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ABSTRACT
The capabilities of applications executing on embedded and
mobile devices are strongly influenced by memory size lim-
itations. In fact, memory limitations are one of the main
reasons that applications run slowly or even crash in embed-
ded/mobile devices. While improvements in technology en-
able the integration of more memory into embedded devices,
the amount memory that can be included is also limited by
cost, power consumption, and form factor considerations.
Consequently, addressing memory limitations will continue
to be of importance.

Focusing on embedded Java environments, this paper shows
how object compression can improve memory space utiliza-
tion. The main idea is to make use of the observation that a
small set of values tend to appear in some fields of the heap-
allocated objects much more frequently than other values.
Our analysis shows the existence of such frequent field val-
ues in the SpecJVM98 benchmark suite. We then propose
two object compression schemes that eliminate/reduce the
space occupied by the frequent field values. Our extensive
experimental evaluation using a set of eight Java bench-
marks shows that these schemes can reduce the minimum
heap size allowing Java applications to execute without out-
of-memory exceptions by up to 24% (14% on an average).
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General Terms
Languages
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1. INTRODUCTION
There has been a continued growth in the sales of mo-

bile and embedded devices. Mobile devices have become
an integral part of day-to-day activities. Functionalities of
multiple personal devices are often integrated into one. For
example, cell phones integrate functionalities of handheld
game boxes, audio players, digital cameras, and messaging
devices. The support for dynamic content made possible by
Java has spurred this growth. It is estimated that there are
250 million Java technology-enabled wireless devices offered
by 31 major manufacturers currently in use [10].

The design of applications in these wireless devices is
severely influenced by resource constraints. Battery power
and memory limitations are two primary factors that con-
strain the applications that can be supported. In fact, mem-
ory size limitation is often cited as the main reason that mo-
bile game applications, arguably the most popular segment
of wireless applications, run slowly or crash [6]. Memory size
constraints will continue to be of importance as the amount
of memory in mobile devices influences their cost, power
consumption, and form factor [14]. While technology im-
provements, both in processing and packaging, have enabled
more memory to fit into the same form factor, applications
supported by cell phones, for example, have been increasing
in size and complexity even more rapidly. In fact, mem-
ory requirements for the applications running on cell phones
have been doubling every fifteen months [20]. A combina-
tion of more powerful applications and the economic factors
constraining memory sizes makes it important to consider
techniques to optimize memory usage.

Compression is a popular technique used to make more
effective use of memory space [28]. Compression techniques
exploit the redundancies in the original data and represent
it as accurately as possible using the fewest number of bits.
However, many memory compression schemes (e.g., [19, 14])
treat data entities in the memory as structureless streams.
To retrieve information from a compressed data entity, we
first have to decompress the entire (or part of) entity, which
may incur both performance and space overheads. Conse-
quently, data compression needs to be applied judiciously
so that the benefits accrued are larger than the overheads
imposed.

In many Java applications, a large fraction of objects in
the heap are similar to each other. In fact, a small set of
values tend to appear in some fields of the heap-allocated
objects much more frequently than other values. This small
set of values are the frequent values for these fields (or, fre-
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quent field values for short). This similarity among objects
can be exploited to reduce the heap space. For example, the
schemes proposed in [25, 24, 13] compare the content of an
object with a set of existing objects and replace the similar
ones with a single copy in order to reduce the storage space.
However, this is done mainly as a manual operation. Fur-
ther, such schemes do not exploit the similarity that exists
in individual fields but not across the entire object. The
work presented in this paper first analyzes the similarity in
fields across a set of objects. Based on this analysis, we
then propose two frequent field value based object compres-
sion schemes that exploit field-level similarity to reduce heap
space requirements of Java applications without manual op-
timization.

This paper makes the following contributions:

• The similarity in data values of the fields of heap al-
located objects are quantified using the SpecJVM98
benchmark suite.

• We present a strategy to identify the fields that contain
frequent values and explain how this information can
be used for restructuring object formats to reduce the
memory space occupied by Java objects.

• We propose and evaluate two object compression schemes
that exploit frequent field values to reduce heap space
consumption of Java applications. The first scheme is
oriented towards compressing the fields that hold zero
or null values. The second scheme further reduces heap
space occupancy by allowing multiple objects to share
memory space for the fields that contain non-zero fre-
quent values.

• We present details of our implementation of these schemes.
Our extensive experimental evaluation demonstrates
that these schemes can reduce heap space occupancy
by up to 24% (14% on an average). The performance
overheads incurred by our schemes are within 2% for
most of the benchmarks.

The rest of this paper is organized as follows. Section 2
presents a characterization of frequent field values. Section 3
presents our two schemes that exploit frequent field values
for reducing heap space requirements, and gives their im-
plementation details. Section 4 discusses our experimental
results, focusing on reducing heap space requirements and
performance overheads. Section 5 reviews related work, and
finally, Section 6 concludes the paper with a summary of our
major observations.

2. FREQUENT FIELD VALUE
CHARACTERIZATION

This section characterizes the frequent field values in Java
applications, and identifies opportunities for exploiting the
results of this characterization for reducing the heap mem-
ory space required to store object instances in embedded
Java environments. Our optimization targets only object
instances, not arrays.

2.1 Experimental Setup
We use the SpecJVM98 benchmark suite [7] to study the

existence of frequent field values. This benchmark suite con-
sists of eight Java programs. These benchmark programs
can be run using three different inputs, which are named as

s1, s10, and s100. We present our field value characteriza-
tion results for s1 and s10. Since the frequent field value
characteristics with these two input sets are quite similar
(as will be shown shortly), we present the results of our two
proposed schemes using the s1 data set only, and perform a
sensitivity analysis with s10.

We use an instrumented JVM based on Kaffe VM 1.1.4
[4] to collect the execution trace of each benchmark. The
traces include detailed information about each object al-
location and access. Our trace-based simulator simulates
the execution of each benchmark, and provides information
about the memory savings and performance overheads. The
important characteristics of our applications are given in
Table 1. The third column of this table gives the number
of classes loaded, the fourth column shows the number of
object instance creations, and the fifth column gives the av-
erage size of an object instance for each application. The
sixth column shows the execution cycles obtained by exe-
cuting our applications using Sun JDK 1.4 (with Hotspot
execution engine client version [9]) on a Solaris system with
SPARC V9 microprocessor. The execution cycles are ob-
tained through the performance counters available in the
microprocessor. These cycles are referred as the base re-
sults in the rest of this paper. We later quantify how much
overhead the different schemes we evaluate incur over these
base execution cycles. Finally, the last two columns give
the maximum heap occupancy without and with arrays. In
this work, the “maximum heap occupancy” is defined as the
maximum total size of the live objects (and arrays) at any
given point during execution. Note that this value deter-
mines the minimum heap size that the application requires
to run without an out-of-memory exception.

2.2 Existence of Frequent Field Values
To quantify the extent of the frequent field values existing

in Java applications, for each value v that may appear in
the jth field of class Ci, we maintain an occurrence counter
Ki,j,v. At every 1KB of memory allocations, we scan the
entire heap and, for each scanned instance o of class Ci

where o.fj = v, we increase the counter Ki,j,v by 1. Note
that a value that remains in a particular field of an object for
longer than the sampling interval may be observed multiple
times. Therefore, the number of occurrences is determined
by both the number of objects that contain the particular
value and the duration of time that this value remains in
each object. For the jth field of class Ci, let us assume that:

K
i,j,v

(1)
i,j

≥ K
i,j,v

(2)
i,j

,≥, ...,≥ K
i,j,v

(n)
i,j

where

{v(1)
i,j , v

(2)
i,j , ..., v

(n)
i,j }

is the set of n values that appear in the jth field of an in-

stance of class Ci. Particularly, v
(1)
i,j is the most frequent

value for the jth field of class Ci. For a given program, we
define the distribution of the kth frequent value as:

Dk =

P
∀i,j K

i,j,v
(k)
i,jP

∀i,j,v Ki,j,v
.

Figure 1 shows the distribution of the occurrences of the top
five frequent values for each benchmark for the s1 and s10
input sets. In this figure, “1st”, “2nd”, “3rd”, “4th”, and
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Number of Number of Average Size Execution Maximum Heap Occupancy
Benchmark Description Classes Instances of Instances Cycles (106) Instance Array+Instance

compress LZW-based compression 199 3101 24B 59665.7 54KB 10503KB
jess An expert shell system 352 32005 24B 2019.6 156KB 374KB
raytrace Single-threaded ray-tracer 213 236555 20B 6170.9 2395KB 3549KB
db Database query 199 4545 24B 607.7 66KB 216KB
javac Java compiler 352 21564 23B 1827.5 283KB 643KB
mpegaudio MPEG audio decoder 238 4779 22B 7545.7 75KB 314KB
mtrt Multi-threaded ray-tracer 213 236492 20B 6171.3 2395KB 3548KB
jack Java parser generator 246 234161 27B 6675.5 317KB 782KB

Table 1: Important characteristics of the benchmarks used in this study.

“5th” represent D1, D2, D3, D4, and D5, respectively. One
can observe from these results that, for most of the bench-
marks, the most frequent value accounts for about 90% of
the total number of occurrences. Only in benchmarks ray-
trace and mtrt do we observe that the most frequent value
accounts for only about 50% of the total. This implies that,
for such applications, one may need to go beyond the most
frequent values (if we are to compress a significant fraction
of the objects in the heap). Among all the frequent field
values, the value zero (or null for reference fields) is of par-
ticular interest because zero fields can be easily eliminated,
thereby saving memory space. The bar-chart in Figure 2
gives the breakdown of zero and non-zero most frequent val-
ues for each benchmark in the SpecJVM98 suite. We see
from these results that non-zero values account for 55% of
the most frequent values on the average. This means that a
scheme that tries to exploit frequent values should accom-
modate for both zero and non-zero values.

While these results are encouraging from the perspective
of potential memory space optimizations, one might also be
interested in understanding why such frequent field values
exist. To answer this, we studied the application codes in
the SpecJVM98 benchmark suite, and found that frequent
field values can occur due to many different reasons. As an
example, in the benchmark raytrace, we found that the in-
stances of class spec.benchmarks. 205 raytrace.OctNode are
observed 24,917,836 times during profiling. Each instance
of this class represents a region of three-dimensional space
that contains a certain number of three-dimensional objects.
An instance of this class has five fields, two of which, Ob-
jList and NumObj, are of particular interest. ObjList is a
pointer to the header of a link table of the three-dimensional
objects in this region, and NumObj is the number of the
objects. Since objects are typically distributed in the three-
dimensional space sparsely, many regions in the space are
actually empty. We observed that, for 36% of the observed
times of the instances of this class, these two fields contain
null and zero, respectively. And, throughout its execution,
the application creates 3,583 instances of this class, up to
2,995 of which can co-exist in the heap at a given time.
This example shows how frequent field values can exist in a
typical Java application.

2.3 Opportunities for Storage Optimizations
An important question now is how one can exploit these

results for memory space optimization. There are at least
two ways to achieve this. The first method is based on pro-
viding feedback to the programmer. More specifically, using
a suitable interface, the field value characteristics discussed
above can be presented to the application programmer. The
programmer in turn may rewrite/restructure the application
code based on these characteristics. For example, if, for a

Figure 1: Frequent value distribution (the top five
and the rest). Left: s1 input; right: s10 input.

given class, a subset of the fields always have the same value,
the application programmer can consider making these fields
static, and consequently make such fields associated with the
class rather than each object instance. There are also auto-
matic static tools, such as JAX [30], that statically analyze
the application codes to remove from the class files the fields
that are not used by the application. Such tools may also
statically identify the fields that all read of these fields ob-
serve the same value across all the instances and make these
fields static. We refer to the techniques in this category as
user-level space optimization since they are performed at the
user level, and they do not need special support from JVM.
A common problem with the user-level optimization tech-
niques is that the optimizations must be conservative, and
consequently, they may not be able to catch all the space
optimization opportunities. To evaluate the upper bound
(i.e., the maximum potential memory savings) that could
be achieved by such user-level space optimizations, one can
assume that the profile represents the behavior of the ap-
plication 100% accurately. Based on this assumption, we
modified the fields that contain a single value across all the
instances to be static, and we also removed the fields that
are never accessed from the class. The heap occupancy be-
havior of our benchmarks with this user-level optimization
will be presented later in the paper and compared to our two
schemes. However, in this work, we mainly focus on exploit-
ing the information about frequent field values within the
virtual machine. That is, our schemes can reduce memory
space requirements of Java applications without rewriting
the application code. Note that the applications that are
already optimized using user-level techniques can still ben-
efit from our optimization schemes. In the next section, we
discuss our optimization schemes in detail.
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Figure 2: Zero and non-zero frequent values. Left:
s1 input; right: s10 input.

3. OUR COMPRESSION APPROACH
A closer look at the problem of taking advantage of fre-

quent field values reveals that, in order to do a good job, one
needs two kinds of information: the fields that have small
numbers of frequent values and the frequent values them-
selves. Our experience with different input sets (e.g., s1 and
s10) indicates that, while the values themselves may change
from one input set (execution) to another, the fields having
frequent values do not change significantly. This is under-
standable since the fields with frequent values are usually
shaped by the characteristics of the application, rather than
the particular input set used. On the other hand, the field
values themselves depend strongly on the input set used in a
particular execution. As a result, one can use profiling with
a typical input set to determine the fields that have small
numbers of frequent values, and this information can then
be encoded within so called field description files that could
be distributed together with the class files of the applica-
tion. We prefer using separate field description files instead
of annotating fields in the class files because it is not possi-
ble to directly annotate the classes that belong to the class
library. The virtual machine loads the field description files
together with the class files to appropriately annotate the
fields with frequent values. This is the approach employed
by both the strategies presented in this paper. The details
of the process used to determine the fields that hold frequent
values are explained in Section 3.1.

3.1 Determining the Level of Each Field
In this subsection, we explain how we use profiling results

to identify the fields that are likely to hold frequent values
at runtime. Specifically, based on the profiling information,
we classify the object fields into three levels:

• Level-0: the field does not have a dominant frequent
value;

• Level-1: the field has a non-zero (or non-null for ref-
erence fields) frequent value; and

• Level-2: the field has a frequent value that is zero or
null.

It should be noted that this classification is performed of-
fline. The results of the classification are stored in the field
description file and will be used in the the future executions
of the program. Since the actual input to the application

during the execution may be different from the input used
during the profiling execution, the profiling results may not
100% accurately reflect the behavior of the application dur-
ing the actual execution. The inaccuracy in the profiling
results may affect the performance and the amount of the
memory savings when using our schemes, however, it does
not cause the program to run incorrectly.

Let us assume that class Ci has fields F = {f1, f2, . . . , fn},
and Si is the set of subclasses of Ci. For a field fj ∈ F , we
define:

q(i, j) =
X

Cx∈Si∪{Ci}
K

x,j,v
(1)
x,j

.

We select a subset of fields, F ∗ ⊆ F , such that:

|F ∗| min
fj∈F∗ q(i, j)

is maximized, where |F ∗| is the number of fields in F ∗.1

Fields in F ∗ are the candidates for the level-1 and level-2
fields. Another applicable rule for selecting candidates for
the level-1 and level-2 fields will be discussed in Section 4.2.1.
A field is considered to be a level-1 field if it belongs to F ∗

and the most frequent value of this field is non-zero. On
the other hand, a field is considered to be a level-2 field if
it belongs to F ∗ and the most frequent value of this field is
zero (or null for pointer filed). In addition, field fi is a level-
k field in class Ci, it must be level-k in all the subclasses of
Ci. Therefore, if the level in the subclass conflicts with that
in the super-class, the level of the super-class overrides that
of the subclass. This is necessary since the type of an object
may be implicitly cast into its super-class.

We illustrate the procedure of field classification with an
example. Let us assume that we have three classes, namely,
Cx, Cy and Cz, and that both Cy and Cz are subclasses of
Cx. Assume further that class Cx has fields Cx.f1, Cx.f2

and Cx.f3, and both Cy and Cz have five fields, three of
which (f1, f2 and f3) are inherited from Cx. By profiling
the application using our instrumented JVM, we obtain the
value of q defined above for each field of each class. (see
Table 2). We now show how we determine the level of each
field of class Cx. Let us consider the following subsets of F
(the field set of Cx):

F1 = {f1, f2, f3};
F2 = {f1, f2};
F3 = {f1}.

Using the profile data in Table 2, we have:

|F1|min{q(x, 1), q(x, 2), q(x, 3)} = 3 × 2000 = 6000;

|F2|min{q(x, 1), q(x, 2)} = 2 × 8000 = 16000;

|F3|min{q(x, 1)} = 1 × 10000 = 10000.

Since 16000 > 6000 and 16000 > 10000, for class Cx, we
obtain:

F ∗
x = F2 = {f1, f2}.

Since f1 ∈ F ∗
x and its most frequent value is 0, f1 is classified

as level-2. Field f2, however, is level-1 as its most frequent
value is non-zero. The fields that are not in F ∗

x are made
level-0. Similarly, for class Cz, we have:

F ∗
z = {f1, f2, f3, f4, f5}.

1F ∗ is actually the prefix of a list of the fields in the de-
scending order of q(i, j).
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Class Cx Class Cy: extends Class Cx Class Cz: extends Class Cx

q(x, i) q(y, i) q(z, i)

Field Occurrences v
(1)
x,i Level Field Occurrences v

(1)
y,i Level Field Occurrences v

(1)
z,i Level

Cx.f1 10000 0 2 Cy.f1 7000 0 2 Cz.f1 3000 0 2
Cx.f2 8000 2 1 Cy.f2 6000 2 1 Cz.f2 2000 2 1
Cx.f3 2000 0 0 Cy.f3 2000 0 0 Cz.f3 1900 3 0

Cy.f4 5000 4 1 Cz.f4 2000 0 2
Cy.f5 4000 0 2 Cz.f5 2000 1 1

Table 2: Determining the potential levels for the fields of three example classes.

Note that, although we have f3 ∈ F ∗
z , this field is still clas-

sified as level-0 since it has been determined to be so in the
super-class Cx.

As discussed earlier, after this profiling, we create field
description files and attach them to class files. During ap-
plication execution, the VM checks the field description files
and uses the information there to decide the object formats,
which is discussed in detail in the rest of this section. Also,
in Section 4.2.1, we explain and evaluate an alternate scheme
for determining the level of fields.

3.2 Scheme-1: Eliminating Level-2 Fields
This scheme removes the level-2 fields from the objects

whose level-2 fields contain only zeros to save memory space.
Figure 3 shows the formats of an object in both uncom-
pressed and compressed formats. An object is divided into
two parts: the primary part containing level-0 and level-1
fields, and the secondary part containing level-2 fields. Each
memory block allocated in the heap is associated with a one-
bit flag (C). If C = 0, the block contains the primary part
of a compressed object or the secondary part of an uncom-
pressed object. The rest of the first word (four bytes) of this
block is the GC Header (i.e., GCHeader1 in Figure 3), which
contains information (such as the size of the block) needed
by the garbage collector. If C = 1, the block contains the
primary part of an uncompressed object. The remainder
of the first word contains SPtr, a pointer to the secondary
part of this object. The GC Header of the primary part of
an uncompressed object is stored in the secondary part of
this object (i.e., GCHeader2 in Figure 3).

When a “NEW” instruction in the program creates an ob-
ject, only the primary part is allocated. The secondary part
is lazily allocated when the first non-zero value is written
into one of the level-2 fields of this object. During garbage
collection, the collector removes the secondary parts of the
uncompressed objects whose level-2 fields contain only zero
values.

At any point during execution, an object can be either
in uncompressed or in compressed format. Checking the
current format of the object at each field access incurs some
performance overhead. However, it should be noted that the
level of each field is statically determined before the execu-
tion starts. A JIT compiler can use this information to avoid
the format checking overheads in most of the cases. An in-
terpreter can also avoid a significant portion of this overhead
by marking each “getfield” or “putfield” instruction accord-
ing to the level of the field being accessed. Such a marking is
performed when this instruction is first executed. For exam-
ple, when a “getfield#n” instruction (loading the nth field
from an object) is executed for the first time, we replace this
instruction with a customized instruction “getfield 0 1#n”
(or “getfield 2#n”) if the nth field of the object being ac-
cessed is of level-0 or 1 (or level-2). When a “getfield 0 1#n”
is executed by the interpreter, we can simply load the value

from the field using the object reference and the offset of
the field without checking the current format of the object.
To execute “getfield 2#n”, however, we first load into a reg-
ister the first word (containing the flag C and the pointer
SPtr) of the primary part of the object being accessed, and
then check the value of flag C. If C = 0, we know that the
value in the field being accessed is zero; otherwise, we need
to load the value of this field from the secondary part of
this object. We mark “putfield#n” as “putfield 0 1#n” or
“putfield 2#n” in the same manner. Similar to the case with
“getfield” instructions, “putfield 0 1#n” instructions do not
incur performance overhead due to compression. To execute
a “putfield 2#n” instruction, however, we need to check the
current format of the object. If the object is compressed
and the value to be written is zero, we skip the write access
since it is not necessary. If the object is not compressed, we
write the value into the secondary part of the object. If the
object is compressed and the value is not zero, we have to
allocate the space for the secondary part of this object and
then write the value into this part.

Compared to the original JVM implementation, our scheme
incurs extra memory accesses in the following cases: (1)
reading a level-2 field of an uncompressed object; (2) writ-
ing a value to a level-2 field of an uncompressed object; and
(3) writing a non-zero value to a compressed object (this
also involves allocating memory for the secondary part of
the object being accessed). Since most level-2 fields contain
zero, and most values written to level-2 fields are zero, these
cases do not happen frequently. Therefore, we can expect
the overall performance degradation due to our scheme to
be low. Further, compared to the memory space allocated
for each object in the original implementation of JVM, our
scheme allocates two more words for each uncompressed ob-
ject. This space overhead is amortized by the memory sav-
ings achieved by the compressed objects. That is, since most
of the objects are compressed, our scheme reduces the over-
all heap memory requirement of an application.

Our scheme requires “putfield” and “getfield” be atomic
operations. This incurs extra synchronization overheads for
the JVM implementations where Java threads are mapped
to native threads. Fortunately, most JVMs for embedded
systems schedule Java threads by themselves without map-
ping Java threads to the native threads. For such JVMs, we
can avoid the synchronization overheads by not preempting
a Java thread when the thread is executing a “putfield” or
“getfield” instruction. It should be noted that, most JVM
implementations for embedded systems, such as KVM [3],
schedule threads only between the boundaries of bytecode
instructions, and thus never preempt a Java thread when
the thread is executing an instruction.

3.3 Scheme-2: Sharing Level-1 Fields
The scheme explained in the previous subsection removes

the level-2 fields from some objects to save memory space.
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Figure 3: Object formats for Scheme-1. (a) Uncom-
pressed. (b) Compressed.

In this section, we extend this scheme by sharing level-1
fields among multiple objects. Figure 4 shows the object for-
mats used in our level-1 field sharing scheme: uncompressed,
compressed, and shared. Figure 4(a) shows an uncompressed
object. This object has two parts: the primary part contain-
ing the level-0 fields, and the uncompressed secondary part
containing both level-2 and level-1 fields. The first word
in the primary part contains two one-bit flags (U and C)
and a pointer to the secondary part (SPtr). For an uncom-
pressed object, we have U = 1 and C = 1, indicating that
this object does not share the level-1 fields with any other
objects, and that the secondary part of this object contains
both level-1 and level-2 fields. It should be noted that the
pointer SPtr points to the middle of the secondary part. The
level-1 fields are stored in the locations with positive offsets,
while the level-2 fields are stored in the locations with neg-
ative offsets. The level-2 fields of an object can be removed
to save memory space if all these fields contain zeros. Fig-
ure 4(b) depicts the format of a compressed object, i.e., an
object with its level-2 fields removed. In this format, the
secondary part of this object contains only the level-1 fields.
Multiple compressed objects whose level-1 fields contain the
same values can share the same secondary part (Figure 4(c))
to reduce the overall memory space consumption.

The formats presented in Figure 4 allow us to read and
write the level-0 fields of an object in the same manner,
irrespective of the current format of the object. Accessing a
level-1 field of an object involves loading into a register the
pointer SPtr and the flags U and C from the primary part.
To read a level-1 field, there is no need to check the current
format of the object. To write a value into a level-1 field,
however, we need to check flag U. If U = 1, the secondary
part of this object is not shared and we can write the value
to the field. If U = 0, on the other hand, the secondary part
of this object is shared with other objects and we have to
create an unshared secondary part (compressed, containing
only level-1 fields) for this object. To do this, we allocate
a memory block large enough to hold the level-1 fields of
this object and copy the values of the level-1 fields to this
block from the shared secondary part. After this, we write
the value into the field in the newly-created secondary part.
Note that, the pointer SPtr and the flag U in the primary
part of this object should also be updated.

To read a level-2 field of an object, we first check the state
of flag C. If C = 0, this indicates that the value of this field
is zero. If C = 1, however, we have to load the value from
the secondary part of the object. To write a value to a level-
2 field, we first check the state of C. If C = 0 and the value
to be written is zero, we skip the write operation since it
is unnecessary. If C = 1, we write the value to the field in
the secondary part of the object. If C = 0 and the value to
be written is non-zero, we have to create an uncompressed
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Figure 4: Object formats for Scheme-2. The first
two bits of an object are C and U flags, respectively;
and the third bit is the mark indicating if an object
is live or dead. (a) Uncompressed. (b) Compressed.
(c) Shared.

secondary part (containing both level-1 and level-2 fields)
for this object. To do this, we allocate a memory block
large enough to hold both level-1 and level-2 fields of this
object, and then initialize this block by setting all the level-
2 fields to zero and copying the values of the level-1 fields
from the original secondary part of the object. Of course,
the pointer SPtr and the flags U and C in the primary part
of this object should be updated. After the uncompressed
secondary part is created, we write the new value into the
field specified by the instruction.

In our implementation, each object is created in the com-
pressed format (Figure 4(b)). During execution, it may
be expanded into “uncompressed” format or further com-
pressed into the “shared” format. A Mark-Sweep-Compact-
Compress garbage collector is invoked when the free space in
the heap is insufficient for creating a new object. This col-
lector not only collects dead objects, but also compresses ob-
jects by eliminating level-2 fields. Specifically, when mark-
ing the primary part of an uncompressed live object during
the mark phase, the collector also checks the values of the
level-2 fields in the secondary part of this object. If all the
level-2 fields of this object contain zero values, the collector
splits the secondary part of this object into two blocks: the
block containing the level-2 fields and the block containing
the level-1 fields. The former block is not marked so that it
can be swept in the following sweep phase. The latter block
is marked as live since it is the compressed (but not shared)
secondary part of a live object.

If the Mark-Sweep-Compact-Compress garbage collector
cannot collect sufficient space for the new object, we scan the
heap using an additional pass to find the compressed objects
that can share their secondary parts. In our approach, only
the objects of the same class can share a compressed sec-
ondary part with each other. To identify the objects that
can share their compressed secondary parts, we maintain
n frequent value pointers (pi, i = 1, 2, ..., n) for each class.
Further, each frequent value pointer (pi) is associated with
a counter (ci). A frequent value pointer pi of class Cx ei-
ther is null or points to the secondary part of an object of
class Cx. We scan the heap, and, for each object O of class
Cx in the heap, we compare its secondary part field-by-field
against each secondary part that is pointed by a frequent
value pointer of class Cx. The counters associated with the
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frequent value pointers that point to a secondary part not
identical to that of O are decreased by one, and, if counter
ci is less than a threshold N , we set the corresponding fre-
quent value pointer pi to null. On the other hand, if there
is a frequent value pointer pi pointing to a secondary part
that is identical to that of O, we increase ci by one, and let
O share the secondary part pointed to by pi. If we cannot
find any matches for O and there is a frequent value pointer
pi whose value is null, we let pi point to the secondary part
of O, and initialize the counter associated with pi to zero.
In our experiments, we assumed that n = 3 and N = −3.

4. EXPERIMENTAL RESULTS
In this section, we present the results from our experi-

mental evaluation. Our presentation is in two parts. First,
in Section 4.1, we present our baseline results. Then, in
Section 4.2, we conduct a sensitivity analysis by modifying
the parameters/strategies used in the baseline experiments.
As mentioned in Section 2.1, we use a trace-based simulator
to evaluate the memory behavior of a JVM. Our simula-
tor maintains a heap and allocates objects in this heap as
a JVM does. It invokes garbage collector/compressor when
the heap space is used up. It also reads and writes the con-
tents of object fields as captured by the trace file. Therefore,
the heap memory access behavior of our simulator is very
close to that of JVM.

4.1 Baseline Results
We present the maximum heap occupancy results in Fig-

ure 5. Recall that the heap occupancy is the sum of the sizes
of all the live objects at any given moment, and the maxi-
mum heap occupancy gives the minimum heap size needed
to run the application without giving an out-of-memory ex-
ception.2 The y-axis in this figure represents the values
normalized with respect to the maximum heap occupancy
of the original JVM without any object compression. All
space overheads incurred by each scheme are included in
these results. User-level optimization reflects the memory
saving potential of the static analysis based space optimiza-
tion scheme. This scheme can reduce the sizes of some class
files by removing the fields that are not used by the ap-
plication. Consequently, the memory space for storing the
loaded classes can be reduced. Further, if these classes are
instantiated, the size of each instance can also be reduced.
It should be noted that, in order to ensure the correctness of
the optimized program, the static analysis based optimiza-
tions must be conservative. In Figure 5, we observe that
user-level optimization, Scheme-1, and Scheme-2 reduce the
space for storing object instances by 7%, 26%, and 38% on

2Depending on the garbage collection algorithm used, a
JVM may need larger heap memory than the maximum
heap occupancy to execute a Java application without an
out-of-memory exception. However, no JVM can execute a
Java application without out-of-memory exception when the
heap size is smaller than the maximum heap occupancy of
the application. Since our schemes compress objects during
garbage collection, the frequency of garbage collection invo-
cations affects the value of the maximum heap occupancy.
To find the lower bound of maximum heap occupancy for
each scheme, we execute each benchmark many times with
different heap sizes. The minimum heap size that allows
the benchmark to execute without out-of-memory excep-
tion gives the maximum heap occupancy values presented
in Figure 5.

Figure 5: Maximum heap occupancy. The y-axis
represent the values, normalized with respect to the
original maximum heap occupancy without any ob-
ject compression.

average, respectively. Although we only present the char-
acterization of the heap occupancy of object instances and
arrays, we can still conclude based on these results that our
schemes can be applied to the applications that have already
been statically optimized using user-level optimizations to
further reduce heap memory requirements. When we con-
sider both arrays and instances, we observe that there is a
drop in savings as compared to just instance size reduction.
This is because of the large size of the arrays involved in
some of these applications. In particular, none of the ap-
proaches achieve any significant savings in the benchmark
compress, which is dominated by a few large arrays. Still,
the average maximum heap occupancy savings achieved by
the user-level optimization, Scheme-1, and Scheme-2 are 2%,
7%, and 14%, respectively.

While the savings in maximum heap occupancy are im-
portant, there are also cases where the average heap occu-
pancy can be critical to consider. For example, this could
provide more opportunities for energy savings in a multi-
banked memory based system [15], by increasing the num-
ber of memory banks that can be turned off at a given time.
Therefore, it is also important to consider the heap usage
profile over the course of execution. Figure 6 gives this pro-
file for two representative benchmark codes, jess and ray-
trace, with the original JVM and the JVM with our Scheme-
2. In obtaining these results, each scheme was executed us-
ing the minimum size heap with which it could complete
execution. We observe that the JVM with Scheme-2 consis-
tently utilizes a smaller heap space as compared to the orig-
inal JVM. The bar-chart in Figure 7 shows the normalized
average heap occupancy for all the benchmarks when using
Scheme-2. We see that the average heap occupancy saving
is about 10%, even when considering both object instances
and arrays. That is, the proposed scheme reduces both max-
imum heap occupancy and average heap occupancy.

Because our experiments are based on simulation, it is not
possible for us to obtain 100% accurate information on the
execution time overheads incurred by our schemes. How-
ever, we estimate the performance overheads of our schemes
by counting the number of the executed instructions and
the number of memory accesses for performing the extra
operations that are due to our schemes. For example, in
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(a) jess (b) raytrace

Figure 6: Heap occupancy profiles for two bench-
marks with s1 input: jess and raytrace.

Figure 7: Average heap occupancy for Scheme-2.
The y-axis are normalized with respect to the origi-
nal average heap occupancy without any object com-
pression.

Scheme-1, to access a level-2 field of an object, we need
three extra operations: loading flag C and pointer SPtr into
a register, executing a conditional branch based on the value
of flag C, and loading the value from the secondary part of
the object (if C = 1) or returning a zero (if C = 0). We
assume that each instruction incurred by our schemes is ex-
ecuted in one cycle and each extra memory access requires
an extra cycle. Figure 8 shows estimated performance over-
heads incurred by Scheme-1 and Scheme-2. The y-axis in
this bar-chart gives the numbers of extra execution cycles in-
troduced by our schemes, which are normalized with respect
to the baseline execution cycles shown in the sixth column
of Table 1 (i.e., the execution cycles obtained by running
the benchmarks using JDK 1.4 with Hotspot engine client
version). Each bar in this figure is broken down into four
parts. The first part (denoted COMPRESS) gives the time
spent in compressing objects (such as checking if each level-
2 field contains zero, and finding the objects that can share
the same secondary part in Scheme-2), the second part (de-
noted EXPAND) gives the time spent in expanding objects
(such as allocating memory for the secondary part of the
compressed objects). The last two parts capture the extra
overheads due to putfield and getfield operations. It should
be noted that, the extra execution cycles for COMPRESS
and EXPAND are affected by the heap size – the larger the
heap size, the less frequent compressions and decompres-
sions. To estimate the maximum overheads, we simulate
each benchmark with the minimum heap size that allows
the benchmark to complete its execution with the specific
compression scheme. From these results, we observe that the

Figure 8: Percentage increases due to Scheme-1 (S1)
and Scheme-2 (S2) in execution cycles over the base
results. Each scheme is simulated with the minimum
heap size that allows the benchmark to complete its
execution.

extra execution cycles due to Scheme-1 is marginal (less than
3.7% for all the benchmarks), and the numbers of the extra
execution cycles introduced by Scheme-2 are slightly greater
than those of Scheme-1 for most of the applications. For
benchmarks raytrace and mtrt, however, Scheme-2 incurs a
performance overhead of about 8.6%. This is mainly due to
the fact that Scheme-2 compares the level-1 fields of a large
number of objects to find the objects that can share level-2
fields (Figure 1 confirms this observation). If we assume that
each extra memory access due to our schemes costs two cy-
cles, the average overheads for Scheme-1 and Scheme-2 are
1.8% and 4.2%, respectively. This estimation may not be
accurate for high performance systems with deep-pipelined
processor core and multiple-level caches. However, for low-
end embedded environments at which our heap compression
techniques are targeting, counting the number of memory
accesses and instructions can give a reliable estimation of
the performance overheads incurred by our schemes with a
reasonable accuracy. For example, a widely used processor
for today’s mobile phones is ARM7TDMI [1], which has a
3-stage pipeline, and no cache. The maximum frequency of
this processor is 100MHz at 0.13um technology (133MHz at
0.13um). Note that the length of a cycle at this frequency is
close to the access delay of typical SDRAM today. Further,
for 3-stage pipeline, the branch penalty would normally be
small. As a result, estimating the performance impact by
counting the number of instructions and memory operations
is expected to be reasonably accurate in practice.

4.2 Sensitivity Analysis
In this subsection, we vary some of the parameters and

strategies used for obtaining the baseline results. The ob-
jective is to test the robustness of the proposed approach.

4.2.1 Impact of the Field Selection Scheme
Recall that our default method for classifying the fields of

class Ci is to select F ∗ ⊆ F (where F is the set of the fields
of class Ci) such that the value of:

|F ∗| min
fj∈F∗ q(i, j)

is maximized. Let us refer to this method as the “minimum-
based” scheme. In this subsection, we experiment with a
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Figure 9: Increase in the maximum heap occupancy
of Scheme-2 when a product-based potential field se-
lection scheme is used. The percentage increases are
with respect to those obtained with the minimum-
based (default) scheme.

“product-based” field classification scheme, in which the
fields of class Ci are classified by maximizing:

|F ∗|
Y

fj∈F∗

q(i, j)

N
, where N =

X

fj∈F

q(i, j).

The minimum-based selection scheme is based on the op-
timistic assumption that the most frequent values of the
different fields tend to co-exist in the same object. In other
words, we assume that, for class Ci, the set of objects where
f1 = v1 is the subset of the set of objects where f2 = v2 if
q(i, 1) ≤ q(i, 2), where v1 and v2 are the most frequent val-
ues for f1 and f2, respectively. In comparison, the product-
based scheme is based on the assumption that each field as-
sumes its most frequent value independently from the other
fields of the same object. Figure 9 presents the percent-
age increase in the maximum heap occupancy due to the
product-based Scheme-2 over the heap occupancy of the
minimum-based Scheme-2. One can observe that, for most
of the benchmarks, the product-based scheme increases the
maximum heap occupancy. This indicates that the most
frequent values of the different fields do co-exist in the same
object. Therefore, these results suggest that our default
method seems to work better. In fact, although not pre-
sented here in detail, we also found during our experiments
that the minimum-based scheme incurs less performance
overhead than the product-based scheme.

4.2.2 Robustness of the Profiling-Based Approach
In Section 3, we mentioned that, while the values them-

selves may change from one input set (execution) to another,
the fields with frequent values do not change significantly.
To demonstrate this, we run our benchmarks with the s10
input; the level of each field, however, is determined using
the profile information obtained from s1 input. Figure 10
presents the maximum heap occupancy of each benchmark
using Scheme-2. On an average, with s10, we achieve 35%
reduction in the maximum heap occupancy for object in-
stances. With arrays included, we still achieve 8% reduc-
tion in the maximum heap occupancy on the average. Re-
call that the corresponding values with s1 were 38% and
14%. Therefore, we can conclude that our profiling-based
approach performs well across the different input sets.

Figure 10: Maximum heap occupancy of Scheme-2
with the s10 input. The y-axis represent the val-
ues, normalized with respect to the maximum heap
occupancy of the original applications without any
object compression. The level of each field is deter-
mined using the profile information obtained from
the s1 input.

5. RELATED WORK
Embedded virtual machines are being increasingly used in

many embedded and mobile environments, and commercial
implementations [5, 2, 11] have now been around for some
time. In addition to these, McDowell el al. [25] presented a
Java environment that supports the complete Java language
and all the core Java packages except AWT using as little as
1MB of RAM. TinyVM [8] is an open source Java platform
for the Lego Mindstorms RCX microcontroller. TinyVM’s
footprint is about 10KB in the RCX. Shaylor [29] imple-
mented a Java JIT compiler for memory-constrained low-
power devices. Their implementation requires 60KB of the
ARM machine code. An example non-Java small-footprint
virtual machine is Maté [23], a tiny communication-centric
virtual machine designed for sensor networks. While mem-
ory footprint reduction has been one of the objectives of
many of these efforts, to our knowledge, none of them has
considered compressing heap objects by exploiting the fre-
quent field values.

Many embedded systems employ data/code compression
to reduce memory space requirements, power consumption,
and the overall cost of the system. In the domain of code
compression, instruction compression has been an active
area of research for the last decade or so [21, 22]. Clausen
el al. [16] proposed compressing bytecodes by factoring out
common sequences. A different line of work [26] tried to re-
duce the space occupied by bytecode sequences using a new
format to represent files. Debray and Evans [17] used profil-
ing information to guide code compression. The main focus
of the work in [19] is to reduce leakage energy consumption
by turning off memory banks saved by compressing class li-
braries. In addition to these studies, memory compression
has also been adopted in high-end systems. For example,
Rizzo [27] presented a fast algorithm for RAM compression.
Similarly, Franaszek el al. [18] developed a set of algorithms
and data structures for compressed-memory machines, effec-
tively doubling the available memory capacity. The study
discussed in this paper is different from these prior studies
in that it targets reducing heap space by exploiting frequent
field values in Java objects.
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In [14], Chen el al. proposed heap compression techniques
to reduce the size of the heap memory. Their compression
scheme treats each object as a structureless byte stream.
Therefore, a compressed object must be decompressed be-
fore its contents can be accessed. The work described in this
paper is different from that in [14] in that our new object
compression schemes are aware of the structures of objects,
which allows the contents of a compressed object to be ac-
cessed without decompressing the entire object.

Marinov and O’Callahan [24] proposed Object Equality
Profiling (OEP) for helping programmers discover optimiza-
tion opportunities in programs. Based on profiling of ob-
jects, they partition the objects into equality sets. The ob-
jects of the same equality set can be replaced with a single
representative object by rewriting the program. However,
there are several limitations to applying this optimization.
For example, to merge multiple objects into the represen-
tative one, their technique requires that the objects should
not be mutated, and that the program should not perform
any operation that depends on the object’s identity. In addi-
tion, their approach is meant to applied by the programmer.
Our work differs from [24] in three main aspects. First, we
do not have the limitations mentioned above. Second, our
schemes are meant to be used within the virtual machine
in a programmer-transparent fashion. Third, we can reduce
the space in cases where there are some fields with the same
value, but no objects are equal to each other.

Tip et al. [30] present an application extraction tool, JAX,
that reduces the size of class files, as well as memory foot-
print of Java programs by removal of redundant methods
and fields, transformation of the class hierarchy, and renam-
ing of packages, classes, methods, and fields. As discussed in
Section 4.1, our work can be complementary to these efforts.
Specifically, our schemes can be applied to the programs that
are already optimized by static optimization tools such as
JAX to further reduce heap memory requirements. Ananian
et al. [12] present a set of techniques for reducing memory
consumption of Java programs. Their optimizations include
field reduction, unread and constant field elimination, static
specialization, field externalization, class pointer compres-
sions, and byte Packing. Except for field externalization,
all these optimizations are compiler-based and are similar
to the optimizations performed by JAX. Our schemes can
be applied to the programs that are already optimized by
these optimizations (except for filed externalization). Field
externalization uses profiling to find the fields that almost
always have the same default value, and removes these fields
from their enclosing class. A hash table stores the values of
these fields that differ from the default value. Write ac-
cesses to these field are replaced with an insertion into the
hash table (if the written value is not the default value) or
a removal from the hash table (if the written value is the
default value). Read accesses, on the other hand, are re-
placed with hash table lookups; if the object is not present
in the hash table, the lookup simply returns the default
value. Our scheme-1 achieves similar memory occupancy
reduction effects of field externalization; however, as com-
pared their hash-table-based approach, our scheme incurs
less performance overhead.

6. CONCLUDING REMARKS
The market for mobile devices and phones is continuing to

increase at a rapid rate. However, there exist several chal-

lenges in supporting applications in mobile/embedded de-
vices. For example, the memory space and energy supply of
mobile devices impose an entirely different set of constraints
as compared to high-end computing environments. In par-
ticular, memory management related issues are becoming
increasingly pressing as the rate at which applications are
growing in complexity exceeds the memory capacity growth
rate. Consequently, optimization techniques that help make
better use of a given memory capacity are extremely impor-
tant. Based on this motivation, this paper has presented
two memory footprint reduction schemes for Java applica-
tions based on object compression. The proposed schemes
take advantage of the frequent field value locality, which says
that the fields of multiple objects hold the same value for
a large fraction of their lifetimes. Our first scheme focuses
on eliminating the space allocated for holding zeroes. Our
second scheme enhances the first one by letting multiple ob-
ject instances share the same copy of the fields that contain
frequent values. In addition, we also quantified the benefits
that could come from a pure user-level compression strat-
egy. The performance overhead imposed by these schemes
is below 2% for most of the cases.
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