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ABSTRACT
Instrumentation is commonly used to track application be-
havior: to collect program profiles; to monitor component
health and performance; to aid in component testing; and
more. Program annotation enables developers and tools to
pass extra information to later stages of software develop-
ment and execution. For example, the .NET runtime relies
on annotations for a significant chunk of the services it pro-
vides. Both mechanisms are evolving into important parts
of software development in the context of modern platforms
such as Java and .NET.

Instrumentation tools are generally not aware of the se-
mantics of information passed via the annotation mecha-
nism. This is especially true for post-compiler, e.g., run-
time, instrumentation. The problem is that instrumentation
may affect the correctness of annotations, rendering them
invalid or misleading, and producing unforeseen side-effects
during program execution. This problem has not been ad-
dressed so far.

In this paper, we show the subtle interaction that takes
place between annotations and instrumentation using sev-
eral real-life examples. Many annotations are intended to
provide information for the runtime; the virtual environment
is a prominent annotation consumer, and must be aware of
this conflict. It may also be required to provide runtime
support to other annotation consumers. We propose an an-
notation taxonomy and show how instrumentation affects
various annotations that were used in research and in indus-
trial applications. We show how the annotations can expose
enough information about themselves to prevent the instru-
mentation from accidentally corrupting the annotations. We
demonstrate this approach on our annotations benchmark.
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1. INTRODUCTION
System management tools are becoming critical in the

context of on-demand operating environments. Such tools
widely rely on two enabling technologies: instrumentation
and program annotation. Instrumentation is used in col-
lecting profiling information that is needed for monitoring
the performance, provisioning, or other execution charac-
teristics. Program annotations are information passed by
application developers or tools to the virtual runtime so as
to specialize or tailor the execution characteristics of the
application. For instance, a compiler can pass optimiza-
tion information so as to improve application performance.
Unfortunately, instrumentation tools are not aware of the
semantics of information passed via the annotation mech-
anism, and if one is not careful, the interaction between
instrumentation and program annotation can lead to unex-
pected behavior of the application. In this paper, we first
show the subtle interaction that can take place between pro-
gram annotation and instrumentation. A typical scenario
during application development and execution is as follows:
First, the application is annotated as part of the application
development. Second, the program is instrumented to col-
lect profiling information. Finally, either the run-time or a
tool interprets the program annotation (of the instrumented
program). We present a solution to address the interaction
problem. Our approach is based on first studying the char-
acteristics of existing annotations. Based on the study, we
present a taxonomy of meta-annotation that can help alle-
viate the interaction problem between program annotation
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and instrumentation. We think it is very important to ad-
dress these issues while the usage of annotations is still in
its infancy and there is time to apply the necessary changes.

Modern programming languages, as well as traditional
ones, support program annotation. In Java and CLR, anno-
tations constitute a powerful mechanism that enables pass-
ing information between programmers, tools, and the run-
time, from the source code level up to the execution time.
Program annotations enrich the program semantics and fa-
cilitate optimizations. They describe method usage (test
markers, web method markers), convey optimization hints
(static register allocation schemes, redundant runtime checks
markup), or aid in code development and maintenance (au-
thor name tags, bug tracking). In Java, annotations were
only standardized recently in release 1.5, while CLR incor-
porated them in the initial standard. The .NET experience
shows that two-thirds (66%, or 143 out of 215) of the non-
standard annotations implemented by this platform target
the runtime, providing hints to serialization and remoting
services, interoperation with native code, and more. There
is also a growing body of annotations consumed at runtime
by third-party tools such as test drivers [24].

Instrumentations are commonly used to track application
behavior: to collect program profiles; to monitor compo-
nent health and performance; to aid in component testing;
and more. As opposed to general-purpose program trans-
formations, instrumentation only aims to gather additional
information about the system rather than modify the origi-
nal program’s structure and behavior. Bytecode instrumen-
tation uses structural and semantic information provided
by language and platform specifications both to identify in-
strumentation points and to avoid affecting the original pro-
gram structure and behavior. Both Java and .NET provide
(non-standard) profiling APIs for run-time program trans-
formation and instrumentation. Java Instrumentation Ser-
vices [11] are a recent addition that standardizes the means
by which a Java “agent” can query and modify the JVM
in which it is running, and in particular, instrument at run-
time classes running in that JVM. The Instrumentation Ser-
vices were standardized in the same 1.5 release of Java as
the annotations — ironically, since, as we show in the follow-
ing example, in the presence of program annotations with
unknown functionality and semantics, an instrumentation
could affect correctness of both the annotation and the in-
strumented program.

Example 1. Array boundary checks. In Java, every ar-
ray access must be accompanied by a reference nullity check
and array boundary checks, to ensure that correct excep-
tions are thrown by the runtime if necessary. Qian et al. [30]
suggested an analysis that identifies instructions where such
checks are superfluous due to previous array accesses within
the method. The results of this analysis are conveyed through
annotations attached to the analyzed method. For example,
@array null check(59) means that checks at bytecode offset
59 can be omitted.

Consider now a profiling tool that instruments the anno-
tated class file to get basic block usage data. This is done
by inserting some extra instructions in the begiining an end
of each basic block, and, consequently, has the side effect of
moving the original instructions within the code array. Now
there may not be any instruction that starts at the offset
59 specified by the annotation above. Even worse, offset 59
may point to a valid instruction, but a different one. In this

1 public class WebRead {
2 @WebMethod
3 @array_null_check (59)
4 public String ReadStory (String filename )
5 {
6 // Retrieve the story
7 }
8 }

Figure 1: A sample web method

case, JIT or other annotation users have no indication that
the annotation is invalid, and by using it, they change the
program semantics and introduce security hazards.1

In the example above, the instrumentation ignores the
presence of the annotation, which leads to a semantics change.
Is the solution for the instrumentation to remove the an-
notations it encounters? We discuss this in the following
example.

Example 2. Web services. Web services are gaining pop-
ularity as a way to integrate heterogeneous distributed ap-
plications or services. A client and a web service provider
communicate using HTML- or SOAP-formatted messages.
Web services are published using the Web Service Descrip-
tion Language (WSDL). In both J2EE and .NET, methods
that implement web services need special support from tools
and runtime. In .NET, web services are marked as such by
the programmer using annotations (known in .NET as cus-
tom attributes): attaching the @WebMethod annotation to a
public method converts it into a web method. Figure 1 il-
lustrates the use of both @WebMethod and @array null check

on the same method.2

Suppose that the code in Figure 1 is instrumented to cre-
ate a method-level profile of the application. We have al-
ready seen that modifying the method code renders @ar-

ray null check unusable. However, instead of placing the
new code within the profiled method as in Example 1, the
method-level instrumentation could move the profiled method’s
body into a new method as in Figure 2. ReadStoryI() is now
an exact copy of what ReadStory() was before the instrumen-
tation, so the instrumentation can move @array null check

from ReadStory() to ReadStoryI() to avoid the correctness
problems found in Example 1. Handling both annotations
identically, the instrumentation moves @WebMethod as well.

Does this work? No: now ReadStory() is not a web method,
since it is no longer annotated as such. ReadStoryI(), on the
other hand, is a web method, but it is not published in the
corresponding WSDL file. In order to fix this, the instru-
mentation would need to move the @WebMethod annotation
back to ReadStory(), while leaving the @array null check an-
notation attached to the new ReadStoryI() method.

We see that the two annotations have to be handled dif-
ferently. Deleting or moving @WebMethod affects the usabil-
ity of the resulting code; however, it would work if left at-
tached to the instrumented method. In contrast, deleting

1Had the instrumentation known the semantics of the offset
field, it could have fixed the offset in the annotation, but
recall that the semantics of annotation fields is generally
unknown.
2To avoid confusion, we use the Java style (@Annotation)
rather than C# style ([Annotation]) throughout this pa-
per.
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public String ReadStory(
String filename){

// Retrieve the story
}

public String ReadStory(
String filename){

Log.enter(…);
String s;
try{

s = ReadStoryI(filename);
}finally{

Log.exit(…);
}
return s;

}

private String ReadStoryI(
String filename){

// Retrieve the story
}

Figure 2: External instrumentation

@array null check, or, better, moving it with the method
body works fine. But if the instrumentation just leaves it
attached to the modified method, the combination of in-
strumentation and annotation can lead to severe errors and
changes in program semantics.

Currently, there is no way for instrumentation to safely
treat non-standard annotations, i.e., annotations that are
not part of the language or platform standard. In par-
ticular, it is impossible for an instrumentation to reason
about the semantics of non-standard annotations it encoun-
ters, since the only information available is on types of an-
notation fields, not their meaning. Given that annotation
programming is becoming popular on modern programming
platforms like Java and .NET, it is important to address the
problem of interaction between annotations and program
transformations, and especially instrumentations.3

To summarize, the main contributions in this paper are
as follows:

• We expose problems that stem from applying instru-
mentation on annotated code, and illustrate them us-
ing real world examples.

• We introduce the notion of annotation modes to sys-
tematically classify the annotations. This classifica-
tion, grouping together annotations whose behavior
under instrumentation is similar, is used to analyze
a representative set of annotations drawn both from
the literature and from existing programs.

• We present a light-weight behavioral classification of
annotations and show how annotators can use it for
communication with the instrumentation.

• We present practical results from the application of
our classification to the annotations in our benchmark
set and show how an instrumentation uses this infor-
mation to achieve safe code modification.

The rest of the paper is organized as follows: In Sec-
tion 2, we present some background on annotations and
instrumentations. Specifically, we survey popular instru-
mentation techniques, and discussing different varieties of

3Instrumentations, which gather monitoring information,
are especially important because they are more often than,
say, code patches, applied by parties that do not partici-
pate in the development of the affected code. Consequently,
these parties do not possess any special knowledge about the
semantics of the annotation used.

annotations that have been explored in the past. In Sec-
tion 3, we present a simple taxonomy for these annotations.
In Section 4, we suggest how the annotation writer can pro-
vide the instrumentation with a description of relevant prop-
erties. We review the related work in Section 5, and wrap
up with conclusions.

2. INSTRUMENTATION AND ANNOTATION

2.1 Instrumentation
As opposed to general-purpose program transformations,

instrumentations, or spectative program transformations [33],
strive to maintain the program structure and functionality,
allowing only minor side effects such as increases in execu-
tion time or changes to the log file. Such instrumentations
do not remove program elements (e.g., classes, fields, and
methods); variables defined by the original program may be
read but not written. Instrumentation may add its own vari-
ables, even to existing program elements (e.g., new fields or
local variables), and those variables may be read or written
by it. Instrumentation may also insert new code into origi-
nal program methods, and invoke other methods from this
code, provided that original variables are not modified as a
result of these invocations; ensuring this is the responsibility
of the instrumentation. Finally, instrumentation may out-
line code, i.e., move all or part of the method code into a
new method and replace it in the original method with the
invocation of the new one. The external instrumentation in
Figure 2 is an example of out-lining.

There is a wealth of applications for program instrumen-
tation. We have already mentioned fine-grained profiling;
while the standard profiling APIs allow only method-level
information, bytecode instrumentation has to be used, for
example, to measure execution frequency of individual basic
blocks. Another application area is that of system man-
agement tools that track characteristics of other applica-
tions: health, performance, workload, serviceability, license
usage, etc. These tools require the managed application
to be instrumented with system management APIs, e.g.,
ARM [26]. Instrumentation is also used by testing and
verification tools. For example, JSpy [12] uses instrumen-
tation to log certain kinds of operations; the log is later
used for the verification of various program properties. Con-
Test [9] strives to diversify in the program’s thread interleav-
ing schedules during testing by inserting various semantics-
neutral instructions such as sleep() and yield() into the
method bodies. This is actually the purest kind of instru-
mentation, since there are no side effects and any change
in behavior caused by the instrumentation cannot be distin-
guished from a change in behavior due to a different runtime
environment.

2.2 Annotations
Pragmas were an early incarnation of metadata annota-

tions, passing information from the programmer to the build
tools. Other tools used source-file annotations (appearing ei-
ther as new keywords or as specially-formatted comments)
to receive hints from the programmer, for example, variable
mutation and aliasing information [10, 1, 23]. Annotations
guide compilers in concurrent code generation [21, 3] and
declare method pre- and post-conditions [14, 16].

Java [20] permitted the use of annotations (under the
name of attributes) at the class file level. In the early days
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1 /** Describes the request -for -enhancement ( RFE)
2 that led to the presence of API element*/
3 /* Attached to classes , fields , and methods*/
4 @Target (CLASS , METHOD , FIELD)
5 /* Appears in the class file , not at runtime*/
6 @Retention (CLASS)
7 public @interface RFE{int id (); String date ();}
8
9 /* Annotation normal usage */
10 @RFE(id = 2868724 , date = "4/1/2004 ")
11 public static void travelThroughTime(
12 Date destination ) { ... }

Figure 3: An example of Java source annotation

of Java, an attribute was a byte array of known length and
unknown semantics attached to a class file element, e.g.,
the class itself, fields, methods, or code arrays. A virtual
machine is required to silently ignore all attributes that it
does not recognize, and the attributes are prohibited from
affecting the semantics of Java types. However, if attributes
expected by a tool are absent from the class file, or are
no longer valid because of instrumentation, the tool may
function incorrectly. Annotations on bytecode were applied
in research, for example, to pass information from a static
compiler to JIT [18, 30, 2, 13], or to store program analysis
results [28].

One of the reasons that attributes never gained popularity
in the industry was the absence of a convenient way for a
Java programmer to create these attributes. Java 1.5 mends
this by introducing metadata annotations [4]. On the lan-
guage level, this is a special kind of class, with limitations
on inheritance and types of members, and a peculiar syn-
tax. Figure 3 provides an example based on JSR 175 [4].
Line 7 defines an annotation type @RFE with two data fields,
one integer and one string; line 10 shows how this annota-
tion type is used. As part of the annotation type definition,
we have (on lines 4 and 6) meta-annotation, i.e., annotation
of the annotation type, that specifies the annotation type
properties.

The CLR platform [8], implemented by Microsoft .NET
and others, is another example of an environment that rec-
ognizes annotations (known here as custom attributes) as
first-class language constructs all the way from the high-
level sources to the runtime environment. There are 23 an-
notations that are standard, i.e., their semantics and format
are defined by the platform specification and thus are irrel-
evant to the discussions in this paper. These annotations
carry diverse information, such as runtime-enforced security
permissions, CLS compliancy information, native library lo-
cation, etc. There are also semi-standard annotations, i.e.,
annotations defined by a specific platform implementation
(in this case Microsoft .NET). An instrumentation targeting
a specific platform implementation may be able to keep up
with annotations used by each version targeted, although
this may require a significant effort from the instrumenta-
tion developers. Also, some of the annotations, not intended
for external usage, may be insufficiently documented (this
is actually the case for the @Inheritance attribute in .NET).
Finally, there is a growing body of custom annotations that
are defined by individual tools [24]. Instrumentations can-
not, in general, learn the semantics and behavior of such
annotations.

In the absence of a standard representative collection of

annotations that could serve as a benchmark in our discus-
sion, we assembled one of our own (see Table 1). These anno-
tations come from different areas of application, are created
by users or tools, targeting online and offline tools, neces-
sary and optional. Some of the papers cited refer to .NET
annotations, and some were written before annotations were
standardized in either Java or .NET. We modified the orig-
inal notation (where necessary) to consistently use the Java
conventions. These annotations will be used throughout the
paper to illustrate our discussion.

3. MODE-BASED CLASSIFICATION
At first glance, annotations present a bewildering multi-

tude of properties and behaviors. For example, correctness
of the @WebMethod would not be affected by instrumentation
that retains the annotation itself, while @VR (described in Ta-
ble 1) could be rendered invalid by any instrumentation of
the annotated method. On the other hand, instrumentation
must retain @WebMethod in order for the application to func-
tion correctly, but @VR can be removed without causing any
harm except perhaps for some performance degradation at
first use. Most annotations must be removed if the instru-
mentation turns them invalid, but some, such as @StackMap

(cf. Table 1), are easily verified and can be retained even if
potentially incorrect. How do we order and group annota-
tions with similar properties?

Ludwig Wittgenstein [35] made the following observation:

Imagine a picture representing a boxer in a par-
ticular stance. Now, this picture can be used to
tell someone how he should stand, should hold
himself; or how he should not hold himself; or
how a particular man did stand in such-and-such
a place; and so on.

The annotations are similar to that picture. Consider, for
example, a field annotated with @unique that states the unique-
ness of the reference stored in the field. We do not know
the meaning of this annotation without its intended usage.
It may be used with a runtime that enforces the reference
uniqueness by referencing a duplicate object each time a
duplicate reference is requested. Alternatively, it may be a
request from the user to maintain the uniqueness of the ref-
erence, and a conforming runtime would throw an exception
if the reference is duplicated. Finally, it may just be indi-
cating that a static analysis tool detected that the program
does not duplicate the reference.

3.1 Annotation Modes
There are several ways to encode the annotation usage

patterns. We found a simple and elegant approach inspired
by the verbal modes in grammar. English has three of them:
indicative for statements of fact (“This reference is unique”),
imperative for commands (“Reference, be unique!”), and
subjunctive for wishes and statements that do not neces-
sarily hold (“I request that this reference be unique”). Like-
wise, we classify annotations according to the following def-
initions:

Indicative annotations: statements of fact. The infor-
mation in these annotations can be deduced from the
program code. Annotations @deepImmutableField, @ar-

ray null check, @VR, and @StackMap are all indicative.
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Name Source Area Description
@WebMethod [22] Information for compiler and runtime Marks a method as web method
@ExpectedException [24] Information for testing tool Specifies the expected outcome of the method
@unique [5] Component specification Marks a reference as unaliased
@deepImmutableField [28] Program understanding and optimization Marks a field as immutable
@array null check [30] Runtime optimization Marks spurious nullity checks
@VR [13] Information for JIT Virtual register allocation
@StackMap [34] Information for JVM Type mapping of the method stack frame

Table 1: Annotations and their characteristics

Imperative annotations: commands to the runtime or tools,
e.g., @WebMethod. These annotations cannot be deduced
from the program code, and they cannot be violated
by anything that the program does.

Subjunctive annotations: requests that may or may not
be respected. An action, such as throwing of an ex-
ception, may be taken if the request is not satisfied.
These annotations cannot be deduced from the pro-
gram code, but they can be respected or violated by
the program. @ExpectedException and @unique are both
subjunctive annotations.

Table 2 classifies the annotations listed in Table 1 accord-
ing to their usage suggested in the respective papers. Look-
ing at the semi-custom annotations in .NET, our largest
real-life source of annotations, we see that @WebMethod, to-
gether with 218 others, is imperative (the sole possible ex-
ception is the undocumented @Inherited) [22]. These anno-
tations fall into well-defined groups, each providing for the
interaction with a specific tool or part of runtime. Some of
the annotations are used at pre-execution stages, such as the
component model annotations for visual designers. Others
are used by special parts of the runtime, like the interop ser-
vice annotations that are used for .NET/COM interaction.4

Mode Examples

Imperative @WebMethod

Subjunctive @ExpectedException, @unique
Indicative @deepImmutableField, @array null check, @VR,

@StackMap

Table 2: Annotation classification

In the literature, imperative annotations appear in Newkirk
and Vorontsov’s paper on typical annotation usage [24], where
they are used to replace marker interfaces and naming con-
ventions, e.g., marking the methods used as test drivers.
Subjunctives appear in several papers [24, 16, 14] in the form
of pre- and post-conditions and assertions. Since the Java
language already contains a runtime-supported mechanism
of assertions, it seems that pre- and post-conditions will be
the bulk of subjunctive annotations there. Such annotations
could be used by a special runtime, or by runtime tools as
described in Newkirk and Vorontsov [24], or by a special
program transformation tool that would translate these an-
notations into assertions within the method body. Finally,
indicative annotations fall into two large groups. Results
of complicated inter-procedural analysis ([28, 7] and others)
are normally used by program understanding and develop-
ment tools. Others, such as those described by Krintz and
4The standard annotations defined in the CLR Specification
are much more diverse; for example, the security permission
annotations are subjunctive. However, since they are stan-
dard, we are not concerned with them here.

Calder [18], are used to reduce the overhead of dynamic com-
pilation or to improve performance. Such annotations usu-
ally rely on intra-procedural analysis, probably augmented
by hierarchy and inheritance information, since in dynamic
languages, inter-procedural analyses are rarely reliable.

3.2 Modes and Instrumentation
We now consider how annotations belonging to each of

these modes behave with respect to the instrumentation.
The most striking property of imperative annotations is
their insensitivity to instrumentation. Most imperative an-
notations are only sensitive to changes that involve the re-
moval of the element they are attached to, although some,
like @AutoComplete in .NET, also require the preservation of
some other entities. This is to be expected, since by def-
inition, this is the group of annotations whose correctness
cannot be invalidated by normal language means. There-
fore, instrumentations, which by definition do not remove
existing program elements, can proceed freely in the pres-
ence of imperative annotations.

Subjunctive annotations typically modify the semantics,
e.g., by throwing an exception or creating a log entry if the
requirement that they express is violated. If a subjunctive
annotation reacts by exception throwing, it may be possible
for the instrumentation to ignore such annotations, provided
that the instrumentation catches all the exceptions in the in-
serted code, even if it does not expect them. In fact, it seems
likely that most of the subjunctives belong to this category.
However, unless this sub-category is explicitly specified, the
only solution that is reasonably safe would be to avoid in-
strumentation in presence of subjunctive annotations.

Indicative annotations are deducible from the program se-
mantics as it is; therefore, they do not modify it. These
annotations are often intended for use by development and
static tools, rather than the runtime or runtime tools. In-
dicative annotations used by the runtime only contain infor-
mation that the runtime can recompute, and are typically
used to take part of the runtime’s job offline. Therefore, it
is normally safe just to discard these annotations.

These observations could serve as a basis for communica-
tions between annotations and instrumentations. The an-
notation writer, when declaring an annotation type, would
describe it (in the same way as annotation targets are de-
scribed) as being imperative, subjunctive, or indicative. The
instrumentation, upon encountering an annotation instance,
would examine its type’s mode and behave accordingly: ig-
nore if the annotation is imperative, cancel instrumentation
if the annotation is subjunctive, and remove annotation if
the latter is indicative.

The mode-based classification approach has important ad-
vantages: it is simple, efficient performance-wise, and intu-
itive for annotation writers. Sometimes it is not flexible
enough, especially for subjunctive annotations, which often
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target pre-production tools, and therefore should not pre-
vent instrumentation after the application is deployed. This
problem could be alleviated if the annotation writer option-
ally provided additional information about the annotation,
such as the intended lifetime. However, the most signifi-
cant drawback of mode-based classification is that it is not
conservative enough. For example, suppose an indicative
annotation is removed by an instrumentation. The tool for
which the annotation was intended has all the information
needed to re-compute the annotation contents, but it may
not have the code for doing this. Without external help,
the instrumentation cannot know for sure whether or not
its handling of any particular annotation is correct.

4. BEHAVIORAL CLASSIFICATION
In this section, we present a classification scheme that is

based on the meta-annotation describing the behavior of the
annotation, with the following goals in mind:

• Precision: The annotation description should match
the annotation behavior closely enough. It must pro-
vide good results for “typical” annotations, and even
for the outliers we would like to reduce the imprecision.

• Conservativeness: Even when the annotation descrip-
tion is not precise, it is important that it enables the
detection of all situations where the instrumentation
interferes with the annotation, i.e., is conservative. For
example, simply ignoring annotation is not sufficient,
as demonstrated by Example 1.

• Ease-of-use: The classification scheme must avoid re-
quiring significant extra effort from the annotation writer.

• Scalability: Performance is crucial for run-time instru-
mentation; therefore the classification scheme should
keep its performance impact as low as possible.

As we have shown in Section 1, the instrumentation can-
not determine how to handle annotations in the absence of
extra knowledge about the annotations themselves. This
knowledge may be conveyed either per annotation instance
(attached by the annotation user who created this instance),
or per annotation type (attached by the annotation writer
who defined this type). Typically, the annotation writer has
a better understanding of the annotation’s properties. Also,
collecting and providing the annotation data per type rather
than per instance saves both effort and class file size. Thus
we will use a scheme where the annotation writer places
the information to be communicated to instrumentation in
meta-annotations, i.e., annotations of the annotation types,
much like @Target or @Retention.

4.1 Annotation Behavior Characteristics
So what information is necessary? Basically, the instru-

mentation must know whether its actions affect the annota-
tion correctness and what to do if the answer is positive. The
relevant questions here are what, where, how, and when:

• What? What changes does the instrumentation apply
and what changes is the annotation sensitive to?

• Where? Where does the instrumentation apply its
changes and where may they affect the annotation?

Start instrumentation I
Input: current stage of life/loading

For every annotation A:

I affects A’s scope?

A sensitive to I’s actions ?

Stage and lifetime of I and A intersect?

A can be removed or healed?

Proceed with I

Cancel I within the scope of A

Y

Y

Y

Y

N

N

N

N

When?

Where?

What?

How?

Heal or remove A

Figure 4: Instrumentation and meta-annotation

• When? Is the annotation relevant during the stage of
program development and execution when the instru-
mentation is run?

• How? How should the annotation be treated if is (po-
tentially) affected?

Figure 4 outlines how this information could be used at
instrumentation time. This is not the only possible ap-
proach. For example, extra precision and flexibility could
be achieved if the what/where questions were addressed to
an annotation-declared “arbiter” tool, with instrumentation
specification as input. The instrumentation specification, in
a conservative way, should be quite feasible, especially if
instrumentation is implemented in, say, AspectJ. However,
the arbiter tool is extremely problematic — it is a signifi-
cant burden on the annotation writer, and in all likelihood
it would be difficult or impossible to achieve the necessary
analysis precision while conforming to the instrumentation’s
performance requirements. Therefore, for now, it seems nec-
essary to leave the instrumentation in control as in Figure 4,
with annotation providing the information.

Of our four questions, where and when should be easy
for the annotation writer to answer. What and, to a lesser
extent, how, are problematic because they require the an-
notation writer to consider the effects of instrumentation,
when the whole goal of instrumentation is to be as unob-
trusive as possible. Our mode-based classification approach
in Section 3 was intended to avoid such questions, and it is
insufficient — for a reason. One must either limit the an-
notations’ genericity and require them to behave according
to the rules set for their respective category (e.g., require
that tools using indicative annotations function correctly in
the absence of these annotations), or else require the annota-
tions to provide specific instructions to the instrumentation,
in which case annotation can remain generic. We chose the
latter approach. Below, we discuss the annotation descrip-
tion in more detail. We also discuss annotation attachment
information and why it is important for instrumentation.

4.2 Where and What: Scope and Sensitivity
The annotation scope is the set of classes and class ele-

ments whose modification may affect the correctness of an
annotation. For example, an annotation is package-scoped
if only changes to classes within the package may render
it incorrect. Some annotations may have scopes that are
quite difficult to describe. For example, a security anno-
tation claiming that a method only accesses files within a
certain directory actually covers not only the method itself,

169



but also its direct and indirect callees, except those that
exclude themselves.

Given a scope, annotation sensitivity describes which changes
within the annotation scope can render the annotation in-
correct. For example, @WebMethod is not sensitive to instru-
mentation changes within the program; @array bounds check

is sensitive to any change within the annotated method’s
body, because instrumentation moves instructions to differ-
ent offsets (see also Section 4.5). Generally, an annotation
can be described using a set of (scope, sensitivity) pairs;
but for all the annotations we have examined, one such pair
sufficed.

The only way to conservatively describe the annotation
sensitivity is to declare it sensitive to any changes. We
choose this option as default, but allow the annotation writer
to relax it (cf. Table 3). Creating a vocabulary for describ-
ing annotation scope is also not straightforward. Many an-
notations, e.g., @unique, have dynamic scopes such as “all
the methods that may access the annotated field, together
with their callees”, and these scopes are difficult to describe
statically. Even if such a description were added to our lan-
guage, using it may impose too high performance penalties
on instrumentations. Further complexities in Java are added
by its flexible class loading. While at the Java source code
level it makes sense to talk about application- or package-
wide scope, in bytecode such annotations can only be sup-
ported using a special-purpose annotation type to aggregate
the restrictions at the package or application levels. Such an
annotation should be placed by the compiler as a package-
level bytecode annotation (for package-scoped sensitivity) or
at every application entry point (for application-level sensi-
tivity). With this provision, it is possible to comply with
the sensitivity language as defined in Table 4. The pos-
sible scopes are similar to their corresponding Java access
modifiers, except for CURRENT, which improves scope defini-
tion for annotations attached to entities that are not class
members, e.g., parameters or method bodies. An alterna-
tive solution would be to distinguish between annotations
referring to declarations of classes and methods and those
referring to their implementations.

Name Description
ANY CHANGE Annotations sensitive to all changes

within the scope (default)
NON SPECTATIVE CHANGE Annotations not sensitive to spec-

tative changes (cf. Section 2.1)
within the scope

Table 3: Annotation sensitivity

4.3 How: Annotation Healing
Rendering an annotation invalid should not necessarily

prevent instrumentation. Indeed, most of the annotations
suggested in the literature, such as @array bounds check, have
an advisory character. The healing meta-annotation serves
to mark an annotation whose absence can be fixed by tools
downstream. At the very least, we’d like to know if the an-
notation is optional or mandatory. Other annotations may
convey information that is much cheaper to check than to
re-generate (e.g., @StackMap); such annotations may be re-
tained even if violated. The proposed healing options are
enumerated Table 5. For example, healing for @WebMethod is
CANCEL, while for @null array checks it is REMOVE.

Name Description
CURRENT Annotations sensitive only to changes to the pro-

gram element (e.g., class, method, parameter) to
which they are attached

MEMBER Annotations sensitive only to changes to the class
members to which or to whose sub-elements they
are attached

CLASS Annotations sensitive only to changes to the
classes to which or to whose sub-elements they
are attached

HIERARCHY Annotations sensitive only to changes to the
classes to which or to whose sub-elements they
are attached, and to their subtypes

PACKAGE Annotations sensitive only to changes to the
classes to which or to whose sub-elements they
are attached, and other classes in the same pack-
age (default)

PROGRAM Annotations sensitive to changes anywhere
within the program

Table 4: Annotation sensitivity scope

Name Description
CANCEL Annotations must be preserved, so changes

must be canceled (default)
IGNORE Annotations can be retained even if invalid
IGNORE CATCH Annotations can be retained even if invalid,

but this may result in unexpected exceptions
in the modified code

REMOVE Annotations must be removed

Table 5: Annotation healing

4.4 When: Annotation Lifecycle
While annotation scope seeks to separate annotation and

instrumentation spatially, the properties that describe anno-
tation usage attempt to separate them in time. For exam-
ple, in Java, @Retention meta-annotation (possible values:
SOURCE, CLASS, RUNTIME) indicates whether the annotation
should be preserved in the source, class file, or at runtime re-
spectively. We augment @Retention by lifecycle information
(cf. Table 6) to get a better picture of the annotation usage.
An additional benefit is that such markup can help ensure
that this sensitive annotation is removed from the binaries
before shipping.5 For example, the lifecycle of @WebMethod

and @null array checks is DEPLOYMENT; the lifecycle of @Ex-

pectedException, used by a testing suite to mark the test
outcome, is INTEGRATION.

Name Description
DEVELOPMENT Annotations are last used during component

development and testing
INTEGRATION Annotations are last used during the devel-

opment and testing of components that use
the annotated component

DEPLOYMENT Annotations are last used at the component
production stage (default)

Table 6: Annotation lifecycle

4.5 Annotation Attachment
Every annotation comes attached to some program ele-

ment. The importance of this information stems from the
fact that it facilitates instrumentation by limiting the anno-

5The lifecycle can be tailored to a specific software process
lifecycle, such as Rational Unified Process.
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tation scope. Consider, for example, an annotation pro-
viding an intra-procedural register allocation scheme. It
is extremely volatile; intrusive instrumentation can either
leave the method alone or remove the annotation. However,
an external instrumentation could have moved the method
body (together with the annotation attached to it) to a new
method and so achieved its purpose while retaining the op-
timizing annotation.

Another example is @array null check, which describes an
individual bytecode instruction. Assume that a certain type
of annotation is attached to instructions whenever an anal-
ysis establishes that the usual reference nullity checks can
safely be omitted for these instructions. Since currently
there is no way to annotate individual instructions, this
would be implemented as a method-level annotation con-
taining the instruction offset as a data field. An intru-
sive instrumentation of the annotated method would make
such annotations unsafe, since the instruction offsets are
changed due to instrumentation and the annotations would
refer to incorrect instructions. Therefore, the annotation
writer should declare this annotation as sensitive to all changes.
If there were a way for annotation to be attached to an in-
dividual instruction (i.e., if the annotation standard would
make explicit the offset semantics of the annotation’s data
field), the instrumentation would receive the responsibility
for fixing this field (much as line number tables are fixed),
and again the annotation could be retained in spite of in-
strumentation.6

At the source code level, both Java and C# allow attach-
ing annotation to parts of the method, e.g., individual pa-
rameters. However, neither language distinguishes between
annotations attached to method declarations and method
bodies, and neither persists the sub-method attachment in-
formation to the bytecode level. We propose to add, both
to the high-level languages and the underlying platforms,
a means to specify the entity to which the annotation is
attached. Without this information, the instrumentation
would be forced to be much more conservative than neces-
sary.

4.6 Practical Experience
In this section, we evaluate how the proposed solution

fares according to the criteria outlined in the beginning of
Section 4. Our descriptions are based on a vocabulary of
simple terms, which is easy for the annotation writer to use,
can be efficiently consumed by the instrumentation, and
allows a conservative choice of default values. The scope
specification is the one that suffers the most from the sim-
plicity of our descriptions, especially for annotations whose
scope is a runtime property (such as all callees of a given
method). However, if the language for the scope is more
complicated, it becomes difficult for the instrumentation to
identify whether or not its modifications affect the scope of
the annotation. Therefore, we sacrifice precision for the sake
of scalability.

Our research on the interaction between annotations and
instrumentation was motivated by our work on a load-time

6An alternative solution would be to define, for each
method, a table that maps numerical labels to method off-
sets, similar to the existing line number table. The instru-
mentation would be to fix this table, again similar to what
is done for line number tables, and the dependence of anno-
tations on offset values would be reduced.

instrumentation intended to become a part of a large in-
dustrial product that monitors programs after their deploy-
ment. Therefore, in order to evaluate our approach, we turn
to this motivating example and examine how it would be
able to proceed in the presence of the the annotations in
Table 1. Figure 5 presents their meta-annotation.

Note how the change in attachment information affects
the sensitivity (though not the scope!) of @array null -

check. The actual scope for @WebMethod and @ExpectedEx-

ception would be the program slice rooted in the annotated
method rather than the whole program. Likewise, for field
annotations @unique and @deepImmutableField, the scope de-
pends on escape properties of the annotated field (in the
latter case also all variables reachable from it), and could
be significantly narrower than the the whole program. How-
ever, the precise scope in all those cases is extremely difficult
to define and describe statically, and PROGRAM scope seems
a reasonable choice. For the rest, the scope annotation is
pretty close to the sensitivity scope. Note also the @StackMap

annotation, which is costly to compute but cheap to verify,
so it can be retained even if there is a risk that it was ren-
dered invalid. Table 7 shows how each of the annotations
interacts with our sample instrumentation. In particular, we
see that all the critical annotations can be retained without
risk using our scheme.

Name Instrumentation impact
@WebMethod None (not sensitive)
@ExpectedException None (not sensitive, different lifecycle)
@unique None (different lifecycle; could be re-

moved)
@deepImmutableField None (insensitive)
@array null check None if instruction-attached (not sen-

sitive), remove annotation if method-
attached

@VR Remove annotation
@StackMap None, even if affected

Table 7: Annotations and the sample instrumentation

5. RELATED WORK
We have shown that one cannot trivially instrument an

annotated programs without affecting the program seman-
tics of the resulting program. The problem of the inter-
ference between program annotation and instrumentation
is not benign. To the best of our knowledge this problem
has not been addressed before. It is related to the inde-
pendent extensibility problem in aspect-oriented program-
ming. Indeed, instrumentations can often be implemented
as aspects (e.g., [6]), and annotations can also be seen as
a transformation of the original problem. The independent
extensibility problem is still open except for the special case
of transformations that only affect the interfaces [15]. In
this paper, we are dealing with a special case of two trans-
formations, A (the annotation) and I (the instrumentation),
where I operates on the code where A is present as a def-
inition but potentially was not yet applied. There remains
ambiguity in the interaction of different annotations at run-
time, which is a manifestation of the general extensibility
problem. There have also been numerous works on cor-
rectness (i.e., semantics-preservation) of compiler transfor-
mations, for synchronous [29] and imperative [31][19] lan-
guages. However, this approach does not work for annota-
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@Target (METHOD } @Retention (RUNTIME ) @Lifecycle (DEPLOYMENT )
@Sensitivity( NON_SPECTATIVE_CHANGE ) @SensitivityScope( PROGRAM ) @Healing (CANCEL )
public @interface WebMethod {...}

@Target (METHOD } @Retention (RUNTIME ) @Lifecycle (INTEGRATION )
@Sensitivity( NON_SPECTATIVE_CHANGE ) @SensitivityScope( PROGRAM ) @Healing (CANCEL )
public @interface ExpectedException {...}

@Target (FIELD } @Retention (CLASS ) @Lifecycle (INTEGRATION )
@Sensitivity(ANY_CHANGE ) @SensitivityScope(PROGRAM ) @Healing (CANCEL )
public @interface unique {...}

/* deepImmutableField as defined for program optimization */
@Target (FIELD } @Retention (RUNTIME ) @Lifecycle (DEPLOYMENT )
@Sensitivity( NON_SPECTATIVE_CHANGE ) @SensitivityScope( PROGRAM ) @Healing (REMOVE )
public @interface deepImmutableField {...}

/* deepImmutableField as defined for program understanding */
@Target (FIELD } @Retention (CLASS ) @Lifecycle (INTEGRATION )
@Sensitivity( NON_SPECTATIVE_CHANGE ) @SensitivityScope( PROGRAM ) @Healing (REMOVE )
public @interface deepImmutableField {...}

/* array_null_check attached to instruction ( currently not available) */
@Target ( INSTRUCTION } @Retention (RUNTIME ) @Lifecycle ( DEPLOYMENT )
@Sensitivity( NON_SPECTATIVE_CHANGE ) @SensitivityScope( ELEMENT ) @Healing (REMOVE )
public @interface array_null_check {...}

/* array_null_check attached to method */
@Target (METHOD } @Retention (RUNTIME ) @Lifecycle (DEPLOYMENT )
@Sensitivity(ANY_CHANGE ) @SensitivityScope(ELEMENT ) @Healing (REMOVE )
public @interface array_null_check {...}

@Target (METHOD } @Retention (RUNTIME ) @Lifecycle (DEPLOYMENT )
@Sensitivity(ANY_CHANGE ) @SensitivityScope(ELEMENT ) @Healing (REMOVE )
public @interface VR {...}

@Target (METHOD } @Retention (RUNTIME ) @Lifecycle (DEPLOYMENT )
@Sensitivity(ANY_CHANGE ) @SensitivityScope(ELEMENT ) @Healing (IGNORE )
public @interface StackMap {...}

Figure 5: Annotations and their meta-annotations

tions, whose semantics are not known to the translator or
compiler.

Another related area is unintended software evolution, which
mostly focuses on refactoring transformations. Refactoring
transformations aim to enhance the structure of evolving
software, for example, by outlining common code. This
differs from the instrumentations we discuss in this paper,
which typically do not affect the program structure. The
usage scenario is also different; while refactoring is typically
performed on the source code by a developer, instrumenta-
tions are typically performed on binaries or class files by a
user.

Some of the numerous works on instrumentations and an-
notations are mentioned in Section 2. Krintz and Calder [18]
address the problem of class file corruption that causes in-
valid annotations, and distinguish between annotations that
are safe to use (probably at the price of performance) even if
invalid, and those that are unsafe and thus must be validated
if used. They suggested using only annotations that do not
affect program correctness or verifying the annotations at
runtime. This may be a workable solution for the indicative
annotations they worked with, but not with imperative or
subjunctive ones that cannot be verified. However, instead
of a malicious corruption we are dealing with instrumenta-
tion, which is a cooperating agent. More recently, Krintz [17]
presented a technique that substantially improves Java pro-

gram performance by incorporating both on-line and off-line
profile information to guide dynamic optimization. The in-
formation is passed using bytecode annotation. Although
annotations are used in conjunction with instrumentation to
guide dynamic optimization, the interference that could hap-
pen between instrumentation and annotation was orthogo-
nal to the problem addressed by Krintz [17].

Pechtchanski [27] proposes a different annotation taxon-
omy, based on the annotation’s effect on program correctness
and whether it is verifiable. While the verifiability crite-
rion is common to both taxonomies, the correctness effect is
replaced in our paper with deducibility. One reason is that
it is sometimes difficult to say whether a specific annota-
tion affects correctness or not. For example, it is not obvi-
ous whether correctness is modified by an annotation that
provides textual description of a GUI component, but it is
obvious that such description could not be deduced from a
program analysis. Alternatively, the @WebMethod annotation
adds new behaviors but preserves the old ones, so does it
affect correctness or not? Also, some annotations are only
used at certain project lifecycle stages (e.g., an annotation
that indicates the expected method outcome for a testing
tool). So while the information conveyed by them affects
the tool’s behavior, it does not modify the semantics of the
program itself, and the program may actually be expected
to run normally without this tool.
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Another related direction of research is impact analysis [32].
Advances in this area could let us capitalize on the relative
simplicity of describing instrumentations as opposed to de-
scribing generic annotations.

6. CONCLUSIONS AND FUTURE WORK
Instrumentation is a very powerful mechanism for collect-

ing program feedback and runtime profile information, and
is widely used both in industry and in research. Annota-
tions have been used in a variety of research projects to
pass information between programmers, tools, and runtime
environments. Now they are making their way into the in-
dustrial mainstream, through their wide usage in CLR and
their recent standardization in Java. This paper explores
the previously overlooked problem of maintaining the cor-
rect semantics and behavior of annotated programs after
their instrumentation. We show that without active coop-
eration between the two, instrumentation of annotated code
is unsafe.

We propose a taxonomy of annotations based on our study
of more than two hundred annotations that appear in liter-
ature or are used on .NET and Java platforms. We use
this taxonomy to derive a classification of annotations with
respect to instrumentation. We show how meta-annotation
describing instrumentation-relevant annotation properties can
protect against using corrupted annotations, and demon-
strate this solution on a set of sample annotations drawn
both from industrial and research usages of annotations.

There is much work remaining for further research. While
we have focused on how instrumentation can interfere with
annotations, the interference can be the other way round as
well. For example, it is important, in profiling and many
other contexts, that the instrumentation cover all the entry
points into the software component. Some annotations, such
as @WebMethod, turn a usual method into a component entry
point in certain environments. Such information is very im-
portant for instrumentation. One could also consider other
types of program transformations. We think it is very im-
portant to bring these issues to the forefront while the usage
of annotations is in its infancy and there is time to apply
the necessary changes.
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