
USENIX Association

Proceedings of the Third Virtual Machine
Research and Technology Symposium

San Jose, CA, USA
May 6–7, 2004

© 2004 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Java™ Just-In-Time Compiler and Virtual Machine Improvements for Server
and Middleware Applications

Nikola Grcevski, Allan Kielstra, Kevin Stoodley, Mark Stoodley, and Vijay Sundaresan
Toronto Lab, IBM Canada Ltd.

© Copyright International Business Machines Corporation, 2004. All rights reserved.

Abstract
This paper describes optimization techniques recently applied to the Just-In-Time compilers that are part of the
IBM® Developer Kit for Java™ and the J9 Java virtual machine specification. It focusses primarily on those
optimizations that improved server and middleware performance. Large server and middleware applications written
in the Java programming language present a variety of performance challenges to virtual machines (VMs) and just-
in-time (JIT) compilers; we must address not only steady-state performance but also start-up time. In this paper, we
describe 12 optimizations that have been implemented in IBM products because they improve the performance and
scalability of these types of applications. These optimizations reduce, for example, the overhead of synchronization,
object allocation, and some commonly used Java class library calls. We also describe techniques to address server
start-up time, such as recompilation strategies. The experimental results show that the optimizations we discuss in
this paper improve the performance of applications such as SPECjbb2000 and SPECjAppServer2002 by as much as
10-15%.

1. Introduction
The steady growth in the size and complexity of large
server and middleware applications written in the
Java™ programming language[8] offers continuing
performance challenges to virtual machines (VMs) and
just-in-time (JIT) compilers. One source for these
challenges is that program maintenance has become at
least as important as performance for this class of
applications. This stronger emphasis on program
maintenance has encouraged programmers to make
more widespread use of the many features available in
the Java programming language that support software
engineering efforts, such as: multiple inheritance via
interface classes, polymorphic virtual method
invocations, and complex exception handling
mechanisms such as finally blocks. While these
features are convenient to use from a Java
programmer's perspective, they can impose a significant
runtime performance overhead and thus they challenge
JITs and VMs to provide features that mitigate that
overhead. Moreover, addressing these software
engineering related overheads is doubly difficult since
many large middleware applications do not have
obvious hotspots on which to focus compilation or
performance analysis resources.

Even beyond this particular challenge, however, server
and middleware applications have many other features

that negatively impact their performance. In this
paper, we describe 12 separate optimizations and
features that have been implemented in IBM products
to accelerate the performance of these applications.
Examples of these features include: optimizing
synchronization to reduce repetitive locking and
unlocking on the same object to improve scalability,
and optimizing Java class libraries to improve the
performance of, for example, computing transaction
time-stamps.

Steady-state performance, however, is not the only
important performance factor. Application servers,
for example, must be able to start quickly when a
machine is rebooted to avoid costly interruption of
service. Fast start-up time also greatly enhances
productivity for application developers who regularly
must restart the application server as part of the usual
edit-compile-debug development cycle. We show in
this paper how the JIT compiler can employ different
recompilation strategies to significantly improve
server start-up time.

This paper describes recently implemented
optimization techniques used by the Just-In-Time
compilers that are part of the IBM® Developer Kit
for Java and the J9 Java virtual machine
specification, focussing primarily on those
optimizations that improved server and middleware
performance. We report performance results on three

platforms for industrial-strength implementations of
these features rigorous enough to stand up to our
customers’ applications.

The rest of the paper is organized as follows. In
Section 2, we discuss three Java coding conventions we
have observed in customer applications and detail some
of the performance overheads incurred in each case. In
Section 3, we describe eight optimizations that
specifically target server performance. Similarly, in
Section 4, we describe four optimizations we have
found to be important for middleware applications. We
present the performance results achieved by these
techniques in Section 5 using a well-known server
application (SPECjbb2000), a middleware application
(SPECjAppServer2002), as well as an XML parser and
a cryptographic benchmark program. Finally, in Section
6, we summarize the paper’s contributions.

2. Java Coding Observations
Through the process of addressing customer defects,
our teams are exposed to large amounts of Java code
written by our customers. We present, in this section,
what we believe are three important observations about
the code being employed that have a direct impact on
the performance of Java applications: 1) a trend towards
bytecode generation rather than Java code translated by
javac, 2) the more frequent use of finally blocks,
and 3) the common use of exceptions.

2.1. Bytecode Generation
Bytecode generators other than javac are becoming
more prevalent. These range from relatively simple
tools such as JavaServer Pages (JSP) servlet generators
to full-fledged compilers such as extensible stylesheet
language transformation (XSLT) compilers. The
bytecode streams generated by these tools may have
performance implications throughout the virtual
machine and in particular in their interactions with JITs.
Some of these interactions can be ameliorated through
advances in JIT implementations but some require care
in the bytecode generator implementation.

One particular factor that should be taken into account
is that very long compilations can cause undesirable
system behavior. For example, if a very large method
is invoked as part of servicing an RMI request, the time
taken to compile that large method might trigger a time
out elsewhere, the effect of which could cascade
through the system. For this and other reasons, most
JITs have built-in limits on various phases such as
method inlining to prevent compile times from
becoming prohibitively long. However, methods that
are individually very large, such as some generated JSP

servlets, can still induce long compilations, which
can result in performance problems as outlined
above.

A second important consideration is that
automatically generated bytecodes tend to exploit the
more powerful aspects of the Java programming
language more fully than programs written directly in
Java. Tools that compile domain-specific languages
to bytecode quite naturally build their own
abstractions to represent elements of interest in their
language. For example, if language X supported
subroutine calls, an X-to-bytecode compiler might
use an explicit representation of a stack frame. It is
often easier for such a compiler to use type-opaque
representations of these abstractions, which are
supported by the Java language, to simplify both the
bytecode generation model and the supporting run
time. JITs, on the other hand, are better able to
optimize the use of concrete data types and abstract
types typically used by Java programmers. Work
may be required in both JITs and bytecode generators
to ensure that generated bytecodes benefit from
overall optimizations such as de-virtualization and
method specialization.

2.2. Finally Blocks
Finally blocks provide a mechanism whereby a
Java programmer can guarantee an action is
performed regardless of how control leaves a method:
whether via a normal return path or via an exception.
One way that this mechanism is employed in
middleware applications is to guarantee that a tracing
function will be called if it is necessary to document
that the method has completed executing. In this
coding pattern, most of the code in the method is
enclosed within a try region and the tracing code is
placed in a finally block for that try region.
This organization guarantees consistency of tracing
information.

The control flows associated with the use of a
finally block can be quite complex, complicating
the construction of efficient and effective traversal
orders for the JIT, which can necessitate more
iterations than otherwise necessary to solve dataflow
equations. The resulting increase in JIT compilation
time can affect the program's performance. Even
worse, if the control flows are sufficiently complex
(consider nested finally blocks, for example,
which can and do occur after aggressive inlining) the
JIT may decide not to, or be unable to, apply certain
optimizations that can have profound performance
implications.

Although finally blocks are convenient from a
programmer's point of view, they are less so for the JIT
compiler. We recommend against using finally
blocks in performance-critical codes unless there is a
valid engineering reason to do so.

2.3. Exceptions
Despite the wealth of evidence detailing the hidden cost
of processing exceptions, we still encounter
applications where exceptions are thrown in commonly
executed paths. While JITs expend considerable effort
to improve the delay between the time an exception is
thrown and the time that the handler for that exception
begins to execute, the delay is still significant and
several orders of magnitude larger than executing, for
example, a branch. In particular, throwing an exception
that will be caught higher in the stack can be
particularly expensive because each frame must be
searched both for a catcher and for locked objects that
must be unlocked. The latter problem is typically
addressed by having an artificial catch block that
unlocks the object and then rethrows the exception. If
the "real" catcher is many frames above the frame
where the exception was originally thrown and there are
many objects to unlock in the intermediate frames, the
exception will be even more expensive to process; it
will involve throwing the exception several times.

3. Server Performance Work
In this section, we describe eight areas in which we
have made enhancements (either in the VM or in the
JIT) to improve the performance of server applications:
newInstance, String.indexOf(),
System.currentTimeMillis(),
System.arraycopy(), object allocation inlining,
lock coarsening, thread-local heap batch clearing, and
utilizing the Intel® SSE instructions. Many of these
enhancements target, in particular, the SPECjbb2000
[16] benchmark.

3.1. newInstance
The java.lang.Class.newInstance method
returns an instance of the same type as the
java.lang.Class object passed as the parameter to
newInstance. The newInstance method in the
class library calls a native newInstanceImpl
method that does three things: first, it checks for the
presence of a default constructor for the class being
instantiated; second, it checks that this default
constructor is accessible to the caller; and third, it
invokes the constructor. Several factors make this
process inefficient:

1. The expensive invocation to the native
newInstanceImpl method.

2. The search for the default constructor.
3. Verifying that the constructor is visible in the

caller’s context may involve walking the stack to
determine that the constructor is not currently
being executed.

4. The expensive callback into the Java constructor
from the native method.

Because newInstance is commonly used, it
warrants a special slot in the virtual function table
(VFT) of each class. This entry represents a class-
specific newInstanceImplThunk, which can
perform the allocation, avoiding both the native
invocation (#1) and the callback to the Java
constructor (#4). We also avoid the accessibility
check (#2) altogether for classes with public default
constructors. Furthermore, we can inline the
constructor into the caller and avoid even overhead of
a JITed code invocation. Even better, the JIT can use
value profiling information[5] to inline the
newInstanceImplThunk invocation with
appropriate runtime guards, which has the benefit of
exposing the allocation to the JIT’s optimizer. Once
exposed, optimizations such as escape analysis[6] can
transform the heap allocation into a stack allocation if
the created object does not escape to another thread
or to the method’s caller.

3.2. String.indexOf()
Numerous algorithms, such as Boyer and Moore’s
technique[4], exist to perform the semantics specified
by the String.indexOf() method in the Java
class library. Many of these algorithms operate in
two phases: first they compute some meta-data based
on the target string and then they use this to rapidly
iterate through the source string. Our analysis of
benchmarks such as SPECjbb2000 revealed that
indexOf is frequently invoked with short constant
pattern strings. This situation is ideal for the
application of Boyer and Moore’s algorithm because
the compiler can statically compute the meta-data
associated with the pattern string, leaving only the
rapid phase to be executed in response to the actual
invocation of indexOf.

3.3. System.currentTimeMillis()
The java.lang.System.currentTimeMillis()
method is often called by transaction-based server
applications such as SPECjbb2000 that repeatedly
build time stamps. This method is expensive because:

1. There is an expensive call from JITted code to a
native method.

2. The method returns a long value that must be held
in a register (increasing register pressure) or
returned via the stack (which may be slower to
access).

We optimize these costs by generating a platform-
specific inline code sequence to replace calls to
System.currentTimeMillis(). The inline
sequence sets up the arguments according to the system
linkage convention and then directly calls the
appropriate OS timing routine:
GetSystemTimeAsFileTime() in a Microsoft®
Windows® environment, for example, or
gettimeofday() in a Linux environment. The
inlined sequence stores the result directly as required by
the application’s use of currentTimeMillis().

3.4. System.arraycopy()
One of the most frequently used intrinsics in Java
middleware applications is System.arraycopy().
The optimal code sequence for this method is platform-
specific and varies with the actual size of the array to be
copied.

To avoid the frequently suboptimal generic arraycopy
implementation for specific calls to
System.arraycopy(), the compiler can either
generate code inline or invoke tuned versions of
System.arraycopy() provided in the compiler’s
runtime. The compiler can, of course, implement both
approaches and evaluate the cost trade-off at code
generation between the call overhead to the tuned
library code versus the code expansion cost of the inline
code to copy the array.

If the size of the array to be copied is constant, the JIT
can easily generate the best possible instruction
sequence. When the size isn’t known, however, it has
to either generate an instruction sequence that will
perform best on average (like the generic
implementation of the arraycopy intrinsic) or it can
employ value profiling to determine the most frequent
array size. In a subsequent compilation for the method,
the JIT can then special-case that most frequent size
with an inlined code sequence and rely on a more
generic code sequence for other sizes. Since most of
the arrays copied in middleware applications are shorter
than 256 bytes, the JIT can also choose either to use a
general instruction sequence that works best for shorter
array sizes, or to use a runtime test to exploit the benefit
of the faster arraycopy instruction sequence for cases
where the faster sequence will compensate for the test
overhead.

When copying arrays of references, there are
additional optimizations that are performed. These
optimizations fall into two broad categories deriving
from: 1) the garbage collector design, and 2) the need
to enforce the Java rules [11][12] for reference
assignment compatibility.

To maintain correctness, a generational garbage
collector[18] must detect when a reference to a
nursery (or “new space”) object is stored into a
tenured (or “old space”) array object. For certain
array copies, the JIT can prove that checking for such
stores is unnecessary. The simplest optimization
opportunity of this class, for example, is copying
regions within a single array. Clearly the array
cannot be both in the nursery and tenured at the same
time. A second opportunity in this class occurs once
one nursery object reference has been stored into a
tenured object/array. Once the tenured array has
been added to the list of objects that must be scanned
when garbage collecting the nursery, the remaining
elements of the array are copied without checking for
nursery objects1.

The second class of optimizations results from the
JIT’s existing type propagation capabilities. It is
often the case that the JIT is able to prove that there
will be no exceptions raised by storing the elements
of one array into another.

There are two effects of these optimizations that
improve performance. First, proving that it is
unnecessary to load either the class object or the
garbage collection bits from the header of the object
being copied reduces memory traffic into the cache
during the copy, which in turn reduces the cache
pollution effects of the copy. Second, by eliminating
the control flow from the copy loop, more efficient
copy mechanisms supported by most CPU
architectures are enabled.

3.5. Object Allocation Inlining
Virtually all versions of the IBM Developer Kits
have included facilities that enable JITs to perform
common object allocations using a thread local heap
(TLH). A TLH is a small region of the heap that is
temporarily assigned for the exclusive use of a
particular thread. When no further allocations are
possible in a TLH, the region resumes its status as a
regular part of the heap.

1 The check can be omitted so long as collection
cannot occur during the array copy.

Since each thread has its own TLH, no synchronization
is needed to allocate the majority of objects. When
processing modestly sized object allocation requests,
the JIT will generate fast-path code to allocate the
objects in the TLH. The initial implementations of this
strategy targeted the case where the allocation is
satisfied from the TLH as the fast-path. The generated
code was quite effective in this case, but each allocation
site had associated with it a series of return code checks
and recovery sequences to handle the less-frequent
cases where the allocation could not be satisfied by the
TLH.

Analysis of many benchmarks revealed that the
execution time spent in the return-code checking code
could be substantial. The Developer Kit was enhanced
so that, when the fast-path code fails to allocate storage
from the TLH, it invokes a JIT service routine. This
routine, which is part of the garbage collection (GC)
component, will always return either a new object or an
OutOfMemoryError indication. The latter can be
checked quickly by the fast-path code. The service
routine handles the necessary bookkeeping, including
possibly collecting unused objects, as well as memory
synchronizations. As a result, the fast-path code
sequence is shorter, which results in better instruction
cache utilization. Furthermore, in most cases where the
original TLH storage allocation request fails, fewer
compares and branches are executed.

3.6. Lock Coarsening
Because the JIT aggressively inlines invocations when
compiling a method, it is not uncommon to synthesize a
block of code containing several lock and unlock
operations applied serially (i.e., not in nested fashion)
to the same object. These lock and unlock operations
result from inlining synchronized methods into the
method being compiled. When we analyzed
SPECjbb2000, we noted a method that executed 6 or 7
repetitive lock and unlock operations on the same
object, depending on the path executed.

Synchronization has two negative impacts on program
performance. First, the lock and unlock operations
themselves are expensive, in most cases requiring
expensive atomic memory accesses. Second, locks act
as barriers to optimizations in the JIT, to processor
instruction schedulers, and to the reordering ability of
most modern processors. To alleviate these two
problems, we implemented a lock coarsening
optimization that eliminates many of the intermediate
unlock and lock operations, leaving only one lock to be
executed early in the method and as many unlocks as
there are paths exiting the locked region. This
optimization must be performed with great care,

however, because holding a lock for a substantially
longer time can increase contention and therefore
reduce an application's scalability. Even worse,
without proper care, deadlock opportunities can be
created that make the application hang.

We implemented a computationally efficient lock
coarsening pass that does not unduly increase
contention or create deadlock opportunities. The
pass only acts on synchronization resulting from
inlining synchronized methods and so it will not
interfere with hand-crafted synchronization
implemented by a programmer via a synchronized
block. Although there has been previous work in this
area [1][3][7], our implementation is novel because
of its aggressiveness and its computational efficiency.
Unfortunately, space restrictions prevent us from
providing a detailed description of the technique in
this paper.

3.7. Thread-local Heap Batch Clearing
The IBM JITs employ a thread-local heap (see
Section 3.5) to reduce contention on the heap lock.
On some processors, it can be more efficient to
initialize the entire contents of the thread-local heap
to the value zero when it is allocated rather than
initialize those values for each individual object
allocation. In particular, the IBM PowerPC®
architecture allows an entire cache line at a time to be
initialized to zero. The IBM JITs use this batch
clearing approach only for processors that have
efficient architectural support for initializing large
blocks of memory. For other processors, the objects
allocated from the local heap are initialized
individually.

3.8. Intel® SSE Instructions
When Intel introduced the Pentium® III processor, it
included Streaming SIMD Extensions (SSE), a
technology designed to accelerate applications such
as 2D/3D graphics, image processing, and speech
recognition. It includes a file of eight 128-bit XMM
registers. The SSE architecture specifies that each
XMM register holds four single-precision floating-
point values. A further extension (SSE2) introduced
in the Xeon™ and Pentium 4 processors, allows each
register to hold a pair of double-precision floating-
point values (or four single-precision values). The
extensions include a rich set of instructions for
inserting and extracting data from XMM registers
and, of course, for manipulating the data therein.

Fully exploiting the SIMD capabilities of these
extensions in a Java environment is nontrivial. The
difficulty arises primarily because the extensions

perform best when the data being moved in and out of
XMM registers have specific alignment characteristics
and the instructions are used in a streaming fashion.
Keeping salient data aligned in an environment with
active garbage collection (and object relocation) is a
significant challenge. Furthermore, relatively few
applications are streaming in nature. Without
surmounting this challenge, however, the SSE
architecture can still be used to good advantage. If each
XMM register is treated as a single value (single- or
double-precision), the extensions form an excellent
scalar floating-point computation engine. Furthermore,
it is easier for the JIT to manage a set of eight
orthogonal registers than the x87 FPU stack, especially
in the presence of registers whose live ranges span
control flow boundaries. Our JIT compiler therefore
favors the SSE extensions over the traditional floating
point mechanisms when targeting X86 CPUs. An
exception to this rule is in cases where SSE2 is not
available and a particular method requires frequent
conversions between single and double precision.

4. Middleware Performance Work
We describe in this section four items on which we
have recently focussed to improve the performance of
middleware applications like
SPECjAppServer2002[15]: reducing application server
start-up time via recompilation strategies, improving
interface invocations via polymorphic inline caches,
recognizing when 64-bit long variables are used to
(inefficiently) perform unsigned 32-bit computations,
and code reordering to reduce branch mispredictions
and instruction cache misses.

4.1. Application Server Start-up Time
The start-up time of the application server is critical for
many reasons, including quick recovery from server
failures and shorter development time since the server
is often started at least once per edit-compile-debug
cycle.

This requirement is a challenging aspect of the quality
of the JIT compiler because the speed of the compiler
itself is critical to good performance, rather than the
quality of the generated code. There are two conflicting
factors that have significant effect on the start-up
performance. First, the compiler itself should take as
little time as possible. Second, we want to generate fast
code to reduce the application execution time. These
two factors must be carefully balanced and tuned to
minimize start-up time.

We approached this problem by applying various
recompilation strategies with different optimization
levels and correspondingly different compile times.

However, application server start-up frequently
involves transient behavior: some methods are hot for
a short period of time, which confuses the profiler
and causes the JIT to recompile the method at an
optimization level higher than is truly justified. The
JIT expends considerable resources compiling such a
method, but the method does not execute frequently
after it is recompiled and so the compilation effort is
not rewarded. To reduce incidences of this problem,
the JIT compiler has additional heuristics to estimate
the expected gain to be achieved by recompiling
methods at higher optimization levels. These
heuristics dampen the aggressiveness of compilation
optimization early in the process, which benefits
application server start-up time.

4.2. Polymorphic Inline Caches
Java invocations can be polymorphic: when a method
is invoked, the actual target is determined by the
runtime type of the receive object. This feature
benefits programmers by allowing the design of
clear, reusable and maintainable code. But this
benefit comes with the additional and sometimes not
insignificant cost that each such polymorphic
invocation requires the system to decode the type of
the receiver object before the appropriate target can
be invoked. Determining the correct target for an
invocation via an interface method can be particularly
expensive because the Java language allows a class to
implement multiple interfaces. Large middleware
applications often use interface-based polymorphism
so that they can be easily extended with additional
features, and therefore these applications can suffer
from the performance impairment because of the
polymorphic call overhead

An efficient technique to reduce the effect of the
interface invocation overhead is a polymorphic inline
cache (PIC) [2][9][10][17] which is a dynamic code
or data structure that can cache a particular target call
site and perform quick subsequent invocation at the
same call site, without invoking the target lookup
routine. The compiler generates and maintains a
small cache containing usually two to four entries of
the most frequent actual targets for the polymorphic
invocation. By employing such a cache for each
interface invocation site, the majority of the
invocations can be quickly dispatched. Since most
polymorphic invocation sites have only a few
targets[2], caching a small number of targets for low-
overhead invocation can greatly mitigate the total
overhead of the full polymorphic call sequence.

The polymorphic cache is initially empty after the
method is compiled. As the program continues to

execute, the targets invoked from the site are recorded
with the type of the invocation’s receiver object into the
cache. Subsequent invocations with that same receiver
object type will be directly dispatched to the cached
target. If the cache is full and the receiver object’s type
does not match any of the cache entries, a full lookup
and dispatch is performed (the “slow” path). Profiling
can be used to order or even evict entries in the cache
according to frequency. The profile data can also be
used to recompile the method containing the call site if
inlining the most frequently executed target would be
beneficial.

4.3. Unsigned Arithmetic for Cryptography
Applications
With the introduction of SSL (Secure Sockets Layer)
and its implementation in middleware application
servers written in Java code, the performance of
transactions that use the security protocol becomes as
important as traditionally non-secure transaction
operations. This secure layer overhead can significantly
impair the performance of a secure application
compared to a non-secure implementation.

The JIT can affect the performance of this secure layer
because of a specific characteristic of the Java code
often used to implement these cryptographic codes. A
frequently appropriate data type to use in these codes is
unsigned 32-bit integer, which is unfortunately not
directly available in the Java programming language.
To implement many cryptographic algorithms,
therefore, Java programmers have resorted to using the
64-bit signed long data type to hold 32-bit unsigned
data, which on 32-bit architectures can cause a
significant performance slowdown.

To address this problem we have added support in the
JIT compiler to recognize long arithmetic operations
that are used to implement 32-bit unsigned arithmetic.
If the JIT can prove that the upper 32 bits of a 64-bit
computation are zero, then more efficient instruction
sequences can be used on some platforms to accomplish
that computation than the naïvely generated 64-bit
code.

4.4. Code Reordering
As a debugging aid, the methods of many middleware
applications include tracing code that conditionally
executes at the beginning and/or end of the method to
document how the application is executing. Since the
tracing information is typically voluminous, this code is
typically executed when debugging the application and
is only rarely executed in a production environment.
An example of this style of coding is as follows:

 void aMethod(...) {
 if (_trace.entryTracing()) {
 _trace.entry("aMethod");
 // log arg info
 }

 // do the work of aMethod

 if (_trace.exitTracing()) {
 _trace.exit("aMethod");

// log effect
 // log return value info
 }
 }

While these conditional code snippets provide useful
debugging information when there is a problem, they
can also impose a performance penalty in a
middleware application even when they do not
execute. There are three aspects to this penalty:

1. The additional code can perturb the JIT’s
allocation of machine resources such as registers.

2. The instruction fetch engine for many modern
processors will (incorrectly) predict by default
that the forward branch around the code snippet
will not be taken.

3. The effective user code is inefficiently and
unnecessarily spread over additional cache lines
and memory pages.

Fortunately, the first problem is easily overcome
because the JIT usually has access to profile
information indicating which paths are not frequently
executed. In many cases, this information enables
the JIT to avoid dedicating resources to those parts of
the code that are rarely executed. In the above
example, the JIT would not likely inline the
entry() and exit()invocations if those paths are
marked as rare code.

In contrast to the first problem, the second problem is
significant. The condition test is turned into a
forward branch around the code outputting the trace
information. Most current processors, by default,
assume that forward branches are not taken. To
alleviate this problem, current processors also include
prediction tables that remember what happened the
last time a branch was executed. These tables are
used by the processor to predict future outcomes for
branches based on the information about earlier
branch outcomes stored in the table. Unfortunately,
these tables are a scarce resource, and middleware
applications can be so large that by the time a branch
instruction is fetched a second or subsequent time,
the history for that instruction has already been
ejected. When there is no historical data in the table

for a branch, the processor falls back to the default not-
taken prediction for a forward branch. The processor
then speculatively executes the tracing code only to
discover several cycles later that it had mispredicted the
branch and must throw away all the work it has done.
Recovering from a branch misprediction can take more
than 10 processor cycles, depending on the processor,
plus any work it has done since the prediction was
made must also be discarded.

The third problem results in instruction cache and,
potentially, TLB misses because the code executing is
typically spread over more cache lines or memory
pages than is necessary.

To solve these three problems, the JIT reorders the
basic blocks of each method to make each block's most
commonly executed successor its fall-through
successor. Since the JIT has information about which
direction each branch favors, branches with a relatively
biased outcome such as debugging tests can be flipped
so that the processor's default not-taken prediction for
forward branches becomes the correct prediction.
Some processors do not even try to remember a branch
if its prediction matches the default prediction, which
means this optimization can have a secondary
performance benefit because more branches can be
maintained in the prediction tables than before. Finally,
because the commonly executed code appears close
together in memory, fewer instruction cache and TLB
misses are expected. Although reordering code along
hot paths is not a new idea [13], we have found it to be
particularly effective in the context of a JIT compiler.

5. Results
In this section, we report the benefits we have seen in a
group of benchmarks relevant to server and middleware
application performance. The improvements we report
have not been collected at a single point in time but
rather over the course of the recent product
development cycle for the practical reason that it is not
always possible or reasonable to maintain code to
selectively enable or disable particular features. In a
production JIT compiler, wherever serviceability is not
improved by such code, it is eliminated after a testing
cycle to simplify code maintenance.

The impact of this practise on the results of this section
is that individual improvements should not be
considered additive. If two improvements are measured
at 3% and 5%, one should not conclude that the two
improvements together would provide an aggregate 8%
speedup; the two measurements have implicitly

different baselines. Furthermore, IBM maintains
more than one Java JIT product and some
improvements are specific to one particular
technology base. The two products we have
evaluated are the IBM Developer Kit for Java and the
J9 Java virtual machine.

Moreover, some of the improvements described in
this section are platform-specific. These results
should not be carried across to other platforms as the
improvements will vary considerably from platform
to platform; the work done for one platform may be
irrelevant or even harmful for another. To the best of
our knowledge, we have not excluded any result
available to us simply because it degraded
performance.

In all cases, we have made an effort to collect
together improvements that can reasonably be
considered together by platform or by underlying JIT
technology, though these improvements should never
be interpreted in any additive sense except where
explicitly noted.

The results in this section are organized by
benchmark. The improvements that had an impact on
each benchmark are listed in each subsection. The
benchmarks we discuss are: SPECjbb2000[16],
SPECjAppServer2002[15], XML Parser[14], a
cryptography-based micro-benchmark, and IBM
WebSphere® Application Server start-up.

5.1. SPECjbb2000
The SPECjbb2000 benchmark models a pure server
application without using an application server or
database tier. The benchmark encodes the logic and
database for a business managing orders, inventory,
deliveries, and payments. It is inspired by, but not
directly comparable to, the TPC-C database
workload. The benchmark progressively increases its
workload to test the throughput supported by a
particular system by increasing the number of
operating warehouses over time, starting at 1
warehouse and ending at 2N warehouses where N is
usually the number of processors in the machine.
The results reported below are improvements to the
final score, which is an aggregate metric that
primarily tracks the average of the throughputs
achieved at warehouses P through 2P, where P is the
warehouse at which the peak throughput was
measured (usually P = N).

Many of the features we’ve described in Section 3
improve the performance of the SPECjbb2000
benchmark. The benefit for each such feature for three
platforms (xSeries®, pSeries®, and zSeries®) and for
the IBM Developer Kit for Java product is shown in
Figure 1. The percentage improvement is in the self-
reporting score relative to the same score without the
specific feature. Note that some bars are not present in
this graph because those features have not been
implemented for that particular platform or for this
particular product. The xSeries results were measured
on a 4x2.8Ghz Pentium 4 system with Intel Hyper-
threading enabled running Microsoft Windows 2000.
The pSeries results were measured on a 16-way 1.1Ghz
POWER4 p670 system running AIX® 5.1. The zSeries
results were measured on a variety of different machine
configurations and so these results in particular should
not be compared directly against one another.

For the J9 virtual machine product, we report the
improvements found in Figure 2. Again, some bars are

not present because that feature was not implemented
for a particular platform or in this product, or because
that feature had no benefit on that particular platform.

5.2. SPECjAppServer2002
The SPECjAppServer2002 benchmark is a large-
scale middleware application benchmark that models
the complete business processes of a Fortune-500
company, from customer ordering and invoicing
through inventory and supply chain management to
manufacturing. The benchmark exercises both an
application server and a database tier, which can
reside on the same machine, on different machines,
or each tier can be distributed across many machines.
It is a strenuous test of Enterprise JavaBeans (EJB)
2.0. From the JIT’s perspective, our main ability to
improve this benchmark is within the application
server, where a very flat and widely distributed
profile greatly hinders the identification of “bang-for-
the-buck” performance improvements.

0%
1%
2%
3%
4%
5%
6%
7%

Object Inlining Lock
Coarsening

Code
Reordering

indexOf Arraycopy

xSeries

pSeries

zSeries

0%
2%
4%
6%
8%

10%

Lo
ck

 C
oa

rse
nin

g

Cod
e R

eo
rd

eri
ng

ind
ex

Of

Arra
yc

op
y

ne
wIns

tan
ce

cu
rre

ntT
im

eM
illis

xSeries

pSeries

Figure 1: SPECjbb2000 Improvements, IBM Developer Kit for Java

Figure 2: SPECjbb2000 Improvements, J9 virtual machine

Our investigation of the SPECjAppServer2002
benchmark is still in its preliminary stages.
Nevertheless, we have observed that two of the
improvements discussed in Section 4 have significantly
improved the performance of this benchmark:
polymorphic inline caches and code reordering (see
Figure 3).

In this particular case, these two measurements can be
combined since the improvement we have seen by
enabling both of these features in the IBM Developer
Kit for Java was 14%. In the context of the incredibly
flat profile for this application, both results are even
more impressive. We are continuing to investigate
improving the performance of this benchmark. As for
the SPECjbb2000 benchmark, the percentage
improvement is in the self-reporting score relative to
the same score without the specific feature. The
performance improvements were measured on an
xSeries 4x2.8Ghz Pentium 4 system with Hyper-
threading enabled running Windows 2000.

5.3. XML Parser
The XML Parser benchmark we have used is based on
the Apache Xerces XML Parser for Java [14] that tests
parser performance on different combinations of XML
data sets. One of the main design goals for the Xerces
parser is extensibility; the implementation of the parser
relies heavily on abstract classes and method
invocations via interface classes. An example of such a
class is AbstractSAXParser. Given this design
approach, proper implementation of Polymorphic Inline
Caches (PICs) can yield significant improvements as

measured on an xSeries 1.6 Ghz Pentium 4
uniprocessor running Microsoft Windows 2000,
which are presented in Figure 4, measured on the
IBM Developer Kit for Java product. Note that the
scale of the y-axis is different than that of the
adjacent Figure 3. We tested the XML Parser
benchmark using several different sample XML files
with sizes ranging from 1 KB to 5 MB. The
benchmark parses each of the files a number of times
and calculates a ratio score reflecting the number of
elements parsed per second for each data set. The
benchmark also computes an average score by
combining and interleaving the parsing for each
sample XML file into a single run. Figure 4 also
includes the improvement in the parser throughput
because of the code reordering technique described in
Section 4.4.

5.4. Cryptography
The cryptography benchmark we used for our
experiments is a micro-benchmark consisting of a
loop that performs extended precision integer
operations. The loop computes A*B+C where A and
C are 1024-bit precision integers simulated by
vectors of 32 unsigned 32-bit values using arrays of
the Java long data type2 and B is a 32-bit unsigned
number. The loop body contains one long addition
and one long multiplication operation. On a 32-bit

2 Java has no unsigned integer types, so longs are
typically used to hold unsigned 32-bit values.

0%
1%

2%
3%

4%
5%

6%
7%

8%
9%

PIC Code Reordering

0%

5%

10%

15%

20%

25%

30%

PIC Code Reordering

Figure 4: XML Parser Benchmark Improvements Figure 3: SPECjAppServer2002 Improvements

platform, the long add operation naïvely expands to two
32-bit operations and four 32-bit loads. Similarly, the
long multiplication, depending on the instruction set
architecture (ISA) of the platform, naïvely requires
three 32-bit multiplies (two 32-bit by 32-bit producing
low order 32-bit results and one full 32-bit by 32-bit
multiply with 64-bit result), two adds to compute the
high order 32-bits of the product from the three
multiplies, and four 32-bit loads.

The JIT compiler is able to discover that the long
operands are actually 32-bit unsigned quantities and
therefore that the high order 32-bits of each long used
to hold an unsigned 32-bit value are provably zero.
This discovery enables the JIT to dramatically simplify
the computation and memory traffic that occurs in
computing this inner product. After the JIT recognizes
the 32-bit unsigned multiplication, the computation is
performed by one 32-bit by 32-bit multiply with 64-bit
product, no adds, and two loads. Similarly, the 64-bit
add operation in the loop is reduced from two adds and
four loads to two adds and two loads.

Transforming these computations as described above
results in an almost 50% performance improvement,
which, in the case of X86, is due to the reduced
computation and operand driven memory traffic as well
as the complete elimination of spill and fill instructions
in the loop. The results are based on measurements
performed on an xSeries 1.6 GHz Pentium 4
uniprocessor running Microsoft Windows 2000.

5.5. Application Server Start-up
As the basis for application server start-up performance
analysis we chose the IBM WebSphere Application
Server product, where we report the levels of
improvement that can be achieved by applying multi-

level optimization recompilation strategies. Since
significant class loading occurs at server start-up, we
show that significant additional performance
improvement can be achieved by reducing the class
loading cost by turning off class verification. Figure
5 shows the percentage improvements relative to the
time taken by the interpreter to boot the application
server to its ready state. The results were collected by
running the IBM WebSphere Application Server
product with the J9 virtual machine on an xSeries 1.6
GHz Pentium 4 uniprocessor on Microsoft Windows
2000.

6. Summary
In this paper, we have made three basic contributions.
First, we made three observations regarding Java
coding practices among our customers that directly
impact the performance capabilities of JITs and VMs:
bytecode generation, the more prevalent use of
finally blocks and the continuing frequent use of
exceptions. Second, we described 12 different
optimizations and features that our teams have
developed recently to improve the performance of
both server and middleware applications. Third, we
presented results that show the benefits of robust
implementations of these optimizations for a variety
of applications. These results demonstrate both the
effectiveness of the features we have implemented as
well as the level of improvements that can reasonably
be expected for robust implementations in a high
performance production JIT.

Acknowledgements
The authors would like to thank the members of the
IBM Java JIT and VM development teams whose
work is described in this paper. In particular, we

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

%
 Im

pr
ov

em
en

t o
ve

r I
nt

er
pr

et
er

JIT Default mode

JIT Multi-level Compilation

Class Verification Off

Combined

Figure 5: Application Server Start-up Improvements

would like to acknowledge the feedback and advice
from Alan Adamson, Mike Fulton, and Derek Inglis in
the preparation of this paper. We also thank the
reviewers for their time and effort to evaluate this
paper.

References
[1] J. Aldrich, E. G. Sirer, C. Chambers, and S.

Eggars. Comprehensive Synchronization
Elimination for Java. In Science of Computer
Programming, Volumn 47, Issue 2-3, May
2003.

[2] B. Alpern, A. Cocchi, S. Fink, D. Grove, and
Derek Lieber. Efficient Implementation of Java
Interfaces: Invokeinterface Considered
Harmless. In ACM Conference on Object-
Oriented Programming Systems, Languages
and Applications, Oct 2001.

[3] J. Bogda and U. Holzle. Removing
Unnecessary Synchronization in Java. In
Conference on Object-Oriented Programming,
Systems, Languages, and Applications, Nov
1999.

[4] R. Boyer and S. Moore, A Fast String
Searching Algorithm, CACM 20(10), pg 762-
772 (1977).

[5] B. Calder, P. Feller, and A. Eustace. Value
Profiling and Optimization. Journal of
Instruction Level Parallelism, Mar. 1999.

[6] J.-D. Choi, M. Gupta, M. Serrano, V. C.
Sreedhar, and S. Midkiff. Escape Analysis for
Java. In ACM SIGPLAN Conference on
Object-Oriented Programming Systems,
Languages, and Applications. Denver,
Colorado. Nov. 1999.

[7] P. Diniz and M. Rinard. Lock Coarsening:
Eliminating lock overhead in automatically
parallelized object-based programs. In
Proceedings of the Ninth Workshop on
Languages and Compilers for Parallel
Computing. San Jose, CA, Aug 1996.

[8] J. Gosling, B. Joy, and G. Steele. The Java
Language Specification. Addison Wesley,
1996.

[9] D. Grove, J. Dean, C. Garrett, and C.
Chambers. Profile-guided receiver class
prediction. In ACM Conference on Object-
Oriented Programming Systems, Languages,
and Applications, pages 108-123, Oct 1995.

[10] U. Holzle, C. Chambers, and D. Ungar.
Optimizing dynamically-typed object-oriented
languages with polymorphic inline caches. In
P. America, editor, Proceedings ECOOP'91,
LNCS 512, pages 21-38, Geneva, Switzerland,
July 15-19 1991. Springer-Verlag.

[11] T. Lindholm and F. Yellin. The Java Virtual
Machine Specification. The Java Series.
Addison-Wesley, 1996.

[12] T. Lindholm and F. Yellin. The Java Virtual
Machine Specification Second Edition. The
Java Series. Addison-Wesley, 1999.

[13] S. Muchnick. Advanced Compiler Design &
Implementation. Morgan Kaufmann
Publishers. 1997.

[14] The Apache XML Project, 2001.
http://xml.apache.org/xerces-j

[15] The Standard Performance Evaluation
Corporation. SPECjAppServer 2002
Benchmark.
http://www.spec.org/jAppServer2002, 2002.

[16] The Standard Performance Evaluation
Corporation. SPEC JBB 2000 Benchmark.
http://www.spec.org/osg/jbb2000, 2000.

[17] J. Vitek, and R. N. Horspool. Compact
dispatch tables for dynamically typed object
oriented languages. In Proceedings of
International Conference on Compiler
Construction (CC'96) pages 281-293, Apr.
1996. Published as LNCS, vol 1060.

[18] P. Wilson. Uniprocessor Garbage
Collection Techniques. In Proceedings of
International Workshop on Memory
Management. Springer-Verlag. Saint-Malo,
France. 1992.

Trademarks
AIX, CICS, IBM, PowerPC, pSeries, WebSphere,
xSeries, and zSeries are registered trademarks of
International Business Machines Corporation in the
United States, other countries, or both.

Microsoft and Windows are registered trademarks of
Microsoft Corporation in the United States, other
countries, or both.

Intel, Pentium, and Xeon are registered trademarks of
Intel Corporation in the United States, other
countries, or both.

Java and all Java-based trademarks are trademarks of
Sun Microsystems Inc., in the United States, other
countries, or both.

Other company, product, and service names may be
trademarks or service marks of others.

