
Module-aware Translation for Real-life Desktop
Applications

Jianhui Li
Software and Solutions Group

Intel Corporation
86-21-52574545-1654

Jian.hui.li@intel.com

Peng Zhang
Software and Solutions Group

Intel Corporation
86-21-52574545-1203

Jeremy.zhang@intel.com

Orna Etzion
Software and Solutions Group

Intel Corporation
972-4-565-5720

Orna.etzion@intel.com

ABSTRACT
A dynamic binary translator is a just-in-time compiler that translates
source architecture binaries into target architecture binaries on the
fly. It enables the fast running of the source architecture binaries on
the target architecture. Traditional dynamic binary translators
invalidate their translations when a module is unloaded, so later re-
loading of the same module will lead to a full retranslation.
Moreover, most of the loading and unloading are performed on a
few “hot” modules, which causes the dynamic binary translator to
spend a significant amount of time on repeatedly translating these
“hot” modules. Furthermore, the retranslation may lead to excessive
memory consumption if the code pages containing the translated
codes that have been invalidated are not timely recycled. In addition,
we observed that the overhead for translating real-life desktop
applications is a big challenge to the overall performance of the
applications, and our detailed analysis proved that real-life desktop
applications dynamically load and unload modules much more
frequently as compared to popular benchmarks, such as SPEC
CPU2000. To address these issues, we propose a translation reuse
engine that uses a novel verification method and a module-aware
memory management mechanism. The proposed approach was fully
implemented in IA-32 Execution Layer (IA-32 EL) [1], a
commercial dynamic binary translator that enables the execution of
IA-32 applications on Intel® Itanium® processor family. Collected
results show that the module-aware translation improves the
performance of Adobe* Illustrator by 14.09% and Microsoft*
Publisher by 9.73%. The overhead brought by the translation reuse
engine accounts for no more than 0.2% of execution time.

Categories and Subject Descriptors
D.3.4 [Processors]: Compilers, Optimization

General Terms: Algorithms, Design, Performance

Keywords: Dynamic binary translation, dynamic loaded
module, translation reuse, memory management

1. INTRODUCTION
Dynamic binary translation offers solutions for transparently
running existing applications of source architecture on a new
architecture without recompiling the source code [2] [3] [4]. The

dynamic binary translator takes the control when the user launches a
source architecture application on the target architecture. It decodes
the source binary, translates each instruction of the source
architecture into instruction(s) of the target architecture, optimizes
the instructions into the final translated binary, and then executes the
translated binary to simulate the application. The translation is often
performed on demand, and usually on a block-by-block basis. It will
be triggered again when the execution reaches the code that has not
been translated before. To improve the performance of dynamic
binary translators, researchers in this field typically study relatively
small applications [5] [6] [7], such as the SPEC benchmarks [8].
For most SPEC benchmarks, the computation are dominated by
several hot “spots”, which indicates that these studies usually focus
on improving the performance of the translated code block of the
hottest blocks.

Efficiently running real-life applications is the key to ensure the
adoption of a commercial dynamic binary translator. As most users
tend to port server applications to achieve best performance, we
expect that most of applications running on dynamic binary
translators are desktop applications. However, our research proved
that the study based on SPEC benchmarks cannot lead to practical
optimizations that can be applied to porting real-life desktop
applications. First of all, the translation overhead for executing real-
life desktop applications on a different architecture impacts the
performance more remarkably than executing the SPEC programs,
because the execution requires translating a lot more instructions,
which consumes considerable time and resource. Secondly, focusing
only on improving the translated code can be insufficient, because
real-life desktop applications spend less time in the translated code
since they invoke OS system calls frequently to access I/O devices,
which usually execute native code directly. When running Sysmark*
2000 [9] with IA-32 EL, only 61% of the total time is spent on the
translated code, while the percentage is 98% for SPEC CPU2000
[1]. Compared with the relatively heavy workload of the Sysmark*
applications, real-life desktop applications spend much less time on
the translated code. Different from other researchers, we will focus
on exploiting optimization opportunities in translating real-life
desktop applications in this paper.

Our study shows that dynamic module loading and unloading, the
typical behavior of many desktop applications, seriously impacts the
translation time, memory consumption, and profiling information
collection. As modular design is popularly used for building desktop
applications, typically a few modules will be frequently loaded and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
VEE’05, June 11–12, 2005, Chicago, Illinois, USA.
Copyright 2005 ACM 1-59593-047-7/05/0006...$5.00.

* Other names and brands may be claimed as the property of
others

89

unloaded during the application execution. We call these modules
hot modules. In the traditional binary translators that we have
previously discussed [1], the translation of a module is invalidated
upon unloading and the same piece of code is retranslated when the
module is loaded again for execution. Since some common
functions, like DLLMain in windows DLL, are certain to be called
upon module loading and unloading, and programmers usually call
a small number of functions in the module, repeatedly loading and
unloading the same hot module results in repetitively translating
these functions, which consumes excessive time and resource
undesirably. Furthermore, a memory management mechanism that is
unaware of module translation may keep the translated code of the
hot modules and the other modules in one code page, which leads to
inefficient memory management--If the translations of the hot
modules are invalidated upon module unloading, the memory may
contain lots of internal fragments afterwards; even if the translations
of the hot modules can be reused, the frequently reused hot module
translations may be accidentally collected as garbage because the
surrounding translations are out of date. Finally, since the profiling
information is also lost when the translated codes are invalidated
upon unloading, and the translated codes that are newly generated
are stored in a different memory location, the profiling information
is inaccurate and hard to be collected. For example, the hot spot in a
hot module that is frequently loaded and unloaded may not be
recognized, because its profiling information is lost after each
unloading – the binary translator is unable to realize that the binaries
in the module are translated and executed frequently.

To address these issues, we propose to add two components into the
binary translator: a module translation reuse engine and a module-
aware memory management mechanism. First, the translation reuse
engine reserves and reuses the translated code blocks or pages of the
module. To ensure the correctness of the reuse, the engine needs to
verify the consistency of the binaries in the reloaded module. Simply
checking the modification date of the file containing the module
cannot ensure the consistency, because it’s possible to keep the date
unaltered before and after changing the content of the file. Without
the special support from the OS, a possible way of consistency
verification is to save and compare all the binaries of the module.
However, this is very space and time consuming, and even
impossible if some pages of the module are prohibited to be read.
This paper proposes a verification method which is characterized by
100% correctness, high speed, compactness, and high quality of the
translated code. Second, the module-aware memory management
mechanism divides the memory resource into two categories:
module-private code pages and general code pages. Each hot
module has its corresponding private code page pool, and the rest of
the modules share a general code page pool. With this categorization,
the memory manager can better support the translation reuse, and
deploy more efficient garbage collection policies for different pools.

The contributions of this paper include:

1. A powerful reuse engine that avoids repetitive translation
of hot modules

2. A verification method that features 100% correctness,
high speed, compactness, and high quality of the translated code

3. A module-aware memory management mechanism
specially tailored for hot module translation

We incorporate the module-aware translation in IA-32 Execution
Layer (IA-32EL) [1], a commercial dynamic binary translator that

enables execution of IA-32 applications on Intel® Itanium®
processor family. Real-life desktop applications of various types are
selected to compose our benchmark suit and representative
workloads are built for them. Our results show that the performance
can be improved up to 14.09% for Adobe* Illustrator and 9.73% for
Microsoft* Publisher, which frequently reload hot modules. The
translation time drops by 28.85% in Microsoft* Publisher and
28.71% in Adobe* Illustrator, and the memory consumption drops
by 59.46% and 24.04% respectively. The overhead brought by the
translation reuse engine is almost ignorable, which merely accounts
for less than 0.2% of the translation time.

The rest of the paper is organized as follows: We’ll describe the
general architecture of dynamic binary translators in section 2,
followed by section 3, in which the characteristic and the
performance impact of dynamic loading and unloading are analyzed.
In section 4, we’ll introduce the module translation reuse engine and
illustrate the verification method used in the reuse engine. Then
we’ll describe the module-aware memory management mechanism
in section 5. We’ll present our performance data in section 6 and
discuss the related work in section 7. Finally we’ll summarize the
paper in section 8.

2. GENERAL STRUCTURE OF DYNAMIC
BINARY TRANSLATORS
Generally, a dynamic binary translation is composed of two stages:
translation stage and execution stage [1] [10] [11]. At the translation
stage, the binary translator reads the source binaries and translates
them into target binaries. At the execution stage, the binary
translator branches to execute the translated target binaries.
Correspondingly, there are 2 vital components in a dynamic binary
translator: an execution engine and a translation engine.

• The execution engine directs control flow through the
translated blocks. When the control flow reaches a source
architecture instruction that doesn’t correspond to a valid translation
or the translation of which is performance critical and thus is worth
a retranslation for further optimization, the translation engine is
triggered.

• The translation engine translates the source architecture
binaries into target architecture binaries (translated code blocks) in
an adaptive way. Typically there are 3 phases: the interpretation
phase, the fast translation phase, and the optimization phase. When
an instruction is executed for the first time, it is interpreted to
simulate the instruction on the target architecture. In the
interpretation phase, no translation is saved and the instruction
needs to be interpreted again if it is executed for the second time. As
the instruction is executed more times, the translation engine transits
to the fast translation phase. In this phase, the translation engine
explores source fragments from the given instruction pointer, forms
basic blocks, and constructs a control flow graph. Thereafter, a fast
translation method, which only adopts light-weighted optimization,
is used to generate the target code blocks. The translated target code
blocks are saved in the memory, and can be reused when the control
is transferred to the first instruction of the block. The translated
codes that are performance critical are known as hot spots, which
are discovered by the profiler. These codes are retranslated in the
optimization phase. The optimization phase uses most optimization
techniques used in static compilers, and can be very sophisticated
and time consuming. Based on the profiling information, different
optimizations are adopted in generating the translated code, so that

90

the translation time and the quality of translated code are balanced.
There are various approaches to collect profiling information, such
as inserting instrumentation code into the translated or interpreted
code[1] [12], using low overhead dynamic profiling tools[13], etc.
The implementation of a dynamic binary translator may not contain
all the phases mentioned above. However, it is critical to have both
the fast translation phase and the optimization phase, so that the
translator can generate optimal translation for the hot spots and
translate the “cold” source binaries swiftly.

Typically, dynamic translators use a low overhead memory
management mechanism to exploit temporal locality by attempting
to keep useful, active translations in the code pages [1] [10] . As
shown in Figure 2, the translated code blocks are saved in the code
pages that are organized into two pools: a used page pool and a free
page pool. Once a new translated code block is generated, it is
added to the latest allocated code page in the used page pool. If
there is no space in the page to hold the block, the memory allocator
is invoked to provide a new code page. The memory allocator first
tries to allocate a page from the free page pool. If there is no page in
the free page pool, it requests memory resource from the system.
The allocated page is added to the used page pool. If the pages in the
used page pool exceed a threshold, the garbage collector is triggered
to recycle code pages by moving them from the used page pool to
the free page pool. The pages in the free page pool can be freed and
returned to the system if there are too many free pages. The arrows
in the Figure 2 show the page flow among these two pools and the
memory provided by the system. With very low overhead, the
garbage collector tries to identify a selection of translated blocks that
are not likely to be executed in the near future. A commonly used
policy is Least-Recently Created (LRC), which marks each
translated code page with its age, and recycles the old pages in the
same order as they were created [14].

3. THE CHARACTERISTICS OF
DYNAMICALLY LOADING MODULES
AND ITS PERFORMNACE IMPACT
In the characteristic analysis， 4 real-life desktop applications are
studied, namely Microsoft* Publisher 2000, Adobe* Illustrator 9.0.1,
Acrobat* Reader 4.0, and Macromedia* Dreamweaver MX,
covering the fields of desktop publishing, graphic design, document
reading, and Web page editing. The 4 applications are from 3 well-
known companies and are assumed to represent different
programming styles. Their workload is carefully designed to reflect
real users’ typical operations and to prevent repetitive operations
from misleading the analysis result (Details of the workload are
described in section 6.)

Table 1. The Number of DLL Loading and Unloading

Application Number of
Loading

Number of
Unloading

Microsoft* Publisher 2000 3684 3645

Adobe* Illustrator 9.0.1 1010 966

Acrobat* Reader 4.0 142 92

Macromedia* Dreamweaver MX 180 115

CPU2000 INT Programs 9 (average) 0

CPU2000 FP Programs 8 (average) 0

The number of DLL loading and unloading performed during the
execution of the 4 real-life desktop applications and SPEC
CPU2000 programs are listed in Table 1. (The number of loading
and unloading can be unequal, because some modules are not
unloaded until the program terminates.) It is obvious that
Microsoft* Publisher 2000 and Adobe* Illustrator 9.0.1 load and
unload DLLs a lot, while Acrobat* Reader 4.0 and Macromedia*
Dreamweaver MX perform less such operations. The SPEC
programs load only a few DLLs and don’t unload them at all.

Figure 2. Memory Management Mechanism

Figure 1. The General Architecture of Dynamic Binary
Translators

91

Table 2. Hot module
Application Number of

Loadings
Number
of Hot

Modules

Number of
Loadings
performed

for Hot
Modules

Number of
Loadings
performed

for the
Hottest
Module

Microsoft*
Publisher

3684 121 3515 323

Adobe*
Illustrator

1010 148 649 125

Acrobat*
Reader

142 10 42 11

Macromedia*
Dreamweaver

180 14 61 11

For real-life desktop applications, a number of DLL loadings and
unloadings are caused by repeatedly loading and unloading hot
modules, where we define the hot module as the modules that have
been loaded for more than twice in a program’s execution,.
According to Table 2, on average, each hot module has been loaded
for 22 times during the execution of Publisher and Illustrator.

Loading and unloading DLLs frequently can amplify the translation
overhead, including the execution time spent on the translation and
the memory consumed by the translated code. The translation
overhead is a notable performance issue to real-life desktop
applications though it’s not so important to CPU2000 programs. In
Figure 3, we listed the translation time of the 4 real-life desktop
applications and the CPU2000 programs, running on an IA-32
Execution Layer version without the translation reuse mechanism
and module-aware memory management, and in Figure 4, the
memory consumption are listed correspondingly. From these figures,
we can see that the translation overhead is ignorable for the
performance of CPU2000 programs: Less than 1% of the execution
time is spent on the translation and the translated codes occupy only
2.66 MB. But the translation overhead is much higher in the 4 real-
life desktop applications: On average, 12.2% of the execution time
is spent on the translation and 98.21 MB are consumed by the
translated code. In addition, the data also indicates that the
translation overhead of Microsoft* Publisher and Adobe* Illustrator,
which load and unload DLLs frequently, is higher than the other two,
which load and unload DLLs less frequently. In the applications that
load and unload DLLs a lot, hot modules consume a considerable
part of the translation time and memory, as shown in Figure 5 and
Figure 6.

Frequently loading and unloading DLLs may result in redundant
translations. Since some functions are always called upon DLL
loading, like DLLMain, and some programmers have the habit of
unloading a DLL immediately after calling functions in it and
reloading the DLL when those functions are needed again, a
possible approach to decrease the translation overhead is reusing
DLL translations rather than simply discarding them when the DLL
is unloaded and regenerating them when the DLL is reloaded. The
approach can speed up programs that suffer from repetitively
translating functions caused by frequently loading and unloading
DLLs.

Translation Time
(% of Program's Execution Time)

0
.
6
0
%

9
.
5
7
%

1
5
.
9
1
%

1
7
.
7
3
%

5
.
6
2
%

0.0%

5.0%

10.0%

15.0%

20.0%

Microsoft* P
ublisher

Adobe* I llu
strator

Acrobat* R
eader

Macromedia* Dreamweaver
CPU2K

Translation Time

Memory Consumption
 (MB)

2
.
6
6

6
7
.
7
3

1
3
7
.
5
7

1
4
5
.
3
5

4
2
.
2
0

0.0
20.0
40.0
60.0
80.0

100.0
120.0
140.0
160.0

Microsoft* P
ublisher

Adobe* I llu
strator

Acrobat* R
eader

Macromedia* Dreamweaver
CPU2K

Memory Consumption

Translation Time Breakdown

33
%

0% 0%

83
% 67

%

10
0%

17
%

10
0%

0%
20%
40%
60%
80%

100%

M
ic

ro
so

ft*
Pu

bl
is

he
r

Ad
ob

e*
Ill

us
tra

to
r

Ac
ro

ba
t*R

ea
de

r

M
ac

ro
m

ed
ia

*
D

re
am

w
ea

ve
r

Translating Hot Modules Translating Other Modules

 Figure 5. Translation Time for Hot Modules

Figure 3. Translation Time

 Figure 4. Memory Consumption

92

Memory Consumption Breakdown

25
%

0% 1%

59
%

75
%

10
0%

99
%

41
%

0%
20%
40%
60%
80%

100%
M

ic
ro

so
ft*

P
ub

lis
he

r

A
do

be
*

Ill
us

tra
to

r

A
cr

ob
at

*
R

ea
de

r

M
ac

ro
m

ed
ia

*
D

re
am

w
ea

ve
r

Memory to Contain Other Modules' Translation
Memory to Contain Hot Modules' Translation

4. MODULE TRANSLATION REUSE
ENGINE
4.1 Framework
The module translation reuse engine is added to the dynamic binary
translator as shown in Figure 7. Once a module is recognized as a
hot module, the reuse engine saves the source binaries and their
translations in a dedicated memory area. The reuse engine only
saves and compares minimum amount of binaries to ensure the
reusability of the preserved translations. This is described in detail in
the section 4.2. Before the translation engine translates a piece of the
source binary, it requests the reuse engine to check whether these
binaries are translated before and the previous translations can be
reused. The reuse engine first checks whether the entry address of
the source binary belongs to a hot module. The module to which the
entry address belongs can be easily determined by searching the
module list that contains all the modules. Each module distinguishes
itself by name, image size and the base address. If the current
module is found to be a hot module, the reuse engine searches for its
saved translations to check whether the binaries have been translated
before, then compares the saved binaries to verify whether the
translated code blocks can be reused.

There are three stages to accomplish the translation reuse:

1. Translation Reservation

When a translated code block is invalidated, for example, due
to module unloading, it is preserved by the reuse engine and
saved by the execution engine. The reuse engine does the
bookkeeping about where the translations are saved, to which
hot module the translations belong, and the translated code
block descriptors that describes the entry addresses of the
source binaries and their translated blocks.

2. Source Binaries Verification

There are two steps in this stage: save and comparison.

a) If the reuse engine decides to reuse the translation
for a piece of the source binaries, such as the binaries in hot
modules, it saves the source binaries after translating them
successfully. The reuse engine minimizes the verification
overhead by saving a minimum set of source binaries that
determine the semantics of the translation.

b) Before the translation engine translates a piece of the
source binary, it requests the reuse engine to check whether
a preserved translation associated with the current
instruction address exists, and whether the translation is
reusable. The reuse engine compares the saved source
binaries with their counterpart in the module image. If
they’re exactly the same, the reserved translations associated
with the piece of binaries are declared as reusable. No new
translation is needed for these binaries.

3. Translation Revivification

Before executing the reserved translation that is declared as
reusable, the reuse engine is requested to revive the reserved
translations. After the revivification, the reserved translation
can be seen by the execution engine.

4.2 Source Binaries Verification
Before reusing a piece of the translation, we must check if the
source binary, which the reused translation is about to simulate, is
exactly the same as the binary from which the translation was
translated. If they’re different, the reuse is possibly incorrect in
functionality, because the behaviors of the reused code fragment
may be different from the source binary it simulates. In this paper,
we define checking the source binaries as source binaries

Figure 7. Framework for Module Translation Reuse Engine

Figure 6. Memory Consumption for Hot Modules

93

verification, which is performed by the reuse engine. The reuse
engine saves the source binaries as they’re translated and compares
them, in bitwise, with the corresponding parts of the executable
image to get the translations’ reusability. For performance reasons,
the verification overhead must be minimized. Apparently, the
verification overhead is proportional to the amount of source
binaries that are saved and compared. We don’t want to save and
compare the entire text section of a DLL, because this will take
much time and memory, and can negate the improvements gained
from the translation reuse. We don’t want to use the checksums of
the source binaries in the verification either, because the checksum
computation is time consuming.

The proposed method in this paper decreases the overhead by saving
and comparing only those source binaries that determine
translations’ behavior and thus affect the correctness of the
translation reuse. We use Referred Source Binaries (RSB) to denote
the minimum set of source binaries, which must be verified to
achieve the reusability of a translated code block..

Definition: Referred Source Binaries (RSB)

For a translated code block T, if there is a set of source binaries that
determines its behaviors, then this set is defined as the Referred
Source Binaries of T, denoted as RSB (T).
This can be implemented by following algorithm:

Input : A source fragment T and

Output: Its RSB set.

Algorithm:

RSB(T) = {T};

for each optimization O applied to T

 for each source fragment S referenced in applying O to T

RSB(T) = RSB(T) U {O};

 end

end

For the translated code block T, if every element in RSB (T) is
unchanged, reusing T would be 100% correct, even if there are
changes in other parts of the source binaries in the same module.
Since RSB (T) is the minimum set of source binaries that determine
the semantics of T, comparing any real subset of the Referred
Source Binaries cannot ensure the 100% correctness of reusing T.
Therefore, for each translated code block, saving and comparing its
RSB is the most efficient way to verify its reusability.

Figure 8. Example for Referred Source Binaries Affected by

Global Optimization

Global optimization may refer to the information passed from some
predecessors or successors of the source code block, and thus adds
more binaries into the RSB set of translated code block. The
predecessor and successor should also be added to the RSB set since
they determine the semantics of the translated block. In the example
shown in Figure 8, two source fragments (IA-32 code), S1 and S2,
are translated into two translated code blocks (Itanium code), T1 and
T2. The EFlag optimization uses the live information of S2 when
translating S1 into T1. T1 does not update CF because it expects
that CF is assigned to zero in S2 anyway. If S2 is changed to read
CF instead of clearing it, S1 must be translated into a new translated
code block, in which CF should be updated. If T1 is reused as S1’s
translation, the translated code block of S2 would get an incorrect
value of CF. So, for the translated code block T1, RSB (T1) = {S1,
S2}, which means that both S1 and S2 should be checked before
reusing T1.

Global optimizations can lead to repetitive verification, because they
may propagate the information of one source fragment to several
surrounding blocks for improving their translations. Therefore, a
source fragment can be in multiple translated code blocks’ RSB sets.
For example, in Figure 8, both RSB (T1) and RSB (T2) contain S2.
If two copies of S2 are stored for T1 and T2 respectively, some
memory will be wasted and some execution time would be wasted
by comparing the two identical copies with the new executable
image.

A simple way to avoid repetitive verification is to disable the global
optimization functionality when translating the binaries for hot
modules. Without global optimization, the semantics of the
translated code block is fully determined by the source fragments
from which it is translated. So the RSB of each translated code
block only contains its direct source binaries counterpart, e.g.
RSB(T1) = {S1}. However, global optimizations are crucial in
improving the performance of the translated code block. For
example, the expected stack top analysis in the IA-32 Execution
Layer plays a crucial role in efficiently simulating the IA-32 FP
stack [1]. Disabling all of them will seriously degrade the quality of
the translation and is unacceptable to commercial dynamic binary
translators.

Our verification method avoids repetitive verification by adopting
group verification. Group verification groups the translated code
blocks together. The semantics of the translated code block group is
determined by Group Referred Source Binaries (GRSB).
Definition: Group Referred Source Binaries (GRSB)

For a translated code block group G, G = {T1, T2, …, Tn}, the
Group Referred Source Binaries of G is the union of each group
members’ RSB set. This can be expressed as GRSB(G) =
Union(RSB(T1), RSB(T2), …, RSB(Tn)).

When the dynamic binary translator needs to reuse the translations
in the group, it verifies the GRSB set of the group with the
corresponding parts in the executable image. If the binaries are
consistent, then all the translated code blocks in the group are
declared as reusable. If a source fragment is in two translated code
blocks’ RSBs and the two translated code blocks are in the same
group, only one copy of the source fragment is created and the
corresponding part in the executable image is compared once. In this
way, the method of group verification removes the repetitive
verification inside the group.

94

The side effect of group verification is that some translated code
block’s RSB elements are compared but the translated code block
is not actually reused. Consider the example in Figure 8, if we put
T1 and T2 in a group and the dynamic binary translator tries to
reuse T2, then the translator will compare the source fragments
associated with the group with their corresponding parts in the
execution image, in which S1 is included. However, S1 has
nothing to do with T2, and if S1 is not going to be an RSB element
of an actually reused translated code block, the execution time
spent in comparing S1 is wasted.

To balance the repetitive verification and useless comparison and
thus achieve the minimum verification overhead, the reuse engine
can limit the size of a group when the group size exceeds a
predefined threshold. A simple grouping algorithm works by adding
translated blocks that share elements in the RSB sets to a same
group. When the group size reaches the threshold, no translated
code blocks will be added to the group, so that useless comparison
leading to inefficient verification can be avoided. The threshold is
set to 2 mega bytes in our implementation.

4.3 Implementation consideration
This section introduces the techniques we used to minimize the
overhead of the IA-32 EL’s reuse engine.

4.3.1 Using Source Interval to Simplify Memory
Accesses
Saving and checking RSB elements involve a number of memory
accesses. The memory accesses can be ineffective, because they
might be unaligned or even cause access violation exceptions. To
avoid misalignment and frequently access permission checking, we
partition source binaries into source intervals, and verify the source
intervals that contain the RSB elements.

A source interval is a memory block that consists of N continuous
bytes and starts from an address that is a multiple of N, where N is a
factor of the page size. Because all the bytes in a source interval are
in the same page, we need only one request to get all of their
permissions. In addition, since the starting addresses of the source
intervals are multiple of N, misalignment can be avoided by setting
N as a multiple of the memory access size.

The side effect of source interval is that some, though a few, bytes
that does not belong to RSB elements might be saved and compared
as a part of the source intervals, because not all RSB elements are
N-byte-aligned and N-byte long. So the length of the source interval

has been tuned in IA-32 Execution Layer to avoid too many
needless bytes.

The translated code blocks are grouped by module in IA-32
Execution Layer. When a module is loaded and the OS has finished
patching it, all the saved source intervals associated with the module
are compared with their corresponding parts in the executable
image. If all the source intervals are unchanged, translations
associated with the module are considered reusable and the dynamic
binary translator will try to reuse them. If any one is different, the
translation is not reusable and the translations, as well as their
source intervals, will be discarded.

4.3.2 Reserving Translations by Moving Translated
Code Block Descriptors
We don’t reserve translations by copying translated code blocks,
because copying so many bytes is expensive. As an alternative, we
take full advantage of the fact that the execution engine of IA-32 EL
accesses translated code blocks via translated code block descriptors,
which are in a hash table. So we reserve translations simply by
moving their translated code block descriptors out of the hash table.
Details are as follows:

• There is an alternative hash table for every hot module, which
contains the translated code block descriptors of the invalidated
blocks that are associated with the module. The descriptors in the
alternative hash table are logically invisible to the execution engine.

• When the translations of the hot modules are invalidated, the
translator does not remove the translated code blocks from the
memory, instead, it moves the descriptors from the hash table used
by the execution engine into the alternative hash table of the module.

In addition to avoiding copying too many memory units, another
benefit of this approach is that a translated code block can be easily
located at the reuse stage.

4.3.3 Deep Revivification
Reusing a translated code block is actually implemented by
exposing the translation to the execution engine, which can be
achieved by moving the reserved translated code block descriptors
back to the hash table accessible to the execution engine. This is
called translation revivification in our study. To avoid invoking the
revivification procedure frequently, we revive the saved translated
code blocks in a method called deep revival. Deep revival means
that if the successive block in a control flow of the translated code
block is unique, then the successive block will be revived as well,
and this process is repeated continuously.

Figure 10 shows the number of invocations of the revivification
procedure with and without deep revival. It indicates that for
Microsoft* Publisher and Adobe* Illustrator, deep revival reduces
the number of invocations by 14.47% on average.

Figure 9. Source Interval

95

2
0
9
6
3
1

1
0
1
2
5
8

0 2
2
0
8

1
7
8
5
2
7

8
6
9
7
0

0 2
0
6
1

0
50000

100000
150000
200000
250000

M
i
c
r
o
s
o
f
t
*

P
u
b
l
i
s
h
e
r

A
d
o
b
e
*

I
l
l
u
s
t
r
a
t
o
r

A
c
r
o
b
a
t
*

R
e
a
d
e
r

M
a
c
r
o
m
e
d
i
a
*

D
r
e
a
m
w
e
a
v
e
r

M
X

Non-Deep Revival Deep Revival

5. MODULE-AWARE MEMORY
MANAGEMENT MECHANISM
In translators that saves the translated code blocks in the order of the
translation [1], the translated code blocks of the hot modules and
other modules are mixed together. Unloading a hot module without
reusing its translation may lead to many internal fragments that
contain invalidated translations of the module. Translation reuse can
effectively avoid the internal fragments because the invalidated
translations can be revived later upon module reloading. However, if
the memory management mechanism is not aware of the translation
revival, the translated code blocks of the hot module may be
inevitably removed when other translated code blocks in the same
code page meet the garbage collection criteria and the garbage
collection mechanism reclaims the whole page.

The module-aware memory management mechanism organizes the
translation code blocks of different modules into different pools. It
divides the code page pools into two categories: module-private
page pool and general page pool. Each hot module has its own
corresponding private code page pool, and the other modules share
the general code page pool. When a translated code block is saved,
the memory management mechanism identifies the module to which
the translation belongs, and then determines the page pool for the
translated code block. When the hot module is unloaded, its private
page pool codes are reserved for future reuse. If the translation is
identified as not reusable by the verification method upon next
reloading of the module, its private pool is immediately collected
and recycled.

To keep the frequently revived code pages and free the pages that
are not reused in the private page pool timely, the module-aware
memory management mechanism uses a Least-Recently Created &
Revived (LRCR) policy based on the LRC policy. Similar to the
LRC policy, the LRCR policy marks each code page with its age,
which is a global number that is increased each time a new code
page is allocated. The LRCR policy re-marks the age of the page as
if it is newly allocated when a page of a hot module is revived or,
precisely speaking, when one translated block in the page is revived
and becomes active. For example, in Figure 11, the first code page
in the private page pool of hot module C, which is recently revived,
updates its age from 4 to n, the value of the reuse counter at the time
of the revival.

 We implemented this by maintaining a double linked list—the
LRCR list, which links all the pages from oldest to youngest. If a
page is revived, we remove the page from the list, and insert it at the
end of list. The garbage collector always collects pages from the
beginning of the LRCR list. In this way, the code pages of the hot
modules are reserved in the pool as newly created pages if they are
frequently revived, and they will be moved to the beginning of the
list and get recycled if the module stops to be a hot module or some
pages of the hot module are not revived for a long time.

6. PERFORMANCE EVALUATION
The translation reuse and module-aware management

mechanism has been implemented in IA-32 Execution Layer. All the
performance measurements were done on the same system equipped
with two 1.5GHz Itanium 2 processors with 6MB L3 cache. The
operating system is Microsoft Windows 2003 Enterprise. Operations
in the workload are typical users’ operations.

6.1 Workload Description
The workload of Microsoft* Publisher is:

1. Create an Astor quick publication, accent box catalog
and blank publication respectively by the wizard.

2. Drag a picture to 4 different locations.

3. Create a web site by the wizard.

4. Convert the web to print.

5. Repeat Step 3 and Step 4 for 3 times.

Without module-aware translation, the duration of the
Microsoft* Publisher’s workload is 90.64 seconds on top of IA-32
Execution Layer. And with module-aware translation, the duration is
81.82 seconds.

The workload of Adobe* Illustrator is:

1. Stylize a TIF image by adding arrowheads and cancel the
stylization immediately.

2. Apply the effects of “Dry Brush”, “Gaussian Blur”,
“Radial Blur”, “Diffuse Glow”, “Crystallize”, “Mosaic

Figure 11. Module-aware Memory Management Mechanism

Figure 10. The Number of Invocations for Revivification

96

Tiles”, “Gaussian Blur” and “Colored Pencil” to the
image.

3. Move a JPG image up and down. Rotate it by 90%. Send
it back and bring it to front.

4. Apply “Flatten Transparency” to the object and preview
it.

5. Drop shadow to the image and apply the effect called
“Glass” to it.

Without module-aware translation, the duration of the Adobe*
Illustrator’s workload is 99.63 seconds on top of IA-32 Execution
Layer. And with module-aware translation, the duration is 85.59
seconds.

The workload of Acrobat* Reader is:

1. Go to chapters by bookmark

2. Search a word in a PDF document for 30 times

3. View the PDF document in different size, including full
screen, actual size, fit width and etc.

4. Go to pages by thumbnails

5. Repeat Step 1 to Step 4 for 3 times

Without module-aware translation, the duration of the
Acrobat* Reader’s workload is 41.88 seconds on top of IA-32
Execution Layer. And with module-aware translation, the duration is
41.82 seconds.

The workload of Macromedia* Dreamweaver is:

1. Open an existing site

2. Change HTMLs in the site

3. Tutor the site

Without module-aware translation, the duration of the
Macromedia* Dreamweaver’s workload is 164.84 seconds on top of
IA-32 Execution Layer. And with module-aware translation, the
duration is 164.61 seconds.

6.2 Data and Analysis
Figure 12 shows the numbers of translated code blocks in all

combination of translation reuse and module-aware memory
management. It indicates that while translation reuse has a strong
contribution to reducing the block numbers, the two optimizations
are complementary: For Microsoft* Publisher, translation reuse,
alone, reduces the block number by 58.76%; But when the module-
aware memory management accompanies it, the number is reduced
by 59.44%. Regarding Adobe* Illustrator, the block number
declines from 542K to 411K with translation reuse and module-
aware memory management, say, reduced by 24.12%. The benefit
seen in Publisher and Illustrator primarily comes the fact that DLL
loading and unloading no longer cause repetitive translation.
Besides that, we get some bonus from avoiding re-translating the
code blocks in the code pages undesirably collected by the garbage
collection. When the repetitive translation caused by DLL loading
and unloading as well as the garbage collection is eliminated, the
memory pressure is relieved. That reacts on the garbage collection:
the garbage collection is triggered less frequently and is less likely to
collect translated code blocks which will actually be needed in the

near future and cause redundant translation. The memory
consumption, shown in Figure 13, backs up the measurement of the
block numbers: The memory consumption is reduced by 59.46% in
Microsoft* Publisher and by 24.02% in Adobe* Illustrator. As what
we expected, neither Acrobat* Reader nor Macromedia*
Dreamweaver benefits from translation reuse or module-aware
memory management, because DLL loading and unloading is not
done heavily in the two applications.

The Number of Translated Code Blocks

53
28

30

54
24

94

15
32

38

26
58

6252
12

00

54
07

50

15
27

90

26
57

88

21
97

47 41
63

57

15
27

20

26
51

19

21
60

24 41
16

48

15
26

91

26
49

02

0

100000

200000

300000

400000

500000

600000

M
i
c
r
o
s
o
f
t
*

P
u
b
l
i
s
h
e
r

A
d
o
b
e
*

I
l
l
u
s
t
r
a
t
o
r

A
c
r
o
b
a
t
*

R
e
a
d
e
r

M
a
c
r
o
m
e
d
i
a
*

D
r
e
a
m
w
e
a
v
e
r

No Translation Reuse + No Module-aware Memory Management

No Translation Reuse + Module-aware Memory Management

Translation Reuse + No Module-aware Memory Management

Translation Reuse + Module-aware Memory Management

Memory Consumption
(MB)

13
7.

57

14
5.

35

42
.2

67
.7

313
4.

3

14
1.

33

42
.0

9

67
.7

1

56
.7

8

11
1.

74

42
.0

7

67
.5

7

55
.7

7

42
.0

6

67
.4

8

11
0.

44

0
20
40
60
80

100
120
140
160

Micr
os

oft
* P

ub
lish

er

Ado
be

* I
llu

str
ato

r

Acro
ba

t* R
ea

de
r

Mac
rom

ed
ia*

 D
rea

mwea
ve

r

No Translation Reuse + No Module-aware Memory Management

No Translation Reuse + Module-aware Memory Management

Translation Reuse + No Module-aware Memory Management

Translation Reuse + Module-aware Memory Management

Figure 12. The Number of Translated Code Blocks

Figure 13. Memory Consumption

97

Figure 14 shows the execution time spent in translation. With
translation reuse and module-aware memory management, the
translation time drops by 28.85% in Microsoft* Publisher and
28.71% in Adobe* Illustrator. The improvement is not in direct
proportion to that of block number and memory consumption,
because when translation is reused, profiling gets more accurate and
hot traces are possible to be different. The changes in hot traces
further affect the translation time: changes can make the dynamic
binary translator to select different types of optimizations to apply
and the optimization overhead changes. Just as what we expected,
the translation time of Acrobat* Reader and Macromedia*
Dreamweaver almost keeps the same.

Execution Time Spent in Translation

15
.9

1

17
.7

3

5.
62

9.
57

16
.3

4

17
.4

2

5.
61

9.
57

1 1
. 4

1 2
. 7

4

5 .
6 1

9 .
5 4

11
.3

2

12
.6

4

5.
61

9.
54

0.00
5.00

10.00
15.00
20.00

M
ic

ro
so

ft*
Pu

bl
is

he
r

Ad
ob

e*
Ac

ro
ba

t
R

ea
de

r

No Translation Reuse + No Module-aware Memory
Management
No Translation Reuse + Module-aware Memory
Management
Translation Reuse + No Module-aware Memory
Management
Reuse Translation + Module-aware Memory Management

Figure 15 shows the overhead of translation reuse mechanism. For
Microsoft* Publisher and Adobe* Illustrator, the overhead is no
more than 0.2% of the execution time and ignorable. For Acrobat*
Reader and Macromedia* Dreamweaver, which don’t benefit from
reusing translation, the overhead is 0%.

Figure 16 shows the speedup brought by all combination of
translation reuse and module-aware memory management in the 4
applications. Applying the two brings an impressive speedup of
9.73% to Microsoft* Publisher and a speedup of 14.09% to Adobe*
Illustrator. Actually, the speedup is more than what we gain from
saving translation time, and that’s due to when translations, as well
as their profiling data, are reused, the profiling data is more accurate.
That improves the quality of the translated code. For Acrobat*
Reader and Macromedia* Dreamweaver, the speedup is minor and
can be regarded as ignorable variance.

The Overhead of Translation Reuse
Mechanism

(% of Execution Time)

0.
20

%

0.
10

%

0.
00

%

0.
00

%0.
20

%

0.
10

%

0.
00

%

0.
00

%

0.00%

0.05%

0.10%

0.15%

0.20%

0.25%

Microsoft*
Publisher

Adobe* Illustrator Adobe* Acrobat
Reader

Macromedia*
Dreamweaver

Translation Reuse + No Module-aw are Memory Management

Translation Reuse + Module-aw are Memory Management

Speedup
1.

78
%

0.
78

%

0.
05

%

0.
33

%

9.
62

%

13
.7

5%

0.
19

%

-0
.1

5%

9.
73

%

14
.0

9%

0.
14

%

0.
14

%

-2.00%

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

M
ic

ro
so

ft*
Pu

bl
is

he
r

Ad
ob

e*
Ill

us
tra

to
r

Ad
ob

e*
 A

cr
at

R
ea

de
r

M
ac

ro
m

ed
ia

*
D

re
am

w
ea

ve
r

No Translation Reuse + Module-aware Memory Management

Translation Reuse + No Module-aware Memory Management

Translation Reuse + Memory-aware Memory Management

7. RELATED WORK

Most of the related work concerns FX!32 [12][15], a dynamic-
static hybrid translator that ports applications from the IA-32
architecture to the ALPHA architecture. This translator tries to reuse
translations across multiple running copies of a program. In FX!32,
a background static translator creates segments of the native Alpha
codes that duplicate the functionality of the x86 codes previously
executed under emulation. The translated Alpha code segments will
be reused next time when the IA-32 program is invoked. However,
the translator does not compare the binaries of the IA-32 program to
verify the reusability of the translated Alpha code segments. In

Figure 16. Overall Speedup

Figure 15. The overhead of Translation Reuse Mechanism

Figure 14. Translation Time

98

addition, FX!32, being static, saves the translations on the disk and
loads it from there each time when the translations are needed,
whereas our solution maintains all the translations in memory, yet
achieves reusability and complete correctness.

Another interesting similarity exists in JVM [16], in which the
translations of the methods of the classes that are frequently loaded
and unloaded can be reserved for future reuse. However, as JVM
translation is performed on the method basis and the sizes of the
methods are usually much smaller than sizes of the modules, JVM
can easily produce an efficient verification solution by comparing
the source codes and their translations or comparing the checksum
generated by them.

Most of research frameworks about binary translators only
focus on speeding up the translated code of the hot spots, and
typically use SPEC benchmarks as performance indicators. These
researches merely address the issues in translating real-life desktop
applications [5][6][7][17].

Dynamic binary translators that run under the operating system,
like Transmeta CMS [10] and DAISY [18], cannot identify the
module to which the binaries being translated belong, because the
modules can only be seen by the operating system and the
applications running on it. Other products in the field, such as HP
Aries[11], did not report similar work in module translation reuse
and module-aware memory management mechanism.

8. CONCLUSION
In this paper, we presented the module-aware translation, which
consists of a module translation reuse engine and a module-aware
memory management mechanism, for resolving the performance
impacts brought by frequently loading and unloading run-time
modules in real-life desktop applications. We implemented the
module-aware translation component in IA-32 EL, and evaluated
the performance results. Our research results showed that the
performance can be improved by up to 14.09% for Adobe*
Illustrator and 9.73% for Microsoft* Publisher, which frequently
reload hot modules. The translation time drops by 28.85% for
Microsoft* Publisher and 28.71% for Adobe* Illustrator, and the
memory consumption drops by 59.46% and 24.04% respectively.
The overhead brought by the translation reuse engine is almost
ignorable, which merely accounts for less than 0.2% of the
translation time. As dynamic module loading/unloading is accepted
and practiced by more and more desktop application developers, we
believe that the module-aware translation is an indispensable feature
for dynamic binary translators targeting to real-life desktop
applications.

9. REFERENCES
[1] Baraz Leonid, Tevi Devor, Orna Etzion, Shalom Goldenberg,

Alex Skaletsky, Yun Wang and Yigal Zemach, “IA-32
Execution Layer: a two-phase dynamic translator designed to
support IA-32 applications on Itanium®-based systems”, 36th
Annual International Symposium on Microarchitecture, 2003.

[2] Eric R. Altman, Kemal Ebcioglu, Michael Gschwind and
Sumedh Sathaye, “Advances and Future Challenges in Binary
Translation and Optimization”, Proceedings of the IEEE
Special Issue on Microprocessor Architecture and Compiler
Technology, November 2001.

[3] Eric R. Altman, David Kaeli, and Yaron Sheffer, “Welcome to
the opportunities of Binary Translation”, IEEE Computer
33(3), March 2000.

[4] R.L. Sites, A. Chernoff, Kirk, M. Marks, and S. Robinson,
"Binary Translation," Comm. ACM 36 (2), Feb. 1993.

[5] Kemal Ebcioglu, Erik R. Altman, Michael Gschwind and
Sumedh Sathaye, “Dynamic Binary Translation and
Optimization”, IEEE Transactions on Computers 50(6), June
2001.

[6] M. Gschwind and E. Altman, “Optimization and precise
exceptions in dynamic compilation”, in the Proceedings of the
2000 Workshop on Binary Translation, October 2000.

[7] Youfeng Wu, Mauricio Breternitz, Justin Quek, Orna Etzion,
Jesse Fang, “The accuracy of initial prediction in two-phase
dynamic binary translators”, in the Proceedings of the
International Symposium on Code Generation and
Optimization, 2004.

[8] SPEC CPU2000 http://www.specbench.org/osg/cpu2000
[9] Sysmark 2004 http://www.barpco.com
[10] Dehnert, J.C.; Grant, B.K.; Banning, J.P.; Johnson, R.; Kistler,

T.; Klaiber, A. and Mattson, J., “The transmeta code morphing
software: using speculation, recovery, and adaptive
retranslation to address real-life challenges” in the Proceedings
of the International Symposium on Code Generation and
Optimization, 2003.

[11] Cindy Zheng and Carol Thompson, “PA-RISC to IA-64:
Transparent Execution, No Recompilation”, IEEE Computer
33(3), March 2000.

[12] Anton Chernoff, Mark Herdeg, Ray Hookway, Chris Reeve,
Norman Rubin, Tony Tye, S. Bharadwaj Yadavall and John
Yates “FX!32: A Profile-Directed Binary Translator”. IEEE
Micro(18), March/April 1998.

[13] J.M. Anderson, et al, “Continuous Profiling: Where Have All
the Cycles Gone?,” ACM Transactions on Computer Systems,
Vol. 15, No. 4, November 1997, pp. 257-390.

[14] Kim Hazelwood, Michael D. Smith, “Exploring Code Cache
Eviction Granularities in Dynamic Optimization Systems”, in
the Proceedings of the International Symposium on Code
Generation and Optimization, 2004.

[15] Paul J. Drongowski, David Hunter, Morteza Fayyazi, David
Kaeli, “Studying the Performance of the FX!32 Binary
Translation System”, in the Proceedings of the 1st Workshop
on Binary Translation , Newport Beach, CA, Oct. 1999.

[16] The Java Virtual Machine Specification.
http://java.sun.com/docs/books/vmspe

[17] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banjeria,
“DYNAMO: A Transparent Dynamic Optimization System”,
Programming Language Design and Implementation, June
2000.

[18] Kemal Ebcioglu and Erik R. Altman “DAISY: Dynamic
Compilation for 100% Architectural Compatibility”,
Proceedings of the 24th Annual Symposium on Computer
Architecture, June 1997.

99

