhead and thus they challenge 
JITs and VMs to provide features that mitigate that 
overhead.  Moreover, addressing these software 
engineering related overheads is doubly difficult since 
many large middleware applications do not have 
obvious hotspots on which to focus compilation or 
performance analysis resources. 

Even beyond this particular challenge, however, server 
and middleware applications have many other features 

that negatively impact their performance.  In this 
paper, we describe 12 separate optimizations and 
features that have been implemented in IBM products 
to accelerate the performance of these applications.  
Examples of these features include: optimizing 
synchronization to reduce repetitive locking and 
unlocking on the same object to improve scalability, 
and optimizing Java class libraries to improve the 
performance of, for example, computing transaction 
time-stamps. 

Steady-state performance, however, is not the only 
important performance factor.  Application servers, 
for example, must be able to start quickly when a 
machine is rebooted to avoid costly interruption of 
service.  Fast start-up time also greatly enhances 
productivity for application developers who regularly 
must restart the application server as part of the usual 
edit-compile-debug development cycle.  We show in 
this paper how the JIT compiler can employ different 
recompilation strategies to significantly improve 
server start-up time. 

This paper describes recently implemented 
optimization techniques used by the Just-In-Time 
compilers that are part of the IBM® Developer Kit 
for Java and the J9 Java virtual machine 
specification, focussing primarily on those 
optimizations that improved server and middleware 
performance.  We report performance results on three 



platforms for industrial-strength implementations of 
these features rigorous enough to stand up to our 
customers’ applications. 

The rest of the paper is organized as follows.  In 
Section 2, we discuss three Java coding conventions we 
have observed in customer applications and detail some 
of the performance overheads incurred in each case. In 
Section 3, we describe eight optimizations that 
specifically target server performance. Similarly, in 
Section 4, we describe four optimizations we have 
found to be important for middleware applications. We 
present the performance results achieved by these 
techniques in Section 5 using a well-known server 
application (SPECjbb2000), a middleware application 
(SPECjAppServer2002), as well as an XML parser and 
a cryptographic benchmark program. Finally, in Section 
6, we summarize the paper’s contributions. 

2.  Java Coding Observations 
Through the process of addressing customer defects, 
our teams are exposed to large amounts of Java code 
written by our customers.  We present, in this section, 
what we believe are three important observations about 
the code being employed that have a direct impact on 
the performance of Java applications: 1) a trend towards 
bytecode generation rather than Java code translated by 
javac, 2) the more frequent use of finally blocks, 
and 3) the common use of exceptions. 

2.1.  Bytecode Generation 
Bytecode generators other than javac are becoming 
more prevalent.  These range from relatively simple 
tools such as JavaServer Pages (JSP) servlet generators 
to full-fledged compilers such as extensible stylesheet 
language transformation (XSLT) compilers.  The 
bytecode streams generated by these tools may have 
performance implications throughout the virtual 
machine and in particular in their interactions with JITs.  
Some of these interactions can be ameliorated through 
advances in JIT implementations but some require care 
in the bytecode generator implementation. 

One particular factor that should be taken into account 
is that very long compilations can cause undesirable 
system behavior.  For example, if a very large method 
is invoked as part of servicing an RMI request, the time 
taken to compile that large method might trigger a time 
out elsewhere, the effect of which could cascade 
through the system.  For this and other reasons, most 
JITs have built-in limits on various phases such as 
method inlining to prevent compile times from 
becoming prohibitively long.  However, methods that 
are individually very large, such as some generated JSP 

servlets, can still induce long compilations, which 
can result in performance problems as outlined 
above. 

A second important consideration is that 
automatically generated bytecodes tend to exploit the 
more powerful aspects of the Java programming 
language more fully than programs written directly in 
Java.  Tools that compile domain-specific languages 
to bytecode quite naturally build their own 
abstractions to represent elements of interest in their 
language.  For example, if language X supported 
subroutine calls, an X-to-bytecode compiler might 
use an explicit representation of a stack frame.  It is 
often easier for such a compiler to use type-opaque 
representations of these abstractions, which are 
supported by the Java language, to simplify both the 
bytecode generation model and the supporting run 
time.  JITs, on the other hand, are better able to 
optimize the use of concrete data types and abstract 
types typically used by Java programmers.  Work 
may be required in both JITs and bytecode generators 
to ensure that generated bytecodes benefit from 
overall optimizations such as de-virtualization and 
method specialization. 

2.2. Finally Blocks 
Finally blocks provide a mechanism whereby a 
Java programmer can guarantee an action is 
performed regardless of how control leaves a method: 
whether via a normal return path or via an exception.  
One way that this mechanism is employed in 
middleware applications is to guarantee that a tracing 
function will be called if it is necessary to document 
that the method has completed executing.  In this 
coding pattern, most of the code in the method is 
enclosed within a try region and the tracing code is 
placed in a finally block for that try region.  
This organization guarantees consistency of tracing 
information. 

The control flows associated with the use of a 
finally block can be quite complex, complicating 
the construction of efficient and effective traversal 
orders for the JIT, which can necessitate more 
iterations than otherwise necessary to solve dataflow 
equations.  The resulting increase in JIT compilation 
time can affect the program's performance.  Even 
worse, if the control flows are sufficiently complex 
(consider nested finally blocks, for example, 
which can and do occur after aggressive inlining) the 
JIT may decide not to, or be unable to, apply certain 
optimizations that can have profound performance 
implications. 



Although finally blocks are convenient from a 
programmer's point of view, they are less so for the JIT 
compiler.  We recommend against using finally 
blocks in performance-critical codes unless there is a 
valid engineering reason to do so. 

2.3. Exceptions 
Despite the wealth of evidence detailing the hidden cost 
of processing exceptions, we still encounter 
applications where exceptions are thrown in commonly 
executed paths.  While JITs expend considerable effort 
to improve the delay between the time an exception is 
thrown and the time that the handler for that exception 
begins to execute, the delay is still significant and 
several orders of magnitude larger than executing, for 
example, a branch.  In particular, throwing an exception 
that will be caught higher in the stack can be 
particularly expensive because each frame must be 
searched both for a catcher and for locked objects that 
must be unlocked.  The latter problem is typically 
addressed by having an artificial catch block that 
unlocks the object and then rethrows the exception.  If 
the "real" catcher is many frames above the frame 
where the exception was originally thrown and there are 
many objects to unlock in the intermediate frames, the 
exception will be even more expensive to process; it 
will involve throwing the exception several times. 

3. Server Performance Work 
In this section, we describe eight areas in which we 
have made enhancements (either in the VM or in the 
JIT) to improve the performance of server applications: 
newInstance, String.indexOf(), 
System.currentTimeMillis(), 
System.arraycopy(), object allocation inlining, 
lock coarsening, thread-local heap batch clearing, and 
utilizing the Intel® SSE instructions.  Many of these 
enhancements target, in particular, the SPECjbb2000 
[16] benchmark. 

3.1. newInstance 
The java.lang.Class.newInstance method 
returns an instance of the same type as the 
java.lang.Class object passed as the parameter to 
newInstance.  The newInstance method in the 
class library calls a native newInstanceImpl 
method that does three things: first, it checks for the 
presence of a default constructor for the class being 
instantiated; second, it checks that this default 
constructor is accessible to the caller; and third, it 
invokes the constructor.  Several factors make this 
process inefficient: 

1. The expensive invocation to the native 
newInstanceImpl method. 

2. The search for the default constructor. 
3. Verifying that the constructor is visible in the 

caller’s context may involve walking the stack to 
determine that the constructor is not currently 
being executed. 

4. The expensive callback into the Java constructor 
from the native method. 

Because newInstance is commonly used, it 
warrants a special slot in the virtual function table 
(VFT) of each class.  This entry represents a class-
specific newInstanceImplThunk, which can 
perform the allocation, avoiding both the native 
invocation (#1) and the callback to the Java 
constructor (#4).  We also avoid the accessibility 
check (#2) altogether for classes with public default 
constructors.  Furthermore, we can inline the 
constructor into the caller and avoid even overhead of 
a JITed code invocation.  Even better, the JIT can use 
value profiling information[5] to inline the 
newInstanceImplThunk invocation with 
appropriate runtime guards, which has the benefit of 
exposing the allocation to the JIT’s optimizer.  Once 
exposed, optimizations such as escape analysis[6] can 
transform the heap allocation into a stack allocation if 
the created object does not escape to another thread 
or to the method’s caller. 

3.2. String.indexOf() 
Numerous algorithms, such as Boyer and Moore’s 
technique[4], exist to perform the semantics specified 
by the String.indexOf() method in the Java 
class library.  Many of these algorithms operate in 
two phases:  first they compute some meta-data based 
on the target string and then they use this to rapidly 
iterate through the source string.  Our analysis of 
benchmarks such as SPECjbb2000 revealed that 
indexOf is frequently invoked with short constant 
pattern strings.  This situation is ideal for the 
application of Boyer and Moore’s algorithm because 
the compiler can statically compute the meta-data 
associated with the pattern string, leaving only the 
rapid phase to be executed in response to the actual 
invocation of indexOf. 

3.3. System.currentTimeMillis() 
The java.lang.System.currentTimeMillis() 
method is often called by transaction-based server 
applications such as SPECjbb2000 that repeatedly 
build time stamps. This method is expensive because: 



1. There is an expensive call from JITted code to a 
native method. 

2. The method returns a long value that must be held 
in a register (increasing register pressure) or 
returned via the stack (which may be slower to 
access). 

We optimize these costs by generating a platform-
specific inline code sequence to replace calls to 
System.currentTimeMillis(). The inline 
sequence sets up the arguments according to the system 
linkage convention and then directly calls the 
appropriate OS timing routine: 
GetSystemTimeAsFileTime() in a Microsoft® 
Windows® environment, for example, or 
gettimeofday() in a Linux environment.  The 
inlined sequence stores the result directly as required by 
the application’s use of currentTimeMillis(). 

3.4. System.arraycopy() 
One of the most frequently used intrinsics in Java 
middleware applications is System.arraycopy().  
The optimal code sequence for this method is platform-
specific and varies with the actual size of the array to be 
copied. 

To avoid the frequently suboptimal generic arraycopy 
implementation for specific calls to 
System.arraycopy(), the compiler can either 
generate code inline or invoke tuned versions of 
System.arraycopy() provided in the compiler’s 
runtime.  The compiler can, of course, implement both 
approaches and evaluate the cost trade-off at code 
generation between the call overhead to the tuned 
library code versus the code expansion cost of the inline 
code to copy the array. 

If the size of the array to be copied is constant, the JIT 
can easily generate the best possible instruction 
sequence.  When the size isn’t known, however, it has 
to either generate an instruction sequence that will 
perform best on average (like the generic 
implementation of the arraycopy intrinsic) or it can 
employ value profiling to determine the most frequent 
array size.  In a subsequent compilation for the method, 
the JIT can then special-case that most frequent size 
with an inlined code sequence and rely on a more 
generic code sequence for other sizes.  Since most of 
the arrays copied in middleware applications are shorter 
than 256 bytes, the JIT can also choose either to use a 
general instruction sequence that works best for shorter 
array sizes, or to use a runtime test to exploit the benefit 
of the faster arraycopy instruction sequence for cases 
where the faster sequence will compensate for the test 
overhead. 

When copying arrays of references, there are 
additional optimizations that are performed.  These 
optimizations fall into two broad categories deriving 
from: 1) the garbage collector design, and 2) the need 
to enforce the Java rules [11][12] for reference 
assignment compatibility. 

To maintain correctness, a generational garbage 
collector[18] must detect when a reference to a 
nursery (or “new space”) object is stored into a 
tenured (or “old space”) array object.  For certain 
array copies, the JIT can prove that checking for such 
stores is unnecessary.  The simplest optimization 
opportunity of this class, for example, is copying 
regions within a single array.  Clearly the array 
cannot be both in the nursery and tenured at the same 
time.  A second opportunity in this class occurs once 
one nursery object reference has been stored into a 
tenured object/array.  Once the tenured array has 
been added to the list of objects that must be scanned 
when garbage collecting the nursery, the remaining 
elements of the array are copied without checking for 
nursery objects1. 

The second class of optimizations results from the 
JIT’s existing type propagation capabilities.  It is 
often the case that the JIT is able to prove that there 
will be no exceptions raised by storing the elements 
of one array into another. 

There are two effects of these optimizations that 
improve performance.  First, proving that it is 
unnecessary to load either the class object or the 
garbage collection bits from the header of the object 
being copied reduces memory traffic into the cache 
during the copy, which in turn reduces the cache 
pollution effects of the copy.  Second, by eliminating 
the control flow from the copy loop, more efficient 
copy mechanisms supported by most CPU 
architectures are enabled. 

3.5. Object Allocation Inlining 
Virtually all versions of the IBM Developer Kits 
have included facilities that enable JITs to perform 
common object allocations using a thread local heap 
(TLH).  A TLH is a small region of the heap that is 
temporarily assigned for the exclusive use of a 
particular thread.  When no further allocations are 
possible in a TLH, the region resumes its status as a 
regular part of the heap. 

                                                           

1 The check can be omitted so long as collection 
cannot occur during the array copy. 



Since each thread has its own TLH, no synchronization 
is needed to allocate the majority of objects. When 
processing modestly sized object allocation requests, 
the JIT will generate fast-path code to allocate the 
objects in the TLH.  The initial implementations of this 
strategy targeted the case where the allocation is 
satisfied from the TLH as the fast-path.  The generated 
code was quite effective in this case, but each allocation 
site had associated with it a series of return code checks 
and recovery sequences to handle the less-frequent 
cases where the allocation could not be satisfied by the 
TLH. 

Analysis of many benchmarks revealed that the 
execution time spent in the return-code checking code 
could be substantial.  The Developer Kit was enhanced 
so that, when the fast-path code fails to allocate storage 
from the TLH, it invokes a JIT service routine.  This 
routine, which is part of the garbage collection (GC) 
component, will always return either a new object or an 
OutOfMemoryError indication.  The latter can be 
checked quickly by the fast-path code.  The service 
routine handles the necessary bookkeeping, including 
possibly collecting unused objects, as well as memory 
synchronizations.  As a result, the fast-path code 
sequence is shorter, which results in better instruction 
cache utilization.  Furthermore, in most cases where the 
original TLH storage allocation request fails, fewer 
compares and branches are executed. 

3.6. Lock Coarsening 
Because the JIT aggressively inlines invocations when 
compiling a method, it is not uncommon to synthesize a 
block of code containing several lock and unlock 
operations applied serially (i.e., not in nested fashion) 
to the same object.  These lock and unlock operations 
result from inlining synchronized methods into the 
method being compiled.  When we analyzed 
SPECjbb2000, we noted a method that executed 6 or 7 
repetitive lock and unlock operations on the same 
object, depending on the path executed. 

Synchronization has two negative impacts on program 
performance. First, the lock and unlock operations 
themselves are expensive, in most cases requiring 
expensive atomic memory accesses. Second, locks act 
as barriers to optimizations in the JIT, to processor 
instruction schedulers, and to the reordering ability of 
most modern processors. To alleviate these two 
problems, we implemented a lock coarsening 
optimization that eliminates many of the intermediate 
unlock and lock operations, leaving only one lock to be 
executed early in the method and as many unlocks as 
there are paths exiting the locked region.  This 
optimization must be performed with great care, 

however, because holding a lock for a substantially 
longer time can increase contention and therefore 
reduce an application's scalability.  Even worse, 
without proper care, deadlock opportunities can be 
created that make the application hang. 

We implemented a computationally efficient lock 
coarsening pass that does not unduly increase 
contention or create deadlock opportunities.  The 
pass only acts on synchronization resulting from 
inlining synchronized methods and so it will not 
interfere with hand-crafted synchronization 
implemented by a programmer via a synchronized 
block.  Although there has been previous work in this 
area [1][3][7], our implementation is novel because 
of its aggressiveness and its computational efficiency.  
Unfortunately, space restrictions prevent us from 
providing a detailed description of the technique in 
this paper. 

3.7. Thread-local Heap Batch Clearing 
The IBM JITs employ a thread-local heap (see 
Section 3.5) to reduce contention on the heap lock.  
On some processors, it can be more efficient to 
initialize the entire contents of the thread-local heap 
to the value zero when it is allocated rather than 
initialize those values for each individual object 
allocation.  In particular, the IBM PowerPC® 
architecture allows an entire cache line at a time to be 
initialized to zero.  The IBM JITs use this batch 
clearing approach only for processors that have 
efficient architectural support for initializing large 
blocks of memory.  For other processors, the objects 
allocated from the local heap are initialized 
individually. 

3.8. Intel® SSE Instructions 
When Intel introduced the Pentium® III processor, it 
included Streaming SIMD Extensions (SSE), a 
technology designed to accelerate applications such 
as 2D/3D graphics, image processing, and speech 
recognition.  It includes a file of eight 128-bit XMM 
registers.  The SSE architecture specifies that each 
XMM register holds four single-precision floating-
point values.  A further extension (SSE2) introduced 
in the Xeon™ and Pentium 4 processors, allows each 
register to hold a pair of double-precision floating-
point values (or four single-precision values).    The 
extensions include a rich set of instructions for 
inserting and extracting data from XMM registers 
and, of course, for manipulating the data therein. 

Fully exploiting the SIMD capabilities of these 
extensions in a Java environment is nontrivial.  The 
difficulty arises primarily because the extensions 



perform best when the data being moved in and out of 
XMM registers have specific alignment characteristics 
and the instructions are used in a streaming fashion.  
Keeping salient data aligned in an environment with 
active garbage collection (and object relocation) is a 
significant challenge.  Furthermore, relatively few 
applications are streaming in nature.  Without 
surmounting this challenge, however, the SSE 
architecture can still be used to good advantage.  If each 
XMM register is treated as a single value (single- or 
double-precision), the extensions form an excellent 
scalar floating-point computation engine.  Furthermore, 
it is easier for the JIT to manage a set of eight 
orthogonal registers than the x87 FPU stack, especially 
in the presence of registers whose live ranges span 
control flow boundaries.  Our JIT compiler therefore 
favors the SSE extensions over the traditional floating 
point mechanisms when targeting X86 CPUs.  An 
exception to this rule is in cases where SSE2 is not 
available and a particular method requires frequent 
conversions between single and double precision. 

4. Middleware Performance Work 
We describe in this section four items on which we 
have recently focussed to improve the performance of 
middleware applications like 
SPECjAppServer2002[15]: reducing application server 
start-up time via recompilation strategies, improving 
interface invocations via polymorphic inline caches, 
recognizing when 64-bit long variables are used to 
(inefficiently) perform unsigned 32-bit computations, 
and code reordering to reduce branch mispredictions 
and instruction cache misses. 

4.1. Application Server Start-up Time 
The start-up time of the application server is critical for 
many reasons, including quick recovery from server 
failures and shorter development time since the server 
is often started at least once per edit-compile-debug 
cycle. 

This requirement is a challenging aspect of the quality 
of the JIT compiler because the speed of the compiler 
itself is critical to good performance, rather than the 
quality of the generated code. There are two conflicting 
factors that have significant effect on the start-up 
performance. First, the compiler itself should take as 
little time as possible. Second, we want to generate fast 
code to reduce the application execution time. These 
two factors must be carefully balanced and tuned to 
minimize start-up time. 

We approached this problem by applying various 
recompilation strategies with different optimization 
levels and correspondingly different compile times. 

However, application server start-up frequently 
involves transient behavior: some methods are hot for 
a short period of time, which confuses the profiler 
and causes the JIT to recompile the method at an 
optimization level higher than is truly justified. The 
JIT expends considerable resources compiling such a 
method, but the method does not execute frequently 
after it is recompiled and so the compilation effort is 
not rewarded.  To reduce incidences of this problem, 
the JIT compiler has additional heuristics to estimate 
the expected gain to be achieved by recompiling 
methods at higher optimization levels.  These 
heuristics dampen the aggressiveness of compilation 
optimization early in the process, which benefits 
application server start-up time. 

4.2. Polymorphic Inline Caches 
Java invocations can be polymorphic: when a method 
is invoked, the actual target is determined by the 
runtime type of the receive object. This feature 
benefits programmers by allowing the design of 
clear, reusable and maintainable code.  But this 
benefit comes with the additional and sometimes not 
insignificant cost that each such polymorphic 
invocation requires the system to decode the type of 
the receiver object before the appropriate target can 
be invoked. Determining the correct target for an 
invocation via an interface method can be particularly 
expensive because the Java language allows a class to 
implement multiple interfaces.  Large middleware 
applications often use interface-based polymorphism 
so that they can be easily extended with additional 
features, and therefore these applications can suffer 
from the performance impairment because of the 
polymorphic call overhead 

An efficient technique to reduce the effect of the 
interface invocation overhead is a polymorphic inline 
cache (PIC) [2][9][10][17] which is a dynamic code 
or data structure that can cache a particular target call 
site and perform quick subsequent invocation at the 
same call site, without invoking the target lookup 
routine. The compiler generates and maintains a 
small cache containing usually two to four entries of 
the most frequent actual targets for the polymorphic 
invocation.  By employing such a cache for each 
interface invocation site, the majority of the 
invocations can be quickly dispatched.  Since most 
polymorphic invocation sites have only a few 
targets[2], caching a small number of targets for low-
overhead invocation can greatly mitigate the total 
overhead of the full polymorphic call sequence. 

The polymorphic cache is initially empty after the 
method is compiled.  As the program continues to 



execute, the targets invoked from the site are recorded 
with the type of the invocation’s receiver object into the 
cache. Subsequent invocations with that same receiver 
object type will be directly dispatched to the cached 
target.  If the cache is full and the receiver object’s type 
does not match any of the cache entries, a full lookup 
and dispatch is performed (the “slow” path).  Profiling 
can be used to order or even evict entries in the cache 
according to frequency.  The profile data can also be 
used to recompile the method containing the call site if 
inlining the most frequently executed target would be 
beneficial. 

4.3. Unsigned Arithmetic for Cryptography 
Applications 
With the introduction of SSL (Secure Sockets Layer) 
and its implementation in middleware application 
servers written in Java code, the performance of 
transactions that use the security protocol becomes as 
important as traditionally non-secure transaction 
operations. This secure layer overhead can significantly 
impair the performance of a secure application 
compared to a non-secure implementation. 

The JIT can affect the performance of this secure layer 
because of a specific characteristic of the Java code 
often used to implement these cryptographic codes.  A 
frequently appropriate data type to use in these codes is 
unsigned 32-bit integer, which is unfortunately not 
directly available in the Java programming language. 
To implement many cryptographic algorithms, 
therefore, Java programmers have resorted to using the 
64-bit signed long data type to hold 32-bit unsigned 
data, which on 32-bit architectures can cause a 
significant performance slowdown. 

To address this problem we have added support in the 
JIT compiler to recognize long arithmetic operations 
that are used to implement 32-bit unsigned arithmetic.  
If the JIT can prove that the upper 32 bits of a 64-bit 
computation are zero, then more efficient instruction 
sequences can be used on some platforms to accomplish 
that computation than the naïvely generated 64-bit 
code. 

4.4. Code Reordering 
As a debugging aid, the methods of many middleware 
applications include tracing code that conditionally 
executes at the beginning and/or end of the method to 
document how the application is executing.  Since the 
tracing information is typically voluminous, this code is 
typically executed when debugging the application and 
is only rarely executed in a production environment.  
An example of this style of coding is as follows: 

 void aMethod(...) { 
    if (_trace.entryTracing()) { 
        _trace.entry("aMethod"); 
       // log arg info 
    } 
 
    // do the work of aMethod 
 
    if (_trace.exitTracing()) { 
        _trace.exit("aMethod"); 

// log effect 
  // log return value info 
    } 
 } 

While these conditional code snippets provide useful 
debugging information when there is a problem, they 
can also impose a performance penalty in a 
middleware application even when they do not 
execute.  There are three aspects to this penalty: 

1. The additional code can perturb the JIT’s 
allocation of machine resources such as registers. 

2. The instruction fetch engine for many modern 
processors will (incorrectly) predict by default 
that the forward branch around the code snippet 
will not be taken. 

3. The effective user code is inefficiently and 
unnecessarily spread over additional cache lines 
and memory pages. 

Fortunately, the first problem is easily overcome 
because the JIT usually has access to profile 
information indicating which paths are not frequently 
executed.  In many cases, this information enables 
the JIT to avoid dedicating resources to those parts of 
the code that are rarely executed.  In the above 
example, the JIT would not likely inline the 
entry() and exit()invocations if those paths are 
marked as rare code. 

In contrast to the first problem, the second problem is 
significant.  The condition test is turned into a 
forward branch around the code outputting the trace 
information.  Most current processors, by default, 
assume that forward branches are not taken.  To 
alleviate this problem, current processors also include 
prediction tables that remember what happened the 
last time a branch was executed.  These tables are 
used by the processor to predict future outcomes for 
branches based on the information about earlier 
branch outcomes stored in the table.  Unfortunately, 
these tables are a scarce resource, and middleware 
applications can be so large that by the time a branch 
instruction is fetched a second or subsequent time, 
the history for that instruction has already been 
ejected.  When there is no historical data in the table 



for a branch, the processor falls back to the default not-
taken prediction for a forward branch.  The processor 
then speculatively executes the tracing code only to 
discover several cycles later that it had mispredicted the 
branch and must throw away all the work it has done.  
Recovering from a branch misprediction can take more 
than 10 processor cycles, depending on the processor, 
plus any work it has done since the prediction was 
made must also be discarded. 

The third problem results in instruction cache and, 
potentially, TLB misses because the code executing is 
typically spread over more cache lines or memory 
pages than is necessary. 

To solve these three problems, the JIT reorders the 
basic blocks of each method to make each block's most 
commonly executed successor its fall-through 
successor.  Since the JIT has information about which 
direction each branch favors, branches with a relatively 
biased outcome such as debugging tests can be flipped 
so that the processor's default not-taken prediction for 
forward branches becomes the correct prediction.  
Some processors do not even try to remember a branch 
if its prediction matches the default prediction, which 
means this optimization can have a secondary 
performance benefit because more branches can be 
maintained in the prediction tables than before.  Finally, 
because the commonly executed code appears close 
together in memory, fewer instruction cache and TLB 
misses are expected.  Although reordering code along 
hot paths is not a new idea [13], we have found it to be 
particularly effective in the context of a JIT compiler. 

5. Results 
In this section, we report the benefits we have seen in a 
group of benchmarks relevant to server and middleware 
application performance.  The improvements we report 
have not been collected at a single point in time but 
rather over the course of the recent product 
development cycle for the practical reason that it is not 
always possible or reasonable to maintain code to 
selectively enable or disable particular features.  In a 
production JIT compiler, wherever serviceability is not 
improved by such code, it is eliminated after a testing 
cycle to simplify code maintenance. 

The impact of this practise on the results of this section 
is that individual improvements should not be 
considered additive.  If two improvements are measured 
at 3% and 5%, one should not conclude that the two 
improvements together would provide an aggregate 8% 
speedup; the two measurements have implicitly 

different baselines.  Furthermore, IBM maintains 
more than one Java JIT product and some 
improvements are specific to one particular 
technology base.  The two products we have 
evaluated are the IBM Developer Kit for Java and the 
J9 Java virtual machine. 

Moreover, some of the improvements described in 
this section are platform-specific.  These results 
should not be carried across to other platforms as the 
improvements will vary considerably from platform 
to platform; the work done for one platform may be 
irrelevant or even harmful for another.  To the best of 
our knowledge, we have not excluded any result 
available to us simply because it degraded 
performance. 

In all cases, we have made an effort to collect 
together improvements that can reasonably be 
considered together by platform or by underlying JIT 
technology, though these improvements should never 
be interpreted in any additive sense except where 
explicitly noted. 

The results in this section are organized by 
benchmark.  The improvements that had an impact on 
each benchmark are listed in each subsection.  The 
benchmarks we discuss are: SPECjbb2000[16], 
SPECjAppServer2002[15], XML Parser[14], a 
cryptography-based micro-benchmark, and IBM 
WebSphere® Application Server start-up. 

5.1. SPECjbb2000 
The SPECjbb2000 benchmark models a pure server 
application without using an application server or 
database tier.  The benchmark encodes the logic and 
database for a business managing orders, inventory, 
deliveries, and payments.  It is inspired by, but not 
directly comparable to, the TPC-C database 
workload.  The benchmark progressively increases its 
workload to test the throughput supported by a 
particular system by increasing the number of 
operating warehouses over time, starting at 1 
warehouse and ending at 2N warehouses where N is 
usually the number of processors in the machine.  
The results reported below are improvements to the 
final score, which is an aggregate metric that 
primarily tracks the average of the throughputs 
achieved at warehouses P through 2P, where P is the 
warehouse at which the peak throughput was 
measured (usually P = N). 



Many of the features we’ve described in Section 3 
improve the performance of the SPECjbb2000 
benchmark.  The benefit for each such feature for three 
platforms (xSeries®, pSeries®, and zSeries®) and for 
the IBM Developer Kit for Java product is shown in 
Figure 1.  The percentage improvement is in the self-
reporting score relative to the same score without the 
specific feature. Note that some bars are not present in 
this graph because those features have not been 
implemented for that particular platform or for this 
particular product.  The xSeries results were measured 
on a 4x2.8Ghz Pentium 4 system with Intel Hyper-
threading enabled running Microsoft Windows 2000.  
The pSeries results were measured on a 16-way 1.1Ghz 
POWER4 p670 system running AIX® 5.1.  The zSeries 
results were measured on a variety of different machine 
configurations and so these results in particular should 
not be compared directly against one another. 

For the J9 virtual machine product, we report the 
improvements found in Figure 2.  Again, some bars are 

not present because that feature was not implemented 
for a particular platform or in this product, or because 
that feature had no benefit on that particular platform. 

5.2. SPECjAppServer2002 
The SPECjAppServer2002 benchmark is a large-
scale middleware application benchmark that models 
the complete business processes of a Fortune-500 
company, from customer ordering and invoicing 
through inventory and supply chain management to 
manufacturing.  The benchmark exercises both an 
application server and a database tier, which can 
reside on the same machine, on different machines, 
or each tier can be distributed across many machines.  
It is a strenuous test of Enterprise JavaBeans (EJB) 
2.0.  From the JIT’s perspective, our main ability to 
improve this benchmark is within the application 
server, where a very flat and widely distributed 
profile greatly hinders the identification of “bang-for-
the-buck” performance improvements. 
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Figure 1: SPECjbb2000 Improvements, IBM Developer Kit for Java 

Figure 2: SPECjbb2000 Improvements, J9 virtual machine 



Our investigation of the SPECjAppServer2002 
benchmark is still in its preliminary stages.  
Nevertheless, we have observed that two of the 
improvements discussed in Section 4 have significantly 
improved the performance of this benchmark: 
polymorphic inline caches and code reordering (see 
Figure 3). 

In this particular case, these two measurements can be 
combined since the improvement we have seen by 
enabling both of these features in the IBM Developer 
Kit for Java was 14%.  In the context of the incredibly 
flat profile for this application, both results are even 
more impressive.  We are continuing to investigate 
improving the performance of this benchmark.  As for 
the SPECjbb2000 benchmark, the percentage 
improvement is in the self-reporting score relative to 
the same score without the specific feature.  The 
performance improvements were measured on an 
xSeries 4x2.8Ghz Pentium 4 system with Hyper-
threading enabled running Windows 2000. 

5.3. XML Parser 
The XML Parser benchmark we have used is based on 
the Apache Xerces XML Parser for Java [14] that tests 
parser performance on different combinations of XML 
data sets. One of the main design goals for the Xerces 
parser is extensibility; the implementation of the parser 
relies heavily on abstract classes and method 
invocations via interface classes.  An example of such a 
class is AbstractSAXParser. Given this design 
approach, proper implementation of Polymorphic Inline 
Caches (PICs) can yield significant improvements as 

measured on an xSeries 1.6 Ghz Pentium 4 
uniprocessor running Microsoft Windows 2000, 
which are presented in Figure 4, measured on the 
IBM Developer Kit for Java product.  Note that the 
scale of the y-axis is different than that of the 
adjacent Figure 3. We tested the XML Parser 
benchmark using several different sample XML files 
with sizes ranging from 1 KB to 5 MB.  The 
benchmark parses each of the files a number of times 
and calculates a ratio score reflecting the number of 
elements parsed per second for each data set.  The 
benchmark also computes an average score by 
combining and interleaving the parsing for each 
sample XML file into a single run.  Figure 4 also 
includes the improvement in the parser throughput 
because of the code reordering technique described in 
Section 4.4. 

5.4. Cryptography 
The cryptography benchmark we used for our 
experiments is a micro-benchmark consisting of a 
loop that performs extended precision integer 
operations.  The loop computes A*B+C where A and 
C are 1024-bit precision integers simulated by 
vectors of 32 unsigned 32-bit values using arrays of 
the Java long data type2 and B is a 32-bit unsigned 
number.  The loop body contains one long addition 
and one long multiplication operation. On a 32-bit 

                                                           

2 Java has no unsigned integer types, so longs are 
typically used to hold unsigned 32-bit values. 
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platform, the long add operation naïvely expands to two 
32-bit operations and four 32-bit loads. Similarly, the 
long multiplication, depending on the instruction set 
architecture (ISA) of the platform, naïvely requires 
three 32-bit multiplies (two 32-bit by 32-bit producing 
low order 32-bit results and one full 32-bit by 32-bit 
multiply with 64-bit result), two adds to compute the 
high order 32-bits of the product from the three 
multiplies, and four 32-bit loads. 

The JIT compiler is able to discover that the long 
operands are actually 32-bit unsigned quantities and 
therefore that the high order 32-bits of each long used 
to hold an unsigned 32-bit value are provably zero.  
This discovery enables the JIT to dramatically simplify 
the computation and memory traffic that occurs in 
computing this inner product.  After the JIT recognizes 
the 32-bit unsigned multiplication, the computation is 
performed by one 32-bit by 32-bit multiply with 64-bit 
product, no adds, and two loads.  Similarly, the 64-bit 
add operation in the loop is reduced from two adds and 
four loads to two adds and two loads. 

Transforming these computations as described above 
results in an almost 50% performance improvement, 
which, in the case of X86, is due to the reduced 
computation and operand driven memory traffic as well 
as the complete elimination of spill and fill instructions 
in the loop. The results are based on measurements 
performed on an xSeries 1.6 GHz Pentium 4 
uniprocessor running Microsoft Windows 2000. 

5.5. Application Server Start-up 
As the basis for application server start-up performance 
analysis we chose the IBM WebSphere Application 
Server product, where we report the levels of 
improvement that can be achieved by applying multi-

level optimization recompilation strategies.  Since 
significant class loading occurs at server start-up, we 
show that significant additional performance 
improvement can be achieved by reducing the class 
loading cost by turning off class verification.  Figure 
5 shows the percentage improvements relative to the 
time taken by the interpreter to boot the application 
server to its ready state. The results were collected by 
running the IBM WebSphere Application Server 
product with the J9 virtual machine on an xSeries 1.6 
GHz Pentium 4 uniprocessor on Microsoft Windows 
2000. 

6. Summary 
In this paper, we have made three basic contributions.  
First, we made three observations regarding Java 
coding practices among our customers that directly 
impact the performance capabilities of JITs and VMs: 
bytecode generation, the more prevalent use of 
finally blocks and the continuing frequent use of 
exceptions.  Second, we described 12 different 
optimizations and features that our teams have 
developed recently to improve the performance of 
both server and middleware applications.  Third, we 
presented results that show the benefits of robust 
implementations of these optimizations for a variety 
of applications.  These results demonstrate both the 
effectiveness of the features we have implemented as 
well as the level of improvements that can reasonably 
be expected for robust implementations in a high 
performance production JIT. 
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