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ABSTRACT
One challenge for runtime systems like the JavaTM platform
that depend on garbage collection is the ability to scale per-
formance with the number of allocating threads. As the
number of such threads grows, allocation of memory in the
heap becomes a point of contention. To relieve this con-
tention, many collectors allow threads to preallocate blocks
of memory from the shared heap. These per-thread local-
allocation buffers (LABs) allow threads to allocate most
objects without any need for further synchronization. As
the number of threads exceeds the number of processors,
however, the cost of committing memory to local-allocation
buffers becomes a challenge and sophisticated LAB-sizing
policies must be employed.

To reduce this complexity, we implement support for local-
allocation buffers associated with processors instead of threads
using multiprocess restartable critical sections (MP-RCSs).
MP-RCSs allow threads to manipulate processor-local data
safely. To support processor-specific transactions in dynam-
ically generated code, we have developed a novel mechanism
for implementing these critical sections that is efficient, al-
lows preemption-notification at known points in a given crit-
ical section, and does not require explicit registration of the
critical sections. Finally, we analyze the performance of per-
processor LABs and show that, for highly threaded applica-
tions, this approach performs better than per-thread LABs,
and allows for simpler LAB-sizing policies.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—memory
management (garbage collection)

General Terms
languages, performance
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1. INTRODUCTION
A key aspect of supporting scalable multi-threaded pro-

grams is the efficient management of shared resources like
memory. One common approach is to partition the resources
among threads, so each thread has a thread-local portion
of the resource which may managed without synchroniza-
tion. The main issue then becomes devising the most effi-
cient partitioning of the global resource, so that resources
are available to the threads that need them, and not wasted
on the threads that do not. Such an approach works well if
the threads are each able to make good use of the allotted
resources. However, as the number of threads exceeds the
number of processors and as the rate of context switching
rises, runtime systems must rely on sophisticated allotment
policies to continue to provide good resource utilization.

In this paper, we describe the effects of replacing the
thread-local object allocation scheme in a JavaTM virtual
machine (JVM) with a processor-local allocation scheme us-
ing multi-processor restartable critical sections (MP-RCS).
Compared to thread-local management, this approach en-
ables us to bound the partitioning of the global resource to
at most the number of processors. Compared to other, pos-
sibly non-blocking, synchronization schemes that either map
threads to some bounded partitioning of the global resource
or allow all threads to interact with a single resource, our
association of the partitioned resources directly with proces-
sors eliminates contention for those partitioned resources.

Multi-processor restartable critical sections allow user-level
threads to manipulate processor-local data safely, without
using atomic instructions. The key to these processor-local
transactions is the ability to notify a thread executing in a
critical section that it may have been preempted. To avoid
complicating the interface and contract with the scheduler,
our implementation of MP-RCS relies on notification only
as threads begin running on processors (ON-PROC notifica-
tion). Through ON-PROC notification, the flow of control
in the thread may be redirected to a recovery routine rather
than allowing the MP-RCS transaction to commit.

In using MP-RCS, we build on the work of Dice et al. [6]
which employed an upcall mechanism. With the upcall
mechanism, overhead is only incurred for those threads in
transactions at the time they come back on-processor, and
the mechanism is general enough that threads may use it
to directly maintain thread-specific references to processor-
local data. However, this mechanism also requires the main-
tenance of a mapping between processors and threads in the
kernel, and a somewhat complicated upcall mechanism—
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including a downcall to recover saved state. Most impor-
tantly, this mechanism becomes difficult to manage when
multiple services wish to use MP-RCS transactions for dif-
ferent purposes. We address all of these issues by hiding
some details behind a new interface, and exposing other de-
tails to applications and libraries to allow better control over
MP-RCS transactions.

Dice et al. used this upcall-based mechanism to imple-
ment a highly scalable malloc library. Much of the perfor-
mance improvement arose from the elimination of memory-
barriers, atomic instructions, and mutexes from most of the
commonly executed paths in the malloc interface. In this
study, we apply the MP-RCS service to a different problem:
the implementation of local-allocation buffers (LABs) in a
garbage-collected system.

LABs are more challenging in two ways. First, because of
their effect on the scaling of highly threaded applications,
existing implementations have been highly tuned. In partic-
ular, existing LAB sizing policies take into account factors
like the number of allocating threads, the amount of mem-
ory available for allocation, and the rate of allocation to
adjust the sizes of LABs given to threads. In doing so, these
policies balance the need to avoid contention during allo-
cation with the cost of wasting space in unused portions of
local-allocation buffers. Second, the allocation of memory to
a local-allocation buffer is typically achieved with a single
atomic instruction. Subsequent allocations of objects from
that LAB are then achieved simply by bumping a pointer
with a store instruction. As such, it is difficult to improve
on the performance of allocation. Where the use of LABs
remains a challenge is in the sizing policies one may choose.

Our goal in this study is to show that local-allocation
buffers may efficiently be associated with processors rather
than threads and that doing so removes much of the need to
carefully tune LAB sizing policies. This reduction in com-
plexity means both that a wider range of collection tech-
niques may be employed and that the behavior of the Java
platform is more consistent under a wider range of condi-
tions. One insight gained from this study has been the fact
that depending on the number of threads and the number
of processors, per-thread and per-processor local-allocation
buffers each offer a different set of benefits. From this in-
sight, we implemented the capability of flipping between
these two modes of mapping LABs.

1.1 Roadmap
In section 2, we describe our new implementation of MP-

RCS using a register to control the behavior of memory op-
erations on SPARC r© processors. In section 3, we present a
library of MP-RCS primitive operations, the critical-section
interface, that allow MP-RCS transactions to be written in
high-level languages. In section 4, we introduce the prob-
lem of sizing local-allocation buffers in a garbage-collected
Java virtual machine, and in section 5, we examine how
the critical-section interface may be used to implement per-
processor LABs. In section 6, we offer performance results
demonstrating the efficiency of per-processor LABs. Finally,
we consider related work and conclude.

2. MP-RCS
Multi-processor restartable critical sections (MP-RCS) pro-

vide a facility that provides two complementary services:
a mechanism to notify threads when they are preempted,

and access to knowledge of where the thread is currently
executing. These services are combined to implement non-
blocking [7] algorithms that manipulate processor-specific
data in a consistent manner and without interference from
other threads. MP-RCS allows a thread executing a criti-
cal section to either commit an operation if the thread ran
without interference, or detect the interference and restart.

Among our design goals for MP-RCS are that it impose
a minimal burden on the underlying operating system, and
that it not presume a particular underlying thread model.
In the first case, we rely solely on notification of potential
interference when a thread begins running on a processor.
This ON-PROC notification means that threads’ MP-RCS
transactions may only react to potential interference after
the fact, but it also means that user-level threads may be
preempted at any time and that the kernel need do no addi-
tional work as it deschedules them. In the second case, we
desire that our mechanism work well whether the underlying
threading model is preemptively or cooperatively scheduled
and whether it maps user-level threads directly to scheduler-
level threads or whether it multiplexes user-level threads
over a smaller number of scheduler-level threads. On the
SolarisTM operating environment [12], these scheduler-level
threads are referred to as lightweight processes or LWPs.

At a high level, MP-RCS provides a way to accurately
identify the processor running the restartable critical section
(or more generally, identify the correct processor-specific
data to be modified), and a way to detect interference in the
critical section before writing to any processor-specific data.
An attempt to write to processor-specific data is the commit
point that ends the critical section. Since restartable criti-
cal sections only guard the modification of processor-specific
data, the only sources of interference are preemption, and
in some cases, signal handling.

MP-RCS detects preemption by hooking into the kernel’s
thread-scheduling mechanism. This mechanism supports
the loading of modules that may examine and alter the
state of a thread as that threads is descheduled or begins
running on some processor. Support for these modules, ac-
cessed via saveCtx and restoreCtx, was first added to sup-
port performance-monitoring tools that needed to multiplex
hardware counters among the threads running on a proces-
sor. We make use of these same hooks to notify threads
that they have been preempted and that interference may
have occurred while they were blocked. Because we notify
threads at scheduling points, MP-RCS’ services can be im-
plemented without locking, memory barriers, or atomic in-
structions. The performance and scalability improvements
of this scheme can be dramatic.

This work extends the MP-RCS service in two ways. First,
it makes use of a new mechanism for communicating in-
terference. Second, this mechanism is used to implement
a critical-section library, or CS interface, of primitives for
constructing MP-RCS transactions in high-level languages.
These transactions are somewhat different from what has
been explored previously by Dice et al. [6].

2.1 %asi-based MP-RCS
We now describe a new mechanism that requires no main-

tenance of per-thread or per-processor state in the MP-RCS
kernel driver, that needs no upcall handler, and with which
we guarantee that we only receive notification of preemption
at precise points within a transaction. Unlike the upcall-
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(1) asi = ucontext(%asi);
(2) if (asi == ASI RCS)
(3) ucontext(%asi) = ASI INVALID;

Figure 1: %asi-based kernel driver

based mechanism, our approach does not require registering
critical sections or ending a transaction with a committing
store. While our new approach depends on a SPARC r© -
specific mechanism, the same effect can be achieved on IA32
platforms through the use of segment registers or on AMD64
processors by using the r15 register.

The SPARC r© architecture provides a global %asi regis-
ter that affects the behavior of memory operations. The
%asi register informs the memory system how to interpret
an address while executing certain instructions, such as sta
(store into address space). The SPARC r© architecture de-
fines %asi values that aid in refilling the TLB, in performing
block and non-caching moves, and even ones that interact
with the floating-point subsystem. We have chosen two val-
ues not ordinarily in use in user-level code that we identify as
ASI RCS and ASI INVALID. These values have been chosen
so that memory operations through the %asi register when
it is set to ASI RCS behave as if they were ordinary load,
store, or atomic operations, and so that the same operations
through the %asi register when it is set to ASI INVALID
trap into a signal-handler. Using these two values, we can
now create more flexible forms of MP-RCS transactions.

To begin an MP-RCS transaction, we set the %asi regis-
ter to ASI RCS using a single ALU instruction. We then
proceed to compute the new value we wish to store. Should
this new value depend on the processor on which we are ex-
ecuting, we may load the cpu id of the most recent proces-
sor on which we have executed from our thread’s schedctl

block. By loading this value within the context of an MP-
RCS transaction, we are guaranteed that it reflects our cur-
rent location of execution. To make obtaining this cpu id

as inexpensive as possible, we reserve a slot in each thread’s
thread structure which holds a reference to that thread’s
schedctl block. Finally, we detect that the transaction has
failed by testing the value of the %asi register and we can
attempt to commit the new value by using a store or atomic
operation that makes use of the %asi register.

This approach has many benefits: simplicity, fewer kernel
resources, the ability to control precisely where transactions
abort or retry. To appreciate these qualities, consider fig-
ure 1 which shows the actions that the %asi-based MP-RCS
kernel driver must perform as a thread transitions back onto
a processor: it flips the state of %asi register in that thread’s
user-level context, if its old value indicates that the thread
has an open MP-RCS transaction. Further, it allows us to
form more flexible forms of transactions. Since each memory
operation through the %asi register does not side-effect that
register, we may chain together a sequence of such stores.

An important advantage of this approach is that we need
not explicitly register MP-RCS critical sections. Instead,
we may use a register, say %o5, to communicate success or
failure of any memory operation through the %asi register.
Consider the following SPARC r© instruction sequence:

mov %g0, %o5
sta %o1, [%o0]
subcc %o5, %g0, %g0

The first instruction clears the value of the %o5 register.
If, when the sta instruction executes, it succeeds, then the

( 1) pc = ucontext(%pc);
( 2) asi = ucontext(%asi);
( 3) if (asi == ASI RCS)
( 4) asi = ucontext(%asi) = ASI INVALID;
( 5) if (asi == ASI INVALID && isTrapping(*pc)) {
( 6) if (ucontext(%o5) == 0)
( 7) ucontext(%o5) = 1;
( 8) ucontext(%pc) += 4;
( 9) ucontext(%npc) += 8;
(10) return 1;
(11) }
(12) return 0;

Figure 2: %asi-based trap handler fixUContext()

final comparison will find that %o5 is still 0. If it fails and
traps, however, we can employ a handler like that shown
in figure 2. This handler will test to see if we are in an MP-
RCS transaction and toggle the %asi register if necessary
(lines 3-4). Further, it will test to see if our %asi register is
set to ASI INVALID and if we are on a memory operation of
interest (line 5). If so, it changes the value of the register we
have chosen to use to reflect success or failure—here, %o5—
to 1, and it adjusts the program counter to resume execution
at the instruction after the failing memory operation (lines
6-9). By not requiring the explicit registration of MP-RCS
transactions, it becomes much easier to support MP-RCS
transactions in the presence of dynamically generated code
such as we find in the JavaTM platform.

We will see in the next section that the %asi-based ap-
proach also fits well with how we expose the MP-RCS in
high-level languages. Basically, it allows the application to
clear an interference flag, perform some set of operations,
and then atomically commit the result of those operations so
long as the interference flag remains cleared. This simplicity
allows the application to manage processor-local resources.
The approach also avoids the costs and complexities of sup-
porting upcalls from the MP-RCS kernel-driver. Further,
so long as MP-RCS transactions are not nested, it allows
multiple application services to make use of MP-RCS trans-
actions for different purposes without the need to arbitrate
their uses of preemption notification.

Despite its simplicity, this approach has some drawbacks.
For example, it is oblivious to why a thread has been blocked
or preempted and will simply report such events without
any attempt to detect benign cases of preemption. Instead,
the application, itself, must decide of a failed transaction
whether the transaction may be reopened because the rele-
vant state on which that transaction depends has not changed.
Just as this detection and recovery has been pushed onto
the application, so too must the application now access
processor-specific resources through a dynamic index, namely
the cpu id. These shifts in responsibility reflect an advan-
tage in flexibility and control as well as a cost in additional
steps that the application must take on each transaction.

We must also be careful of how signal-handling interacts
with this mechanism. Signal delivery and handling presents
two challenges for the %asi-based approach to MP-RCS.
First, it may be that a thread transitions back onto a proces-
sor directly into a signal-handler. In this case, although the
kernel-driver has adjusted the value of %asito ASI INVALID,
on exiting the signal handler, all registers including %asiare
restored to their previous values. The signal handler must
ensure that %asiis reset to ASI INVALID in the underlying
frame as shown in figure 2. We enforce this requirement on
exit from any handler by interposing on setcontext.
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int csBegin(); /* Start trans; return cpu */
int csValid(); /* Still valid? */
void csEnd(); /* End trans normally */
void csInvalidate(); /* Invalidate trans */

/* Attempt store: return 0 iff success. */
int csST32C(void *addr, int32_t val);
int csCAS32C(int32_t new, int32_t old, void *addr);
int csST64C(void *addr, int64_t val);
int csCAS64C(int64_t new, int64_t old, void *addr);

Figure 3: Partial interface to critical-section library

The second challenge posed by the handling of signals is
that in some contexts, the signal handler itself needs to make
use of MP-RCS transactions. In such cases, it is simplest if
such handlers invalidate any outstanding transactions in the
underlying stack frames of the thread handling the signal to
avoid interference with itself.

Finally, the %asi register is used for other kinds of oper-
ations. For example, memset, memcpy, and related functions
make use of the block-data properties of the %asi register.
In constructing an MP-RCS transaction, we must be careful
not to invoke such operations, or if we do, we must abort or
reopen the transaction in such cases.

3. THE CRITICAL SECTION INTERFACE
To enable the expression of MP-RCS transactions in high-

level languages, we have introduced a library of primitives,
the Critical Section (CS) interface. A subset of the interface
is shown in figure 3. An MP-RCS transaction is initiated by
a call to csBegin() which returns the id of the current pro-
cessor. Conditional stores and atomic operations are pro-
vided through a number of entry points, each specifying the
types of the input arguments. The status of the current
transaction may be queried by calling csValid() and the
transaction may be ended or terminated by invoking either
csEnd() or csInvalidate(). These operations are com-
bined to form transactions that are similar to what one finds
with load-linked (LL)/store-conditional (SC). Like LL/SC,
MP-RCS transactions benefit from the fact that their use is
immune to A-B-A issues [13]. The CS interface allows appli-
cations to craft MP-RCS transactions with complete control
over how and where notification of preemption is handled as
well as how particular resources are organized.

Because the CS interface relies simply on notification of
potential interference, the %asi-based implementation of MP-
RCS is ideally suited to support it. For example, figure 4
shows how csBegin() and csST32C() are implemented using
the %asi register. Figure 5 shows an example of a MP-RCS
transaction making use of the CS interface. In the example,
we use a cpu id to index a table mapping processor id’s to
lists. Should we be preempted before we reach a committing
operation, control is always returned once the %asi register
is properly set. Finally, we are always notified of success or
failure at each committing operation and we must check the
status of the operation to determine what to do next.

4. LOCAL-ALLOCATION BUFFERS
One of the services of the garbage collector is the allo-

cation of properly initialized memory from the heap [10].
Because the memory available for allocation is a shared re-
source, care must be taken to allow multiple, independent
threads to perform allocations concurrently.

local−allocation buffer

free

free pointer
global

LAB free−ptr

LAB end−ptr

Thread Structure

Heap

allocated

Figure 6: Per-thread local-allocation buffer

One mechanism commonly employed to reduce this con-
tention is the local-allocation buffer or LAB. Typically, each
thread is given one or more LABs from the heap. Once as-
signed to a thread, memory for individual objects may then
be allocated by that thread without further synchronization
with the other threads. Figure 6 shows how LABs may be
used in a garbage-collected heap. In addition to reducing
contention for allocation services, LABs provide a number
of other benefits. By assigning LABs to threads on an ex-
clusive basis, the objects allocated by those threads tend to
be collocated in close proximity. Further, larger LABs re-
duce the cost of internal fragmentation due to an inability to
allocate objects to fill each buffer. Finally, some collection
strategies work best if threads may allocate out of relatively
large LABs—for example, as large as 64KB to 256KB.

LABs alleviate contention for allocating memory directly
from the heap by reducing the frequency of such allocations.
Clearly, the larger each LAB, the better the effect. In the
case of highly threaded applications, this overcommitment
of memory to threads can lead to a different kind of scal-
ing problem. If threads run frequently enough and are not
able to allocate all of their LABs’ memory before the heap
is exhausted, the result may be more frequent garbage col-
lections. The challenge is to balance these two effects, con-
tention for allocation and frequency of garbage collection, to
allow applications to scale on the available processors and
with the available memory.

To make this discussion more concrete, let us consider
a particular JavaTM platform, the ResearchVM1. For this
study, we employed a two-generation heap with the younger
generation organized as a pair of semispaces using copying
collection and the older generation managed by a highly
tuned mark-compact collector [10]. Each of the two gen-
erations maintains a free-pointer which is atomically incre-
mented to allocate memory from a contiguous range of mem-
ory. Application threads typically allocate objects in the
young generation. When this generation’s free memory is
exhausted, the application threads are suspended and a mi-
nor collection is performed. During this minor collection,
surviving objects may be promoted to the old generation.

Allocation of memory directly from the young generation
is performed for one of three reasons:

1The ResearchVM was formerly known as the ExactVM and
is available in the Java 2 SDK 1.2.2 [21].
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! Returns cpu id as result in %o0

ld [%g7 + sc off], %o5
mov ASI RCS, %asi
retl
ld [%o5 + cpu off], %o0

(a) int csBegin()

! Returns 0 iff store succeeded

mov %g0, %o5
sta %o1, [%o0]
retl
mov %o5, %o0

(b) int csST32C(addr, value)

Figure 4: SPARC r© assembler for starting and committing actions using %asi-based MP-RCS.

ONPROC

trapped

H = Lists[C]−>head result = csSTC(&Lists[C]−>head, N)N = H−>next

interrupted

C = csBegin()

driver

TEST result

set failure, reset pc

User

Kernel

OFFPROC

BLOCKED

Figure 5: Manipulation of a processor-specific linked-list using the CS interface.

• to reserve memory for a thread’s LAB,
• to allocate an object too large to fit in a LAB, or
• to allocate a small object when not enough memory

remains to allocate a suitably sized LAB.

By properly sizing the LABs assigned to threads, most ob-
jects are allocated without synchronization in LABs, and
the set of objects that are considered too large is reduced.
The third category impact the efficiency of LABs in an unex-
pected manner. When the heap is almost exhausted, forcing
the remaining allocations to be performed directly in the
heap gives time to threads with unused LABs to allocate
their memory. As LABs increase in size, the time required
in this phase leading up to the next collection also increases.
So, the point at which the memory management ceases to
hand out LABs must trade off the desire to make use of
already-reserved LABs and the increased costs of direct al-
location. We will return to these trade-offs shortly.

In the ResearchVM, the heap may support one or more
LABs per generation. To allow this dynamic association of
LABs and generations, each generation specifies a LAB de-
scription outlining, inter alia, the range of sizes its LABs
may take on, how those LABs may be resized, the range
of objects’ sizes that may be allocated in the LAB, and
how threads allocating—or refilling—LABs do so from the
generation. These per-LAB descriptions are allocated on a
first-come basis as generations are initialized. To simplify
their association with, for example, thread-specific informa-
tion about LABs, these descriptions and the per-thread data
structures are represented by arrays and a given description
together with per-thread LAB structures associated with
that description share a common index.

With this association between descriptions and particular
LAB structures, the ResearchVM further specializes the sec-
ond operation for each class’s instances. Since instances of
a non-array classs are uniform in size and this size is fixed
when that class is loaded, we associate a set of allocation
functions with each class for each generation. These sets al-

low support of precompiled allocation functions specialized
for runtime constants such as LAB description index and
object size, enabling the efficient choice of allocation func-
tion to be emitted in dynamically compiled code. This same
framework makes it simple to support both per-thread and
per-processor LABs in the same virtual machine.

When an application is suspended for a garbage collec-
tion, special steps must be taken. Many collection tech-
niques such as the mark-compact technique used for the old
generation for this study rely on the ability to iterate over
the objects in the heap. To support this iteration, unused
portions of LABs must be made to look like valid objects
for the duration of the collection. In the event that a given
generation is collected, we discard all outstanding LABs in
the portion of the generation that is reclaimed.

Per-thread LABs work well for many applications. For
example, those that have relatively few threads or whose
threads are relatively compute-bound, are able to make ef-
ficient use of LABs. This efficiency results from the fact
that such threads typically allocate most of the memory
reserved for LABs between any two collections. This be-
havior remains true for most buffer-sizing policies so long
as the maximum buffer size remains below a suitable frac-
tion of the generation from which the buffers are allocated.
However, when the number of threads greatly exceeds the
number of processors, the ability of threads to make use of
LABs is diminished as most threads will be suspended for
long periods of time with no chance to run. In such cases,
as the efficiency of LAB usage decreases, the rate of collec-
tion increases forcing the application to spend more time
suspended while garbage collections are performed.

To combat this effect, memory managers employing LABs
have evolved adaptive sizing policies. The ResearchVM makes
use of a carefully tuned sizing policy due to Ole Agesen
in which LABs for a given thread start at a small size (24
words), and as the thread requests additional LABs, the size
is increased by a fixed multiplicative factor (of 1.5). At each
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( 1) allocateWordsInGenWithTLAB(Generation *Gen, Thread *thr,
( 2) Class *class, int numWords) {
( 3) labNum = Gen->labDescriptor->number;
( 4) labAvail = tlabAvail(thr, labNum);
( 5) newLabAvail = labAvail - numWords;
( 6) if (newLabAvail < 0) {
( 7) res = refillTLAB(thr, labAvail, class, numWords, labNum);
( 8) if (!res)
( 9) res = class->gen[Gen->number].
(10) allocateWords(Gen, thr, class, numWords);
(11) } else {
(12) tlabAvail(thr, labNum) = newLabAvail;
(13) res = (word32 *)(tlab(thr, labNum) - labAvail);
(14) }
(15) return res; }

Figure 7: Code for allocating memory from a TLAB

garbage collection, the sizes of each thread’s LABs are then
decayed by another factor (of 2). Finally, the young gen-
eration’s size is adjusted based on the number of observed
allocating threads. We will see that this sizing policy is re-
markably resilient at providing good performance across a
wide range of applications. As good as such sizing policies
are, they constrain the kinds of allocation policies supported
by collection techniques. We would like to gain the benefits
of LABs without unduly constraining their sizes.

In this study, we show that associating LABs with pro-
cessors allows us to gain this independence in sizing policy.
What makes this study challenging is that augmentation of
the LAB mechanism so that LABs may be associated with
processors not only does not remove synchronization from
the common operations, but comes at a small potential cost
in that object-allocation paths are now dependent on dy-
namic information for a thread, namely, the processor on
which it is executing. We show that despite this cost, per-
processor LABs have the same latency as per-thread LABs
and that using both policies together removes the need to
carefully tune LAB-sizing policies.

5. PER-PROCESSOR LABS
Among the costs incurred when using per-processor LABs

(PLABs) in place of per-thread LABs (TLABs) are:

• starting a transaction and accessing the current cpu id,
• accessing of that processor’s resources via the cpu id,
• testing the result of the committing operation, and
• including mechanisms to retry the allocation request.

To understand these costs, consider figures 7 and 8 that il-
lustrate how objects are allocated from TLABs and PLABs.
Beginning with figure 7, we identify the TLAB associated
with the current generation (line 3). Using this value, we
measure whether the allocation request, numWords, may be
satisfied from the existing LAB (lines 4-6). If there is enough
memory, we update the state of the LAB (lines 12 and 13).
Otherwise, we allocate memory for the requested amount
together with memory for a new LAB, discarding or merg-
ing the old LAB into the new one, if necessary (lines 7-10).

In contrast, allocation from a per-processor buffer is some-
what more complicated. In figure 8, we begin as before by
identifying the index of the allocation buffer assigned to the
generation in which we wish to allocate an object (line 3).
Now, however, we must start an MP-RCS transaction and
look up the processor on which we are running (line 5). Fur-
ther, if we find that we can allocate memory from the current
PLAB, we must use a committing store (line 15) to ensure

( 1) allocateWordsInGenWithPLAB(Generation *Gen, Thread *thr,
( 2) Class *class, int numWords) {
( 3) labNum = Gen->labDescriptor->number;
( 4) do {
( 5) cpuid = csBegin();
( 6) labAvail = plabAvail(cpuid, labNum);
( 7) newLabAvail = labAvail - numWords;
( 8) if (newLabAvail < 0) {
( 9) res = refillPLAB(thr, labAvail, class, numWords, labNum);
(10) if (!res)
(11) res = class->gen[Gen->number].
(12) allocateWords(Gen, thr, class, numWords);
(13) } else {
(14) res = (word32 *)(plab(cpuid, labNum) - labAvail);
(15) if (csST32C(&plabAvail(cpuid, labNum), newLabAvail))
(16) res = PLAB RETRY;
(17) }
(18) } while (res == PLAB RETRY);
(19) return res; }

Figure 8: Code for allocating memory from a PLAB

that our manipulation of the PLAB is properly isolated from
interference from other allocation requests. Finally, if either
the request to refill the existing PLAB (line 9) or the at-
tempt to commit our allocation request (lines 15-16) result
in res having a distinguished PLAB RETRY value indicating
the possibility of interference, then we must retry the allo-
cation request. All of these extra steps roughly double the
number of instructions required for an allocation request.

The ResearchVM’s allocation framework allows each gen-
eration to register a set of allocation functions with each
class as the class is loaded. This flexibility may be seen in
lines 9-10 of figure 7 and in lines 11-12 of figure 8 where
allocation requests too large to be satisfied from an alloca-
tion buffer are allocated directly from the heap. Because
the instances of a given non-array class are all uniform in
size and share the same allocation functions and because
LAB assignments to generations are runtime constants, the
ResearchVM provides specialized versions of the allocation
functions for object sizes up to 40 words and for each LAB
index. Using these specialized allocation functions, the typ-
ical fast-path SPARC r© instruction sequence to allocate a
small object from a thread-local allocation buffer requires 2
loads, 1 branch, 3 ALU instructions, and 1 store for a total of
7 instructions. In contrast, the typical fast-path instruction
sequence to allocate a small object from a PLAB requires 4
loads, 2 branches, 10 ALU instructions, and 1 committing
store for a total of 17 instructions. So, even as PLABs may
aid the throughput of highly threaded applications, it must
do so well enough that it offsets the extra cost incurred on
every allocation request.

5.1 Managing PLABs
Another challenge when using PLABs concerns how these

buffers are allocated or refilled. When a thread attempts to
refill a given PLAB, it should do so only so long as it remains
on that processor. So, the MP-RCS transaction becomes
important not only for ensuring that the thread has exclusive
access to update the state for the appropriate PLAB but also
that the thread is notified if it has been preempted. The fact
that in the midst of the transaction, the thread may allocate
memory from the heap—a relatively long and unrestricted
operation that may employ memset, for example, to initialize
the newly allocated memory—increases the likelihood that
the transaction will not be valid after the memory for the
LAB is returned. If the transaction has failed but the thread
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has successfully allocated memory for a LAB, we are left
with the problem of what to do with that LAB.

One option is to abandon the LAB—turn it into a dead
object in the heap and retry our allocation request. Instead
of abandoning it, we attempt to reopen the transaction. We
start a new MP-RCS transaction with csBegin(), check that
the cpu id is the same as it was, and check that the current
allocation buffer’s bounds are unchanged. If so, we consider
the intervening interference to be benign and continue as
before. Otherwise, we simply terminate the transaction by
calling csInvalidate(). We do not, however, leave the con-
text of the transaction as we are not finished with the newly
allocated LAB. If at the end of the transaction, we have
not been able to install the LAB for the current processor,
we place—or sideline—it on a free-list of LABs available for
use for the current generation. Other threads attempting to
refill allocation buffers from the same generation will pref-
erentially take LABs previously sidelined before allocating
memory from the heap. These two strategies—reopening
transactions and sidelining unused LABs for later reuse—
have proven effective in reducing wasted memory. Key to
their success is the fact that the CS interface allows applica-
tions to control how MP-RCS transactions are structured.

PLABs present other challenges. For example, to update
the bounds of the current LAB for a processor, we must
atomically update a pair of values—the limit address of the
LAB and its size. Strategies we considered employing in-
cluded embedding this metadata in the LAB’s memory and
employing a multiword-commit protocol similar to that used
by Johnson and Harathi [9]. For expedience, we employed
the 64-bit csST64C() method to write the pair with a sin-
gle atomic store. This approach was possible because our
JavaTM virtual machine assumes a 32-bit address space. On
a different platform, we would have to revisit this decision.
In addition to these two fields, there are a number of other
fields governing LAB resizing and statistics. As these are
advisory, we exploit the fact that the committing store for
the bounds of the newly installed LAB leaves the transaction
open. Once this first store succeeds, we then optimistically
update the related statistics using committing stores until
we have either updated them all or one of them fails. Fi-
nally, to abandon an existing PLAB that contains unused
memory, care must be taken within the context of the MP-
RCS transaction to force the number of words available in
the LAB to be zero with a committing store. This protocol
ensures that if we turn the unused portion into a dead ob-
ject or if we attempt to merge that portion with the newly
allocated LAB, no other thread that begins executing on the
same processor will attempt to allocate that memory.

Despite all of these added complexities, the refilling of a
PLAB is only slightly more expensive than refilling a TLAB.
Since the sizes of buffers are typically large enough to allow
the allocation of between a few hundred and a few thousand
objects per buffer, this extra cost is easily amortized across
those individual allocation requests.

5.2 Flipping LAB association
The use of per-processor resources can result in poor mem-

ory utilization. When the number of allocating threads is
less than the number of processors, or when threads are en-
tirely compute-bound and are not preempted between col-
lections, threads allocating from PLABs may be preempted
and migrate among the processors, leaving partially-used

buffers tied to idle processors. While the amount of wasted
memory with PLABs is bounded by the number of proces-
sors (instead of threads with TLABs), it is still a concern
and indicates that the best strategy may be to use whichever
form of association works best for the application.

At each collection, we gather statistics on the allocation
behavior of each thread for each generation. Using the
statistics for the youngest generation, we implemented a
simple policy that allows us to dynamically switch associa-
tion from threads to processors or back again. Initially, the
application begins by using TLABs. When the amount of
memory left unused in TLABs exceeds the maximum LAB
size times the number of processors, we flip modes and be-
gin associating allocation buffers with processors. Should
the amount of unused memory exceed the maximum LAB
size times the number of allocating threads, we revert back
to thread-local allocation buffers. Here, the ease with which
we are able to implement this switching policy results from
the fact that the ResearchVM has a flexible allocation frame-
work. When we choose to switch modes, much of the work
in making the switch lies in updating per-class allocation-
function tables. The one challenge in this context is the
management of dynamically generated code that allocates
objects. In the ResearchVM, all such allocations are done
through direct calls to the appropriate allocation functions.
These functions’ addresses are retrieved from the appropri-
ate class structures when the code was generated. To ensure
that these direct calls for allocation are properly updated,
we segregate the allocation functions by the kind of asso-
ciation of allocation buffers they employ and we patch the
disabled set of such functions to patch the calling sites redi-
recting them to the correct corresponding functions in the
other set. This approach allows those cases of dynamically-
generated code calling into the wrong set of allocation func-
tions to lazily adjust themselves to call the correct set.

6. PERFORMANCE
To evaluate the efficacy of associating LABs with proces-

sors, we consider three applications:

• 213 javac—a single-threaded compiler for the JavaTM pro-
gramming language compiling a set of class files,

• SPECjbb2000-1.03 [5]—a multi-threaded benchmark
simulating a set of warehouses processing orders, and

• VolanoMark 2.1.2 [17]—a highly multi-threaded bench-
mark measuring the Volano chat server.

We chose 213 javac from the SPECjvm98 [5] benchmark
suite because it is single-threaded and because its perfor-
mance is the most sensitive to the speed of allocation and
to the effects of collection. We chose SPECjbb2000 so that
we could study a compute- and allocation-bound applica-
tion with a moderate number of threads. Finally, we chose
VolanoMark because this benchmark makes use of large num-
bers of bursty threads. All of the experiments were run on
an otherwise idle eight-processor Sun Fire 880 configured
with 32GB of memory. Each of the eight processors is a
750MHz UltraSPARC r© III with an 8MB external cache.

6.1 213 javac Results
The 213 javac benchmark allows us to understand the

costs of MP-RCS and PLABs for a single-threaded appli-
cation. For this benchmark, we used a 2MB fixed-sized
young generation and an old generation that ranged in size
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Association Elapsed (secs) Instructions Cycles
per-thread 21.205 4.163 billion 6.636 billion
per-processor 22.004 4.223 billion 6.718 billion

Table 1: 213 javac with the default sizing policy.

between 8MB and 15MB. Table 1 shows the mean execu-
tion time, instruction count, and cycle count across five sets
of measurements taken running this benchmark on a single
processor. Given that the only difference between the two
sets of runs was whether LABs are associated with threads
or with processors, the difference in cost is due primarily
to the use of MP-RCS transactions. This benchmark allo-
cates slightly more than 5.913 million objects in the course
of each run. From this fact and the data in the table, we
can conclude that the measured impact of MP-RCS enabled
allocation adds 10.2 instructions and 13.9 cycles per allo-
cation. These measurements agree well with our analysis
of the added costs described for the MP-RCS enabled allo-
cation fast-paths. Here, we conclude both that the cost of
MP-RCS transactions on the refilling of allocation buffers is
well amortized across the individual allocation requests and
that the use of PLABs does come at a small cost.

6.2 SPECjbb2000 Results
The SPECjbb2000 benchmark emulates a set of client

threads, one per warehouse, processing orders through a
middle tier where business logic is applied to the requests
and objects in a back-end database are updated. The bench-
mark is interesting because there is little interaction be-
tween different warehouse threads and, like 213 javac, the
threads simply allocate and manipulate memory in the heap,
and so, is also sensitive allocation performance. During
each run, there is a 30-second ramp-up period in which the
warehouse threads warm up and then a two-minute win-
dow in which the rate of order-processing is measured. By
varying the number of warehouses, we show how our LAB-
association and LAB-sizing policies interact as the number
of threads begins to exceed the number of processors.

In our experiments, we varied the number of warehouses
from 1 to 64 (8 times more threads than processors). We also
used the the default policy described at the end of section 4
in combination with three association policies: TLABs, PLABs,
and the flip-mode policy. We sized the young generation at
4MB so that collections occur once every 200-300ms. This
ensures that threads are rescheduled one or two times be-
tween collections. Each of the reported throughput rates
represents the mean of four runs.

The results in figure 9 show that the flip-mode policy per-
forms well. So long as the number of warehouses—and so,
threads—is close to the number of processors, there is little
wastage in unused LABs and the system behaves similarly
to the policy of TLABs. As the number of threads increases,
it “flips” and begins to behave like the per-processor policy.
With up to 8 allocating threads and the default LAB sizing
policy, PLABs do worse than either of the other two modes
due to the added cost of allocating relatively small buffers
and the reduced ability to amortize this cost across individ-
ual allocation requests. Coupled with a higher preemption
rate, PLABs perform significantly worse than TLABs.

Beyond 16 warehouses, PLABs perform consistently bet-
ter than TLABs. This improvement is due to less wastage
of memory in unused portions of LABs, and hence a cor-
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Figure 9: SPECjbb throughput scores for TLABs,
PLABs, and flip-mode (default LAB sizing).

responding reduction in the frequency of collections. The
warehouse threads are compute-bound, and on a lightly loaded
machine, they are rescheduled only when they exhaust their
quanta. With collections occuring every 200 to 300 millisec-
onds, there is at most a fixed number of threads that are
able to run, let alone be preempted, between each collection.
Because the benchmark reported an aggregate throughput
of work-units performed by all threads within the 2-minute
timing window, we expect each of the lines in the graph to
flatten out and we see this pattern for both sizing policies.
The difference between PLABs and TLABs is due to the
fact that the latter wastes from 2% to 5% of the heap.

Note that having run these experiments on a lightly loaded
machine biases the effects towards TLABs. With more sys-
tem activity, we would expect the rate of preemption per
thread to increase. In such environments, PLABs should
begin to do even better than TLABs.

6.3 VolanoMark Results
For applications like the the Volano Chat Server, there

may be hundreds or thousands of threads, most of which
are suspended most of the time. We ran the VolanoMark
2.1.2 benchmark varying the number of threads, the size
of the young generation, and LAB associativity and sizing
policies. In all cases, we kept the older generation fixed in
size at 64MB. The results are shown in figure 10.

Each of the figures shows a pair of graphs, the first mea-
suring the behavior of TLABs and the second, the behav-
ior of PLABs. Within each graph, we graph the behavior
of a particular LAB-sizing policy: the default adaptive siz-
ing policy, and fixed-sized policies using 4KB, 16KB, 64KB,
128KB, and 512KB LABs. We varied the number of threads
employed in the benchmark from 200 (for 10 simulated chat
rooms) to 1,000 (for 50 chat rooms). For each combination
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(b) 2MB semispaces with PLABs
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(c) 4MB semispaces with TLABs
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(d) 4MB semispaces with PLABs
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(f) 8MB semispaces with PLABs

Figure 10: VolanoMark results.
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of parameters, we ran the benchmark 10 times and report
the harmonic mean of the rates of messages per second.

First, as the number of threads exceeds the number of pro-
cessors, the performance of PLABs is relatively insensitive
to particular choices of LAB-sizing policies. This resilience
is in stark contrast to that of TLABs. Further, this indiffer-
ence to sizing policy increases as the size of the young gen-
eration increases. Being able to support larger LABs with-
out penalty aids some collection techniques and reduces the
complexity of tuning JVMs for varying conditions, whether
these are heap-sizing policies or the number of threads.

Table 2 shows details of the VolanoMark client and server
applications when run with 64KB LABs, a 4MB young gen-
eration, and either 10 or 50 rooms. The numbers reported
are the means of 10 runs. For each configuration, we re-
port the number of young and old collections, the time
spent performing collection, the number of collections where
TLABs or PLABs were used, and the number of LABs and
the amount of words allocated in LABs. We also report
the number of successful MP-RCS transactions, the number
that failed while refilling a LAB, and the number of these
failures that could not be revalidated and so were invalid.
Finally, we report statistics about the LABs that were side-
lined, about the sidelined LABs that were discarded at a
collection, and about all of the LABs that were discarded
at a collection. As the table shows, with larger individual
LABs, TLABs waste more memory—by up to 3 orders of
magnitude—and so incur many more collections.

Second, the default, adaptively-sized policy does well for
both TLABs and PLABs. So long as the collector used can
efficiently support small LABs, this policy makes TLABs
competitive even in highly multi-threaded applications. But
even with this policy, as the number of connections increases,
we can see that PLAB performance improves by up to 15%
over TLABs. The disparity is larger when considering the
various fixed-sized sizing policies, with the improvement of
PLABs over TLABs increasing with the LAB size.

Third, if we look closely at the graph of TLAB results
in figure 10(a), we see that the 256KB sizing policy does
better than all but two other sizing policies. Further, we
see that the worst policy is for 64KB LABs. The reason for
this unexpected behavior is that as the youngest generation
is exhausted, threads that can no longer allocate LABs in
that generation switch to allocating objects directly from
whatever memory remains. The 256KB policy does better
because more of the threads spend time in the final phase,
unable to allocate LABs, and this provides a buffer of time
in which extant LABs may be filled with newly allocated
objects. Likewise, the 64KB policy does the worst because
the threads efficiently claim most of the memory for LABs
and the remainder does not provide a sufficient buffer of time
for those still-allocated LABs to be filled. This behavior calls
for a study to determine when to cease allocating LABs.

7. RELATED WORK
Much research has been done in the area of kernel assisted

non-blocking synchronization in the context of uniproces-
sors. In [3] and [4], Bershad introduces restartable atomic
sequences. Mosberger et al. [15, 16] and Moran et al. [14]
describe a number of mechanisms for implementing such
restartable critical sections. Johnson and Harathi describe
interruptible critical sections in [9]. Takada and Sakamura
describe abortable critical sections in [20].

Our implementation makes use of the restoreCtx hook
to install a device driver to handle notification of preemp-
tion. This ON-PROC notification hook can be viewed as
a simple—and less expensive—form of scheduler activation.
Scheduler activations [1] make kernel scheduling decision vis-
ible to user programs. Many operating systems provide a
similar mechanisms to support system tracing tools. Mod-
ern SMP versions of Microsoft Windows [11] provide Ke-
SetSwapContextNotifyRoutine, for example. The functional
recovery routines [18] and related mechanisms of the OS/390
MVS operating system also allow transactions of this type.

Other processor architectures provide similar mechanisms
to the %asi register. The Intel IA32 architecture has seg-
ment registers that could be used in a similar manner. Sim-
ilarly, Hudson et al. [8] propose a number of allocation se-
quences that use the predicate registers of the IA64 to annul
the effects of interrupted critical sections.

One influence on our development of MP-RCS and its
application to PLABs is the work of Shivers et al. [19] on
atomic heap transactions. There, the authors describe their
efforts to develop efficient allocation services for use in an
operating system written in ML, how these services are best
represented as restartable transactions, and how they in-
teract well with the kernel’s need to handle interrupts effi-
ciently. A major influence on their project is the work done
at MIT on the ITS operating system. That operating sys-
tem used a technique, PCLSRing [2], allowing any thread to
examine safely another thread’s state.

Our approach differs from these other efforts in several
important ways. First, our mechanism works on multipro-
cessors. Second, unlike the work of Bershad [3, 4], for ex-
ample, we react to, rather than constrain, preemption. As
such, we avoid limiting the underlying scheduling mecha-
nisms. Lastly, we have exposed the MP-RCS service through
the critical-section interface so that processor-centric trans-
actions may be expressed in high-level languages exposing
to the application full control over how the per-processor
resources are organized and how contention is handled.

8. CONCLUSION
We have presented a new mechanism for MP-RCS based

on the use of the SPARC r© %asi register that simplifies the
implementation of this kind of service. We have presented a
library, the Critical Section interface, that allows MP-RCS
transactions for managing processor-specific resources to be
expressed in high-level languages. Finally, we have applied
the MP-RCS service to the implementation of processor-
local allocation buffers. In so doing, we have demonstrated
that it is competitive with thread-local allocation buffers de-
spite the fact that its use does not remove any synchroniza-
tion, and that as the number of allocating threads exceeds
the number of available threads, support for processor-local
allocation buffers both aids the throughput of the applica-
tion by reducing the frequency of garbage collections and
reduces the need to carefully tune the sizing policies used to
manage the allocation of local allocation buffers.
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